
'AD-A1i~ 378 IN PRAISE OF PROCEDIJRES(3 UH
ESTABLISHMENT MALVERN (ENGLAND) I1 F CURRIE JUL 82
RSRE-MNO-3499 DRIC-BR-853i6

UNCLASSIFIED F/C 9/2 N

*fl lf flf fl lflE E



... . . *nm~mH l I. I -~ II nIII I -...

16" JL 3.2

11.68

11.25 * 11.4 11.

MICROCOPY RESOLUTION TEST CHART
hlATIONAL. DURCMI OF SThANA S-I163 A



UN LIMITED BR85316.

RSRE
MEMORANDUM No. 3499

ROYAL SIGNALS & RADAR
ESTABLISHMENT

IN PRAISE OF PROCEDURES

Author: Ion F Cufris

d PROCUREMENT EXECUTIVE$
Z MINISTRY OF DEFENCE,
U ~RSRE MALVERN, D I

WORCS.BLECTI

0

82 NO125

UNSIMIT9D



ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3499

Title: IN PRAISE OF PROCEDURES

Author: Ian F Currie

Date: July 1982

-M.

The use of procedures vary greatly from one programming language to another.

This paper discusses these variations and argues for the use of procedures in a
very general fashion; in particular, procedures are an obvious vehicle to provide
the data abstraction and encapsulation given in a very limited form by other
language constructs such as ADA packages. The implementation of these general

,procedural values is also discussed with reference to the Flex computer

This memorandum is for advance information. It is not necessarily to be
regarded as a final or official statement by Procurement Executive. Ministry
of Defence

Copyright
C

Controller HMSO London

1982



UNH MIT[

Title:

In praise of procedures.

Author:

Ian F Currie

Royal Signals and Radar Establishment

St Andrews Rd, Malvern, Worcestershire, England.

Keywords

procedures, abstractions, encapsulations

Acooession For

NTIS GRA&I
DTIC TAB0
Unannounced '
justiicatio nt

Distribution/

Availability Codes
Avail and/or-

Dist Special

UATI
I COPY
\tS' Y~o



UNLIMITED

Abstract

The use of procedures vary greatly from one programming language

to another. This paper discusses these variations and argues for

the use of procedures in a very general fashion; in particular,

procedures are an obvious vehicle to provide the data abstraction

and encapsulation given in a very limited form by other language

constructs such as ADA packages. The implementation of these

general procedural values is also discussed with reference to the

Flex computer.

i

I



1. Introduction

Most computer languages have some construction producing program

structures something like procedures, whether one calls them

subroutines, subprograms, functions or whatever. All of them

purport to produce some compound action by grouping together more

primitive actions; this compound action can then be used

repeatedly.

Each language has itE own idiosyncracies in the manner in which

one can construct and use procedures. Some of the differences are

purely cosmetic (e.g. differences in syntax) while others

manifest themselves at a much deeper level. In this last category

are included such questions as the kind of parameters and results

they can have, and whether one can use procedures as data.

In order to find out more about procedures, one has to look for

the common features in these diversities and try and describe

their properties and the kind of environment in which they

exist. Sections 2 to 4 discusses these features, while the

remainder of the paper tries to illustrate the uses of those

procedures and environments which allow very general parameters

and answers.

2. What is a procedure?

Following Strachey and Scott [1,2], let us consider the following

sets:

L : f the set of storage locations in some abstract machine ),

V a ( the set of values storable in these locations in L 1.



We can then define a machine state as a function from storage

locations to storable values, so that the set of machine states

is given by S:

S-- (L->V]

A procedure can then be defined as a member of a set P (subject

to certain constraints to ensure its existence) where:

P X -> ( S-> [1*3)))

where X is the parametric domain,

Y is the result domain.

The inclusion of S in this definition is an indication that

procedures can cause side-effects in their operation.

The set, V, of storable values is one of the domains which

Strachey takes to be characteristic of a given language. In most

languages this is identical to the set Y above. Strachey's other

characteristic domain is the set D of denotations, i.e. the set

of values which can be named in the language, in the simple sense

of letting an identifier stand for the value. In most languages D

is closely related to the parametric domain of procedures, X.

