"AD-A135 513 KERNEL AND SYSTEM PROCEDURES IN FLEXCU) ROYAL SIGNALS
AND RADAR ESTABUISHMENT MALYERN (ENGLAND)

I F CURRIE ET AL. AUG 83 RSRE-MR-3626 DRIC- Bg 89758

/G 9/2

UNCLASSIFIED

L e ATRO AN A L R Gt A T iyt T 1 e Y oAy A, B 0k, et TR, e

&

RPX N 1';(‘-:(_. e, .

N

1.0

FEE
EEEE
2RE

Rt s

TEREEE

s L e

R
!

s
TR

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

M X L

e L™

<, WL v -,
- .,
\‘.- LI \‘.\“‘ “ - .

- '- ¢

RSRE .
MEMORANDUM No. 3626

5
.i% - ROYAL SIGNALS & RADAR
Q ESTABLISHMENT

KERNEL AND SYSTEM PROCEDURES IN FLEX

A e =

Author: | F Currie, J M Foster
P W Edwards
w
&N
t O
[]
S PROCUREMENT EXECUTIVE,
z MINISTRY OF DEFENCE,
< RSRE MALVERN, § . _
2 WORCS. CTER
z ey IRt B .
< %, {1483
z Y
\u oid — M)
k z “) o . ¢
&m g 83 1i1 v o018
g

N i3 = TR _ K g T S T BN A P
AT AN L AL - e X il QAN AR S A = S B i S o - Pl Y RO ey dien A\l e liveg T A il Sat it A SRt by

% UNI RAITED
:if ROYAL SIGNALS AND RADAR ESTABLISHMENT
ié Memorsndum 3626

TITLE: KERNEL AND SYSTEM PROCEDURES IN FLEX

x4 AUTHOR: 1 F Currie, J M Foster, P W Edwards
Ny
,, DATE: August 1983
2
o e -
N
» -
N . ~. SUMMARY
PRy Y \\ =
ﬁ This Memorandum describes the basic Kernel and System procedures
on which the operating system for the Flex computer is based. These
35 are the low level procedures which are used to implement the compilers,
& file-store, command interpreters)etc.'gn Flex.
¥
N
N

Accession For

e _ NTIS GRARI

e - DTIC TAB

: Unannounced O

LY Justification
o By

N Distribution/

5

Availability Codes

Avail and/or
Dist Special

1 el

E;is
3 Al
3%
2
" . This memorandum is for advance information. It is not necessarily to be
b ! regarded as a final or official statement by Procurement Executive, Ministry
g of Defence ‘
23
K ’
o
' Copyright
. Cc
e Controlier HMSO London
i 1983

E D
4

Kernel and System procedures in Flex

1.
2.
3.
s,
5.
6.
1.
8.
9.

10.

1.

Contents

Introduction

Virtual machines and Processes

File stores

Vdus

Exceptions

loading and assembly of programs
Name and value identification

Dictionary utilities

The User procedure

Conolusion

Index snd Glossary

O _CEEEE R £ .. a. a.mmem

LA 2P 2

1. Introduction

The Kernel of Flex i3 a set of procedures which do the resource
allocation and raw peripheral transfers of the Flex system. Generally
these procedures run in privileged mode (see Flex Firamware (1]); in
fact, one could almost define Kernel as being that set of procedures
which run in privileged mode.

Some of the procedures in Kernel are availsble directly to the general
user; these form the Kernel interface. To the user, all procedures are
treated in the same manner, so he should find no difference between a
Kernel procedure and any other. In common with all Flex procedures, the
pointer which is a Kernel procedure can only be passed around and called
- one cannot use the pointer to dig into information which the procedure
uses. To this extent then, the Kernel interface should be regarded as an
extension of the firmware in that the user is completely free to use any
of the non-privileged instructions and any of the interface procedures
in any manner.

