
Ten15 as a basis for PCTE(+) implementation 

P. w. core 

R.S.R.E. Malvem 

Ten15 - an advanced Portable Systems Kernel 
Ten15 is an abstract machine. The term ‘abstract’ is used to indicate that Ten15 is 
not associated with any particular machine, rather that it is defined mathematically. 
The term ‘machine’ is used to indicate that Ten15 can be thought of as something 
that can be programmed to manipulate data. As with conventional machines, the 
nature of the programs that can be accepted by the Ten15 machine and the data 
types that it can manipulate are extremely important. It is these that determine the 
programmability of the machine. 

- 
Ten15 can be implemented on most modem architectures. There exists almost 
complete implementations on the RSRE Flex machine and on the DEC Vax 
machine opemting under VMS. The implementation consists of a translator, which 
translates Ten15 programs into the order code of the target machine, and a run-time 
kemel which is a set of routines on the target machine which can be called by an 
executing Ten15 program. The size of the VAX translator is approximately 100 
Kbytes and the run-time kernel is less than 200 Kbytes. The estimated effort for 
writing a translator and kemel is 2 - 3 man years. This is for a maintainable system 
onto a machine where a model already exists. For example, the VAX translator is a 
model for say a 68000 translator. 

The programs of the Ten15 machine are represented by elements of an algebra. 
Programs arc created by applying the operators of the algebra. On machines these 
are represented by procedure calls. There already exist Pascal and Algol68 
compilers and much of an Ada compiler, compiling programs into Ten15 code. The 
writing of an ML compiler is planned. A measure of the run-time efficiency of 
Ten15 can be obtained by comparing the execution of programs compiled directly 
into the code of the target machine and those compiled via the Ten15 code. Ten15 
provides extra facilities such as integrity, mixed language working and fast process 
management. These place an overhead on every program being executed via Ten15 
Executing programs making limited use of these facilities exhibit the worst 
performance of Tenl5. Early tests show that in such cases there is only a 20% 
increase in the execution time of the program. 

The values manipulated by the Ten15 machine include filestore values, processes 
and communication channels, values accessed over a network and exception values. 
The inclusion of such and other values allows the expression of an entire operating 
system as a Ten15 program. Ten15 provides more than this. The existence of 
Algol68 and Pascal compilers to Ten15 demonstrates that all Algol68 and Pascal 
programs are expressible as Ten15 programs. Not only does Ten15 provide a basis 
for systems, but tools built on top of that system. The ability to write a Ten15 
translator and kemel for a machine gives the ability to port Ten15 to that machine. 



The smallness of that task makes it realistic, especially when compared with the 
quantity of software that can be ported as a result. 

The Ten15 machine is strongly typed, i.e. it uses types to control the application of 
operators to values. Strong typing is the mechanism used by Ten15 to obtain high 
levels of efficiency, communication and integrity. Communication and integrity 
provide a powerful basis for tool creation and composition. This not only has 
advantages for users of Tenl5, who can benefit greatly from tool composition, but it 
has enabled the design of Ten15 to be in terms of simple well understood operators, 
knowing that the more complex systems, such as PCTE, can be built by composing 
tools safely. 

Ten15 mechanisms relevant to PCTE(+) 
The portability provided by Ten15 has already been discussed, so this section is 
devoted to two aspects of PcTE(+): its filestore model and its process model. 

Filestore 
There are two main sorts of filestore object in Tenl5. These are the disc variable 
and the disc pointer. The only sort of object that can be stored in a disc variable is a 
disc pointer and a disc pointer can point to any type of object. Ten15 has type 
consmctors for these two sorts of values, pvar and persisrenr. A value of type 
persisrenr X is a disc pointer to a value of type X, where X is any legal Ten15 type. A 
value of type pvur X is a disc variable holding a value of type persisrenr X. The area of 
disc pointed to by a disc pointer cannot be overwritten; the only way of making 
changes to the disc is by assigning disc pointers to disc variables. This makes the 
Ten15 model of filestore essentially non-overwriting. The Ten15 filestore is a 
persistent heap, with the operations to write and read objects to and from filestore 
being explicit. Ten15 includes a fast disc garbage collector. 

This model of the filestore allows users to write large quantities of data to filestore 
in the form of disc pointers, but not actually change the filestore until an assignment 
to the disc variables has been done. If the machine should crash in the middle of 
altering the filestore, then the filestore would be in either of the state before or after 
the assignment to the disc variables. 

Ten15 allows the updating of several disc variables atomically and it is intended to 
provide a mechanism for updating disc variables distributed over different filestores 
atomically. These facilities enable the efficient implementation of distributed 
transactions. 

The ability to write any value to a filestore (done by the writing of efficient coding 
routines), gives the ability to create complex, possibly fine grained, structures on 
disc. For example, procedures can be used to enforce schema, disc pointers 
themselves can be used to represent relationships and disc variables enable the 
creation of cyclic structures. 

71.2 



Processes 
New processes on the Ten15 machine are created by launching a procedure; this 
procedure is then executed in parallel with and, subject to any communication links, 
independently of existing processes. It is possible for processes to communicate by 
common reference, and Ten15 provides queues as an altemative mechanism. When 
a queue is created, it is specified what type of value can be stored in the queue. This 
type can be any of the Ten15 value types. Processes can deposit values of the 
comsponding type onto a queue without waiting and processes can take values off a 
queue, waiting if there are currently no values in the queue. . 
The times to create a process, swap runnable processes and the time to 
communicate using a queue are approximately the same as the time to execute a 
procedure call and exit. On the micro VAX implementation of Ten15 this is 
approximately 50 microseconds. This enables the scheduler to swap processes with 
a high frequency, a rate of 20 times per second placing an overhead of only 0.1%. 

Advanced features supported by Ten15 
The Ten15 machine has developed from the examination of languages. It has been 
extended in a uniform manner to include system programs in addition to those of 
existing languages. This has enabled system programs to be written making full use 
of facilities previously only available to the program languages. For example, on a 
Ten15 machine it is possible to create a system that passes data safely between 
programs by reference rather than copying. This is the direct analogy of passing 
reference parameters to procedures in programs, it has been implemented by 
providing the system with a common addms space the same as is available to 
programs. It is possible that such features could be added to PCTE in the future. 

- 

Ten15 is a suitable basis for the writing of tools. It not only provides portability for 
those tools, but allows the safe communication of complex structured data objects 
between tools.-Any of the Ten15 types can be used as an interface type for tools. 
These include procedures, references, cycles and polymorphism. The use of typed 
communication could be incorporated into a system built on top of Tenl5. 

The high level nature of the data types and the program structure of Ten15 make it a 
good environment for mixed language programming. The inclusion in the Ten15 
machine of its own memory management system together with garbage collector, 
procedure values and polymorphism provides good support for modem high level 
languages. 

The mathematical form of the Ten15 programs allows tools and programs expressed 
in Ten15 to be analysed, possibly for the detection of certain kinds of errors. At 
present there is active research in techniques of program transformation based upon 
the mathematical smctures in Tenl5. 

0 Crown Copyright 1988 

7/3 