3. Characteristic domains

A great deal of innocent amusement can be derived from working

out the characteristic domains of various languages. Strachey [1)

shows the rather baroque characteristics of Algol 60:
p-ila

41



D L fint, real and bool declarations and value

parameters }

+ P f procedures )

+ ( L ) {arrays}

+ W p Darameters called by name }
e

+ W I switches )

+ Q strings)

+ J labels)

I
where P: D ->( -> [ S )

and W [ S-> ( D + V S)

The storable value domain is:

V a T { boolean values i.e. TRUE and FALSE I

+ N { integer values)

+ R real values }

Note that D and V for Algol 60 are disjoint!

Let us now look at the characteristic domains of Algol 68

Taking a fairly charitable interpretation of the modes and

coercions, one can write down the domain of denotations of Algol

68 as:

-D



D A { primitive types like ints,reals,bools and

chars I

+ L locally generated references }

+g globally generated references }

+ D D rows and structures }

[ D + D ] unions)

+ [ D-> ( S -> V * $ ) S

I procs }

A superficial examination of the mode structure of Algol 68 might

lead one to suppose that the domain of storable values is the same

* as D. However, the set V for Algol 68 cannot expressed simply,

* since although a value may be storable in one location, it may not

be storable in another location of the same mode. This arises

from the scope restrictions of Algol 68. These restrictions are

quite difficult to express; in practice they mean that the only

safe storable values are given by:

V : A + L + [ VV V + V + P'

where P' < CD -> (S -> V * S)3 and each member of P' has a

routine-text whose only non-local Identifiers are, in fact, global

identifiers of the program.

A procedure in Algol 68 effectively has its non-local identifiers

built into it and hence, for the procedure value to retain its

meaning, the identifiers must also retain their meaning. The

designers of Algol 68 envisiaged a stack implementation in which

identifiers were associated with locations on the stack. Hence

any value which "contained" an identifier could only live as long

as the location on the stack corresponding to the identifier was

not reused.



It will be seen that limitations of the storable value domains

in both Algol 60 and Algol 68, as well as other languages, arise

from the presumption of stack based implementations. The Algol 60

restriction in V implies that there is no possibility of a value

which can contain elements which may disappear. The analagous

restrictions in Algol 68 are only defined in terms of the scope

rules; to a large extent, these rules are unenforceable and

control of the values is generally done in the informal manner

given above.

4. Praiseworthy procedures

If we were not to insist on a stack implementation of Algol 68

and completely relax the scope restrictions, we would get a very

pleasant definition of the domains D and V:

D V A + L + [ V b V I + [ V + V + + [ V -> ( S -> [ V * S ])]

.. .. . (1)

where all of the references in L are now global and the procedures

in EV -> (S -> [V 0 S])] are implemented so that their action

remains valid globally.

The praiseworthy procedures of the title of this paper are the

procedures contained in this enlarged set V, i.e. our set of

praiseworthy procedures is:

P - [v-> (S -> V' S)) ]

In other words, the procedures should be able to accept any values

as parameters and deliver any values as result. The aim of this

paper is to illustrate the power of this "completion" of the value

domain in programming.



The examples given later in the text are written in "scope-free"

Algol 68 whose characteristic domains are given in (1) above. The

significant thing about these examples is their use of the wide

domain of storable values, and not the particular language. This

could be more or less any language capable of expressing

procedural values.

The notation [V -> (S -> [V * S])] obscures some of the most

important properties of procedures. Only a small part of the

total state of the machine is involved in the evaluation and

result of a procedure and this part is constant for all calls of

the procedure. We can say this a little more precisely by

considering a typical member, p of P in a sensible language:

p v. s.( f(v,q), A 1.( 1 E Z(q) I e(l) s(l) ) )

where q 4 V gives the non-locals of the procedure,

f E V -> V gives the answer to the procedure,

and e C L -> V represents the side effects on the subset of

locations derivable from q given by Z.

The functions f and e represent the code or commands of the

procedure while q is the set of non-local values of the procedure.