The exact definition of a wvhat i3 meant by a system procedure is much
less clear. The procedures which I call System procedures are all
written in non-privileged mode. They form the interface between the
user and a particular operating systeam written on top of the Kernel.
This operating systea is sometimes called Curt, although the name should
more properly be applied to the command interpreter of the Flex
operating system [2]. The charactertistics of this operating system are
such that the dividing line between system and non-system procedures is
largely dependent on the observer; a user could construct a new system
in Flex which uses as much or as little of the current system as he
required without a great deal of trouble. Thus, the choice of the
particular procedures to be described as System procedures is largely
subjective. My usual criterion is to ask whether I can give a prograa
text which describes it completely, taking other Kernel and Systeam
procedures as being defined. If the answer is no, then the procedure is
an System procedure. This usually arises from the fact that there is
some non-textual value bound into the procedure, for example a
dictionary held in file-store.

The procedures described in chapters 2-5 are all Kernel procedures with
most of the rest being siaply non-privileged System procedures., They
all happen to have been written in Flex Algol 68 and so the descriptions
of the interface procedures in the following chapters are generally
expressed in Algol 68. However this does not imply that they can only
be called from Algol 68 programs or indeed that Flex is an Algol 68
machine. The underlying structure of Flex is much more powerful than
any hypothetical Algol 68 "machine®. The totsl relaxation of all of the
Algol 68 scope restrictions in the Flex compiler is one indication of
this.

oG, T

e e

wd
2
*
%
B
4

2. Virtual machines and Processes
2.1 General

A Virtual Machine on Flex is initiated by the reception of an WHITE
Control/A from a vdu. This results in the construction of procedures
and data structures particular to the Virtual Machine. Each Virtual
Machine gets a time-slice, sharing the total time with other Machines in
8 round-rodbin. Communication between Virtual Machines is usually done
via the file-store.

Each Virtual Machine has a set of processes which (given that they are
not held up for other reasons) will be run in a local round robin using
process time-slices, regarding the Virtual Machine time-slices as though
they were contiguous. Any process which does not complete its process
time-slice through being held by a peripheral transfer, will be run for
a8 time equal to its unexpired time-slice as soon as the transfer is
completed.

The set of processes of a Virtual Machine initially consists of :

1. The normal control process , which will usually be the one which
runs Curt and normal programs. This is the principal process of
the Machine.

2. The break-in process which initially is in a loop demanding to
read the BREAK IN LINE on the vdu. If and when this read is
completed by sending the bresk-in line, process 1 will be failed.

The Kernel interface procedures given here allow one to create,
identify and synchronise processes.

2.2 PROC make process = PROC (PROC VOID)VOID:

Make_process is a procedure which will create a new process in the
Virtual Machine. A call of make_process delivers a procedure called
the soft interrupt for this new process. In order to run a PROC VOID

f in the new process, one calls the soft_interrupt with f as a’

parameter. A subsequent call of the soft 1nterrupt. with another PROC
VOID g will result in a FAIL(O, g) if £ is not completed in the new
process; otherwise g will run in the new process.

2.3 PROC own_si = (PROC VOID action)VOID:

The procedure own_si is the soft_interrupt for the principal process
of the current Virtual Machine. This would usually be used to fail
this process from other processes.

2.8 PROC break_si = (PROC VOID breakin_action)VOID:

The procedure break_si is the soft_interrupt for the break-in
process of the Virtual Machine. The initial procedure running in the
break-in process is written so that failures are trapped and, in
perticular, the FAIL(0, g) produced by break_si(g) will result in g

[

LR S RPN N 4 I A A AL et gl gy i S e oF e i T e B SCIA R i SR R IO

being called from within the break in process. This may be used to
allow the user to create his own break-in action.

2.5 PROC make _sema = (INT n)SEMA:
Where SEMA = PROC(BOOL)VOID;

The value of the parameter, n, of a call of make_sema is the initial

value of a new semaphore given by the answer to the call. The
operation of downing (securing) the semaphore is performed by applying
a FALSE parsmeter to the SEMA; raising (releasing) the semaphore by
applying a TRUE parameter. The usual definition of a semaphore
spplies; the value of a semaphore is non-negative and any process which
| tries to down a zero semaphore is suspended until the semaphore is
ey non-zero.

2.6 PROC timed wait = (INT secs)VOID:

- The call, timed_wait(s) holds up the action of current process for at
least s seconds, running thereafter when there are no other runnable
B processes.

2.7 PROC own_time = LONG INT:

~ The value delivered by own_time is the time in milli-seconds that the
: current process has been running. (The time of day is given by an
e instruction, opcode 35).

2.8 VECTOR[ICHAR date
The current date given in the form day/month/year eg. 10/1/83

3. File stores

3.1 General

Usually the user will only be aware of one file-store,entirely
resident on disc. His knowledge is defined entirely by the disc kernel
procedures and disc pointers that he possesses. These disc procedures
are arranged so that (except in one carefully controlled case) no
overwriting of data occurs - one can only read data from an existing
disc pointer or write a chunk of data to create a new block on disc
pointed at by a new disc pointer.

As explained in (1], the main memory representation of a disc pointer
is a locked pointer to a 4-word block. The key for unlocking this
pointer is the same for all pointers belonging to the same file-store.
Disc pointers can also exist in their own file-store where their
representation is 4 bytes. The mediation between the two
representations is done by the disc reading procedures in such a way so
that if a disc pointer to a file-store block is read in two different
places the main memory representation will be the same locked pointer in
both cases. This implies that it is relatively easy to alias file-store
blocks with main memory blocks to facilitate sharing of common blocks.
The correspondences and alias information are tied together with shaky
pointers so that the memory does not become clogged up with disc
pointers and their aliases.

The only exception to the no overwriting rule is the use of disc
references. A disc reference is essentially a variable on disc which
can contain a disc pointer. This variable can be read using d_to_ b
and can be assigned to (with caveats) using to_dr.

Since most writing to the disc will increase the size of the filestore,
the filestore is periodically garbage-collected. This is done by an
off-line program and, except for the fact that the filestore is
inaccessible during garbage-collection, the user is usually unaware of
its action, except for its influence on shaky pointers as
described in 3.5.

In the following procedures a DISCPIR or DISCREF is formally an Algol
68 INT, since no Algol 68 mode constructor can adequately describe a
disc pointer.

3.2 Disc writers

3.2.1 PROC npb to d = (VECTOR[IXTYPE data) DISCPTR:
where XIYPE is FLAT
or VECTOR[JFLAT,
where FLAT 4is INT, REAL, CHAR ...,
or mmr(mr-ooo.ooo)o
or UNION(FLAT,....).

This procedure writes data to a block on disc delivering a disc

-

pointer to that block where data contains no pointers. The mode of the
parsmeter allows one to gather together data of diverse non-pointer
modes.

3.2.2 PROC pb_to d = (VECTOR[]XTYPE data) DISCPTR:

This procedure writes data to a block on disc delivering a disc
pointer to that block where data may contain disc pointers. Once again
the data written is gathered together; this time however each item
written must be multiples of words.

3.2.3 PROC ¢_to_d = (INT ws,REF VECTOR[]INT consts,
REF VECTOR[]CHAR code,BOOL proc)DISCPTR:

This procedure creates a code-block on disc, where ws is the
work-space size reguired by the code. The constants of the code_block,
shich may contain other disc pointers are given in consts. A code block

- disc pointer is delivered if proc is FALSE; otherwise a disc pointer to
a procedure with no non-locals is delivered.

3.2.4 PROC p_to_d = (DISCPTR ob,VECTOR[IXTYPE nls)DISCPTR:

This procedure coreates a procedure on disc,with code-block given by
the code-block disc pointer od (produced dy c_to_d) and non_locals
given by nls (may ocontain disc pointers and must be in word multiples).
A disc pointer to the prosedwre is delivered.

3.3 Disc resders

3.3.1 PROC d_%e_ b = (DISCPTR 4)PTR:
Where PTR = INT;

This prosedure reads the ¢150 blosk cerresponding to disc pointer d,
into & nain semery block and ~ sointer % this block is delivered as
snswer. The type of mals e bleek predused depends on the type of
the disc pointer ¢ whieh in twr. deponds on hovw it was produced.