Given the general domain of storable values, the non-locals q

could be completely inaccessible to any other part of the program,

or perhaps shared between only a few procedures. This is the

basis of most of the ideas of data abstraction or encapsulation

which will now be examined.

4o



5. Abstraction and packages

Consider the following trivial example in our extended Algol 68:

PROC make_accumulator

STRUCT ( PROC(REAL)VOID sample,
PROC STRUCT ( REAL mean,ms) answer)

( REAL s:=O,ssq:=O; INT n:=O;

( ( REAL x) VOID
( s+:=x; ssq+:= x'x; n ::1 ),

STRUCT ( REAL mean,ms):

(REAL m a s/n; (m , ssq/n-m'm) )

);

A call of make_accumulator creates two procedures given in the

sample and answer fields of its structure result. The sample

procedure accumulates statistics of the sequence of reals given as

parameter in successive calls of sample, while a call of the

answer procedure gives the mean and mean square of the sequence so

far. Clearly one would make a call of make_accumulator for each

sequence requiring analysis. Each call produces a different pair

of procedures each with a non-local set consisting of the

references s, ssq and n created by the call. These references are

quite inaccessible elsewhere in the program; indeed, the user of

make_accumulator need not know of their existence. Thus the two

procedures give an abstraction of the idea of collecting the

statistics of a sequence of numbers.

Many systems and languages try to implement some kind of data

abstraction or encapsulation, while shying off the difficulties

inherent in our praiseworthy procedures. These implementations



usually depend on either creating the abstraction before the

program starts and using a conventional stack implementation

thereafter, or else including it in the normal stack as a set of

declarations of which only some are visible to the rest of the

program outside the package. ADA [3], for example, tries to

combine both of these approaches with its package construction and

defines abstractions as packages which are very like procedures

without parameters; they can have private variables and can

construct procedures which can be used by other parts of the

program. An ADA package with a similar action to makeaccumulator

is given in the Appendix. Syntax apart, the principal difference

between a package and a procedure without parameters, is that one

cannot actually call a package. Instead the placement of the text

of a package acts as a group of declarations which are then

accessible to the range in which the text is placed. In the case

where the package is considered as a separate unit, the name of

the package must be indicated at the head of the program which can

then access the results of an evaluation of the package. Just

exactly which evaluation is not always clear; neither is the order

of their evaluation defined where more than one is involved

It is clear that packages (a la ADA) can only be accessed in a

relatively static manner since they must be evaluated

declaratively. For example, if we wished to analyse several

sequences using the ADA package in the Appendix, we would probably

require several copies of the text of the package (probably using

different identifiers). This might be of little importance in

this trivial example; however, it is easy to construct examples in

which the dynamic aspect of procedures is the essence of the

abstraction.

For example, suppose that we wished to implement semaphores in a

multi-process, single-processor environment. To do this properly

one requires some notion of "process" and "unitary action". Using

one's imagination to provide this, a procedure for creating

semaphores might be:



MODE SE4A PROC(BOOL)VOID;

PROC makesema C INT initial ) SEMA:

( INT control := initial;

PROCESSLIST waiting empty;

( BOOL up ) VOID:

, CO unitary action CO

IF up THEN

IF waiting 1= empty THEN

PROCESS p = first(waiting); waiting:=rest(waiting);

RUN p

ELSE control +:= 1

F1

ELIF control > 0 THEN control -:= 1

ELSE waiting APPEND current-process;

wait

FI

The semaphore produced by a call of make_sema on an integer n,

say, has its control variable initialised to n; a call of the

semaphore with a TRUE parameter is equivalent to the normal up

operation and the down operation is produced by a FALSE parameter

It is quite clear that no static package can produce these

semaphores. Having to have a separate package for each semaphore

would be quite intolerable. It might be argued that semaphores

(or their equivalent) are defined as primitives in ADA. In that

case, let us look at another abstraction, built or. semaphores,

which implements queues:



PROC make-queue (INT max_q_length)

STRUCT ( PROC (ITEM)VOID put, PROC ITEM get):

( ITEMLIST q

SEMA mutex = makesema(1),

r = makesema(max_q_length),

s = make_sema(O);