Thus:
if 4
if

» _te ¢ the dleck type is 3 (non-pointer);
) to_d the bleck type is 4 (normal);
%o _d the Dlook type is 2 (code-block);

prodused
prod

prod _
produs te_d the dlock type is 5 (closure);

i3 2 disc refersnce then saser is the contents of the disc
reference, which is usually a disc pointer (type 6 block).

itl
Ff"

hed by
hed by
hed by
had by

11

4
if d
if 4
if e

In all cases the pointer delivered is such that the contents of the
block canmnot be altered f{.e. in the first three cases above (types 2,
3 and A) the pointer is locked. This means that this same block can be
Siven as an answer to any call of d_to b with the same parameter and
this block ocsn be shsred between many users and programs. Since all
ocode_blocks are read into memory using d_to_b, the saving in both disc
sccess and main memory ussge is quite significant.

S W 4 e oy f

3.3.2 PROC from_disc = (DISCPTIR d ,VECTOR[]JREF XTYPE start)REF YTYPE:
Where REF YTYPE can be coerced to {REF)} FLAT,
or to {REF} VECTOR[JFLAT.

This procedure reads the data from the block pointed at by d. This
disc [pointer must have been produced by some call of npb_to_d or
pb_to_d and the data read is identical to that given by the parameter
of this call. The data is assigned to the variables given by the
parameter, start, in order starting from the beginning of the data and
any remaining data is delivered as the answer. Usually from disc will
be called in such a context so that this remainder (of mode REF YTPE)
will be coerced to some vector. Clearly, if disc pointers are being
read into start, then the corresponding variables in start must occur
in multiples of words.

The procedure from_disc can be used as an effective inverse to
either npb_to_d or pb_to_d, providing a scatter-gather pair.

3.4 Disc reference procedures

Disc references can be read using d to b (3.3.1).

3.4.1 PROC to_dr = (DISCREF dr,INT old,new)VOID:

This procedure assigns new (usually a disc pointer) to the disc
reference dr, provided that the old value contained in dr was old
(integer or disc pointer). If the old value was not old then the
procedure fails. Since to_dr acts on the file store as an elementary
operation, this check allows a fairly simple method of resolving
difficulties caused by simultaneous altering of dictionaries pointed
at by disc references.

3.4.2 PROC new_dr = DISCREF:

This procedure creates a new disc reference (containing integer 0)
and delivers it as an answer. This procedure is hidden from most users
but is included here for completness.

3.5 Shaky disc pointers

Disc pointers produced by npb_to_d or pb_to_d can exist in a "shaky"
form. That is to say, so long as a normal or "firm" version of a
pointer exists somewhere in the filestore then this firm version can
slways be recovered from a shaky version of the pointer by application
of the procedure firm dptr below. If there is a shaky disc pointer
with no corresponding firm version in the filestore then the shaky
pointer will be replaced by 0 (and any associated space recovered) when
the filestore is garbage-collected.

N
:
|
[
%
F

TR

s Ha

3.5.1 PROC firm_dptr = (DISCPTR shaky) DISCPTR:

This procedure delivers the firm version of its shaky disc pointer
parameter.
3.5.2 PROC shake_dptr = (DISCPTR ptr) DISCPTR:

This procedure delivers the shaky version of the parameter ptr which
was produced by npb_to d or pb_to d.

hbaCa R i %y

LA S

ES

AT A
e N,

‘),(;a iz

"ﬁ“?'f"f"-‘ o

B & AL St

als .
[s

A IR a

%
3
<
=
&

4, Vdus

4.1 General

When WHITE Control/A is typed on a vdu, Kernel creates a specific vdu
procedure to go with the Virtual Machine (see 2.1). This procedure is
now the only one capable of communicating with the particular vdu and
will remain valid until WHITE Control/A is typed again on that vdu.Thus
a Virtual Machine usually has sole possesion of a physical vdu simply by
being the only one which has the correct vdu procedure.

The logica vdus have the capacity to display characters in various
forms eg reversed video, flashing, underlined etc. An underlined
character is indicated by adding 128 to the 0 - 127 1ISO representation
of the character sent to the vdu. Other forms are indicated by the
parameters of the procedure vdu.

Each call of the vdu procedure is a single interaction consisting of
writing some lines (possibly empty) to an area of the screen and then,
optionally, waiting for a control key to be pressed to indicate that the
lines on some area of the screen are to be delivered as the answer to
the procedure. Several interactions may be in progress simultaneously to
the same vdu arising from calls of the vdu procedure in different
processes. The NEXTREAD sequence on the vdu keyboard will cycle the
cursor through the various read areas to allow any of the extant
interactions to be completed. The most obvious example of this is the
break-in process, which is usually held up waiting for the top line of
the screen to be sent.

4.2 PROC vdu = (VECTOR[)JINT pre,VECTOR[JTEXT mess,VECTOR[]JINT post,
VECTOR[IREF INT ans)REF VECTOR[ILINE:
Where TEXT = UNION(REF VECTOR[]JLINE, VECTOR({]CHAR,
VECTOR[JVECTOR[JCHAR),
and LINE = REF VECTOR[ICHAR;

This procedure sends the lines defined by mess to an area of the screen
called the write area which is defined by the vector pre. Each element
of the vector mess starts on a new lire., If a component of mess is a
REF VECTOR [] LINE then each of its elements will start on a new line.
The components of a VECTOR [] VECTOR (] CHAR are concatenated to form
one line.

If post is an empty vector, then this is a write-only interaction and
NIL 18 delivered as the answer. Otherwise post defines a read area on
the screen the lines of which will be delivered as the answer to vdu
when the interaction is completed by keyboard action., The variables in
ans will then show how the the interaction was completed.

The vector pre must have upper bound 7, and the significance of each of
its elements is as follows:

ML SR R 4

-

'f prel1] : any or all of these bits may be present :-

3 2 - Lines after the last written will not be cleared.
> 4 - The cursor will not be shown for the read unless it is
' invoked by next read on the vdu
B 8 -~ There will be a left margin during the read part of
the exchange into which the cursor will not move. Only

s the characters to the right of this will be returned.

- The position is set by post[4]

p 16~ The area will be read without interacting with the user.
5 prel2] : The line width in characters [1 : 160].

Z,
. pre(3] : Absolute line number of first 1in. of write area where the
, top line of the screen is 0, the bottom one 23.

) pre[d4] : Number of lines of required width in write area. i
:2:‘ pre[5) : Relative line number (0 is the first line) within current

write area onto which the first LINE will be written. Unless
2 is present in pre(1] the remaining lines in the area will

R be cleared. prel5] may lie between -23 and 46. If it is
- outside the write area the data in the write area will be
< scrolled up or down so that the first line is just inside the
- erea. If enough lines are written to go past the bottom of

the area the data in the write area will be scrolled up.

.
<
ey

pre[6] : Character position [0 : prel2)-1] in line from which writing

will start.

prel7] : "Colour" used. Any or all of the following bits may be
present :-

1 = Blink

2 = Reverse video

4 - Half intensity

16- Invisible

) gy

-

XA
F

The vector post must have upper bound O or 5, and in the latter case,
the significance of each of its elements is as follows:

L 5555

post[1] : Absolute line number of first line of read area [0 : 23].

post[2] : Number of lines of required width in read area.

o

f post[3] : Relative line number [0 : post[2]-1]) within read area for
g initial position of cursor,

o post{i4]) : Character position [0 : pre[2])-1] for initial position of :
.“:;g cursor,

." post[5] : "Colour" to be used for read area. As for write.