( (ITEM i) VOID:
(r(FALSE);

mutex(FALSE); q APPEND i; mutex(TRUE);

s(TRUE)

ITEM:

(s(FALSE);

mutex(FALSE);

ITEM i = first(q); q:=rest(q);

mutex(TRUE);

r(TRUE);

i

We cannot define all abstract machines beforehand, anymore than

we can create a sufficient number of examples of a specific

machine in advance.
I

6. Securit aspects of procedures

Another important aspect of praiseworthy procedures is their use

as a security barrier. As mentioned above, it is possible to

create a procedure whose non-locals are not accessible outside the

procedure. For example, suppose that I wished to put a password

onto the evaluation of a procedure:

PROC bind.password x (]CHAR p, PROC VOID f) PROC([]CHAR)VOID:

( ([CHAR s)VOID: IF sup THEN f FI )

b.A



,77

If we wished the procedure opencave to be obeyed only if the

correct password was known, then the procedure that is made public

is the result of:

bind-password ("sesame", open-cave)

- This ease of expression tends to snowball with each layer of

abstraction or security barrier that is required. Thus, in a

practical system, the procedure open-cave is probably itself the

result of such a layer of abstraction, such as the result of

binding an interpreter with some find procedure which gives

meanings to identifiers:

MODE FIND = PROC([)CHAR)VALUE;

PROC bind-find z (FIND f)PROC VOID:

(VOID:interpret(f) )

We could have constructed a suitable find procedure by using

make_find:

PROC make-find ( DlCT1ONARY d) FIND:

H C [3 CHAR id) VALUE:

( CO finds the VALUE corresponding to id in dictionary d CO

)

Note that we could construct more complicated finds, by combining

several such finds:



PROC combine-finds = ( [H FIND find.set) FIND:

( ( [] CHAR n ) VALUE:

( VALUE v := empty;

FOR i TO UPB find_set WHILE v = empty DO

v:= findset[i](n)

OD;

v
)

7. Implementation of procedures

Given that praiseworthy procedures are the best things since

sliced bread, how does one set about implementing them and why

aren't they already in general use? These questions are not

unrelated, since the implementation of praiseworthy procedures

requires a highly dynamic storage allocation scheme with garbage

collection. Remembering our storable value domain:

V A + L + [ V V + C [ V + V ] * [ V -> (S -> (V * S)]

All the variables in L must be globally accessible and all

procedures must have their non-local values bound closely to its

code. The size of the non-locals of a procedure is independent of

its mode, and thus storage for a procedure must be generated in a

heap-like fashion Just as surely as that required for variables.

The main reason for the non-adoption of praiseworthy procedures

is that garbage collectors have hitherto been regarded as

expensive and esoteric toys found only in the ivory castles of

Academia. However, with properly designed architecture, the

expense of running and maintaining a system which allows

praiseworthy procedures is more than balanced by the saving in

actually using a system with clear, well defined procedural

interfaces which lend themselves naturally to data abstraction.

J
d



The Flex computer [14 provides such a suitable architecture; it

is micro-programmed to understand procedures and all of its

storage allocation (including garbage collection) is implemented

in micro-code. Regarding the Flex commands implemented in this

micro-code as a language, one can write down its storable value

domain:

V:A+L+C+ [V V + [V+V +] P

where C is the set of code bodies containing the commands and

constants corresponding to procedure texts and P is our standard

set of procedures [V -> (S -> [V 0 S])]. Each of the sets A, L, C
and P are distinguishable by the Flex commands. All of the

members of P are created by a close command:

Close: EC 0V I-> P

i.e. close binds the commands with non-locals to form a

procedure. One can obey commands only when they have been bound

into a procedure and clearly some of these commands can access the

non-locals bound with the commands. The only operation that can

be done on a procedure value (other than storing it) is to call

it; in other words, possession of a procedural value give access

to the code and non-locals of the procedure only in the manner

envisaged by the writer of the code. Thus the security and

integrity of the system is ensured by making the system interface

be entirely procedural in ways similar to those sketched out in

the examples above.