O

" The vector ans must have upper bound <z 4§ , and the significance
(; of each element, provided it exists and is not NIL, is as follows:

X

X

<

10 *

i se ¥

i e

My
Latte-

[P e L
¥ bt v A «I.X"J

Sy})

2
?
!
]

ans{1] : A codification of the keystroke(s) which sent the read data
152 - DUPL
153 - DEL LINE
148 - INS LAST
150 - INS LINE
145 - up arrow
147 - south west arrow
139 - down arrow
176 - VOID
177 - GO IN
179 - RESULT
181 - DO
<128 - given by WHITE/x and ans[1] is ascii code for x

ans{2]) : Multiplier number:; will be 1 unless the #10 key has been
used immediatly before the sending keystroke(s), in which
case it will be a multiple of 10 < 230 minus the number of
times the operation was performed on the screen before
needing to send lines. If it is >230 then the ®MAX key was
pressed.

ans{3] : Relative line number [0: post[2])-1] of final position of

cursor.

ans(li] : Character number [0: pre{2]-1] of final position of cursor

The lines returned depend on the key which was pressed to send the data
back.

Let q = min(post(2], ans(2])
r = min(post{2] - ans(3], ans[2])
VOID, GO IN, RESULT, DO send back the whole read area.
Up arrow sends back the bottom q lines.
Down arrow and south west arrow send back the top q lines.
INS LAST sends back the bottom r lines.
DEL LINE and DUPL send back r lines starting from line ans{3]
INS LINE sends back the bottom r lines if ans(4])=0, the bottom
post(2]-ans(3] lines if ans[4]/=0.
WHITE/x sends back no lines.

The definition of the lines which are returned may appear complicated;
however, it can be summarised by saying that the minimum number of lines
are sent, compatible with the implementation of the nominal action of
key pressed.

1"

{ Bk spwd i

A

3

Foay, o L

it

AT A Y

I s r sy

Y

B o R A YT

=1 -

S us

L LA A A e TR o 3y SR W Bt B N AR R i T Rt Sirn "B St Sy S el A e W e e O, P W

5. Exceptions

As described in the Flex Firmware [1]), a exception in D-state provokes
the call of an otherwise inaccessible Kernel procedure, failure, to
record and pass on information about the exception. The failure
procedwre is called in place of the procedure call which contained the
instruction which raised the exception and it generates a structure of
sode F where:

MODE F = STRUCT(PTR locals,INT pc,sf, PTR code block, EP ep)

where the fields are:

locals is a pointer to the workspace in which the exception occurred.

pc is byte displacement from the start of code of the instruction in
code_block which was in error.

sf is byte displacement from the start of locals of the stack front
when the exception occurred.

code block is a pointer to the code block in which the exception
occurred,

ep is the error pair corresponding to the error.

Since failure does a Exit-fail instruction (Op code 69) with a ref to

this structure in U, the mode EP could be REF F. The net effect is that
a chain of mode REF F is formed by successive failures through various
procedures until an instruction is encountered which can cope with the
illegal value produced. This is usually the unite-illegal instruction
(opcode 165) which allows one to access the characteristic word pair of
the illegality (in this case the REF F). This chain may then be
analysed by procedures such as diagnose to indicate error positions in
the code an’ the values of locals in the chain of failing procedure
workspaces.

12

6. loading and assembling program

Compilers for Flex use the primitive disc writing procedures to .
create filestore codeblocks and procedures. Thus, most of the :
code-blocks used in Flex are formed by creating a disc code-block using
¢_to d. Of course, the code can only be obeyed when this code-block is
loaded from disc into main memory. This usually takes place when a -
procedure made from this code-block is called - an interrupt occurs in "
the middle of the calling sequence and the interrupt procedure then -
called will replace the disc code-block pointer with a main memory .
pointer using d _to b (see [1])). This is entirely invisible to the user =
and hence the distinction between disc and main store code-blocks tends
to be rather academic. .
The basic unit of programming in Flex is the procedure and a Flex -
compiler produces a filestore procedure corresponding to the source text it
as a part of its result. This procedure is one which will deliver the -
. interface values defined in the source text as its result, eg those
values corresponding to the KEEPlist in an Algol68 module or the
"specification” part of an Ada compilation unit. In the course of
evaluating the procedure, a value from another module or compilation o
unit USEd by the former is derived simply by calling its corresponding "
procedure. Thus the filestore procedure corresponding to a program text
contains (usually in its non-locals) means of deriving the filestore

. procedure corresponding to each of the external modules used by that
program text, Usually, the external filestore procedure is not itself .
in the non-locals, but rather a kind of a reference to the procedure o
called a Module. 5
The reason for a Module to be a reference to the procedure rather than -

the procedure itself lies in the requirement that one should be able to
recompile and reconstruct program units without invalidating other units
which use them. This implies some degree of assignability. The details
of whether or not one can change a Module belongs more properly to a o
description of the language and compiler; however the kernel of Flex
does define a language independent mechanism for the construction of
programs in this modular fashion such that one can ensure their
consistency at least at the modal level.