The use and construction of Flex procedures is not a restricted

system facility; it is part of the repertoire of normal user

instructions. The net effect of this is that users have the

freedom to impose the same sort of privacy arrangements as is

generally only available at the system level in more conventional

computers. In effect, every user of the system becomes a system



programmer (without realiuing it); Just as importantly, system

programmers, at last, become normal programmers.

8. Conclusion

Procedures, in their full generality, are an extremely powerful

weapon in the programmer's armoury. They provide a natural method
of abstraction, capable of hiding the workings of a particular

implementation of some idea. Once procedures become storable

values, they can be divorced from the environment of their

construction, so that the protection and security of their

internal data-structures and actions can be ensured.

Any design of a language which allows general procedure values

will be much simpler than one which pre-supposes a stack-like

implementation. This is rather a paradoxical statement since its

implementation is likely to be more complicated (except on a

friendly architecture like Flex). Nevertheless, it is probably

true because the language which lacks proper procedures will try

to compensate by introducing other constructions, complicating

both its syntax and semantics. The various constructions in ADA

involved with packages, hiding parts of declarations and the

complicated visibility rules are examples of this. In spite of

all this complication, the ADA package system is still a very poor

4 substitute for only one facet of real procedures.

The fact is that, if proper procedures were available, everybody

would use them; the advantages in their use in program

construction are, in practice, overwhelming. The sole barrier to

their adoption lies in the difficulties of their implementation on

unsuitable machine architectures; however, in these days of cheap

micro-programming, it is as easy to produce a friendly

architecture as it is to produce the usual run-of-the-mill

architecture found in most o=mercial processors.



• ',;, , I. tTED

References

1. Strachey, C. Varieties of programming languages. Proc

International Computer Symposium, Cuei Foundation, Venice

(1972)

2. Scott, D. Outline of a mathematical theory of computation.

Proc. 4th Annual Princeton Conference on Information Sciences

and Systems (1970).

3. Reference Manual for the ADA programming Language. USA DOD

(1980).

4. Currie, I.F. , Foster, J.M. and Edwards, P.W. Flex Firmware,

Report no 81009, Royal Signals and Radar Establishment. UK MOD

(1981)

Oft 10



UNI.IMITED

Appendix

An ADA package to accumulate the mean and mean square of a

sequence.

PACKAGE makeaccumulator IS

TYPE stats IS

RECORD mean,ms : real END RECORD;

PROCEDURE sample ( x : IN real);

FUNCTION answer RETURNS stats

END;

PAGKAGE BODY make-accumulator IS

3 : real := 0.0; ssq : real := 0.0; n : integer :=O

PROCEDURE sample ( x : IN real) IS

BEGIN 3 :2 s+x; ssq :a ssq+xex; n :x n+1 END sample;

FUNCTION answer RETURNS stats IS

BEGIN a : real :z s/n;

RETURNS ( m, ssq/n-uem )

END answer

END make-accumulator;

Only the names stats,sauple and answer are available outside the

package.



DOCUMENT CONTROL SHEET

Overall security classification of sheet ............................................................. ........

* (As far as possible this sheet should contain only unclassified information. If it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. ORIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security
.... Vassi f icat ionMemorandum 3499 Unclassifiea

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location
known) Royal Signals and Radar Establishment

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location
Code (if known)

7. Title

IN PRAISE OF PROCEDURES

7a. Title in Foreign Language (in the case of translations)

: 7b. Presented at (for conference napers) Title, place and date of conference

* 8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3,4... 10. Date 1  p. ref.
Curi, I FII

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

HEAD COMPUTING AND GROUND RADAR GROUP

Descriptors (or keywords)

PROCEDURES
ABSTRACTIONS
ENCAPSULATIONS

continue on separate piece of paper

Ji

Abbtract

The use of procedures vary greatly from one programing language to another.
This paper discusses these variations and argues for the use of procedures in
a very general fashion; in particular, procedures are an obvious vehicle to
provide the data abstraction and encapsulation given in a very limited form by
other language constructs such as ADA packages. The implementation of these
general procedural values is also discussed with reference to the Flex computer.