6.1 Modules -
“
A Module in Flex is a three word object:
MODE MODULE = STRUCT(DEREF deref,ASSIGN assign, SPEC spec)

This structure effectively defines a variable (existing in filestore)

containing four words. The space for these four words form part of the Ry
user environment (see 8.1 and 9.). The deref and assign fields of this "
structure allow one to access and change these four words, subject to

- certain constraints. The field, spec, is a pointer to filestore disc

block produced by some call of npb_to_d; when used by a compiler this

will generally be some translation of the interface specification of a
. compiled module.

The deref field is a disc-pointer to a procedure of mode PROC DATA

and where DATA has been produced by the compiling system :

o s

4

i a2

AL -

o s Fided

>

».
'
oL
+
-

MODE DATA = STRUCT(PROG prog,
SPEC shaky_spec,
EDFILE text,
WORD spare)

Here the shaky spec field is a shaky version of a disc-pointer to an
interface specification as above. Its shaky properties allow one to
recover the space occupied by DATA when the MODULE is no longer
referred to.

The assign field of a MODULE is another disc-pointer, this time to a
PROC(DATA, BOOL)VOID., Letting these two procedures be deref and assign
respectively, the call assign (d, b) will alter the DATA referred to by
the MODULE to d if b is TRUE (as in the function change spec). If b is
FALSE and the interface specifications given by specOFd and shaky_spec
OF deref are the same, then the prog, text and spare fields the MODULE
are changed to that of d (as in the function amend). The comparison of
the specs is done by reading the non-pointer blocks given by the specs
and comparing them character by character. If b is FALSE and the specs
are not the same then the call fails.

6.1.1 PROC new = (PROG prog,SPEC spec ,EDFILE text)MODULE:

This procedure creates and initialises a new MODULE in the current
enviromment. The initial DATA in the MODULE is:

(prog, shake_dptr(spec), text, 0)
The three words which form the parameters of new are usually the
result of a compiler e.g. the procedure algolé68.

6.2 Assembling program

Most progam loading in Flex is done implicitly in the interpretation
of Curt commands; what follows here is a description of the primitives
involved.

In order to load the program corresponding to a MODULE, one applies
a8 procedure of mode LOADER to it where:

MODE LOADER = PROC(MODULE)KEEPS

where KEEPS is a (mainstore) pointer to a block containing the set of
interface values of the program. The internal structure of this block
is deducible from the spec field of the module; its details depend on
the compiler and language. A csll of a loader, say load(m), will fail
in a characteristic manner if specOFm and specOFderefOFm are unequal;
one cannot load programs which contain inconsistent use of modules.

The actual loader used depends on context; the user can write his own.
The action of a loader is usually fairly trivial, since the prog field
of the DATA is itself a disc procedure produced by the compiler which
evaluates its own KEEPS and loads any modules used by it. In order to
do this, it requires to call the loader recursively on any internal
module, and so the procedure in the prog field has a loader as a
parmeter i.e. the mode PROG is a disc-pointer to:

PROC(LOADER, INT)XEEPS

The integer parameter is currently not used by the compilers on Flex.

14

- e N § B ‘ R L ACRUCR Wt Diareiie S i i ™y w . * Pl 0N AR T WLELN

......

o fale”

- "
PSRN

o e

e

AR S TN

5PN LA

¢y

Ters 4 GUEDIAE aw . e A A a L

-

6.2.1 PROC get_module = (MODULE m, LOADER 1,INT c¢)KEEPS

Not all program defined by modules lives in filestore; most of the
procedures in the kernel, for example, can only exist in main memory
in a transitory fashion. These modules are recognised by this
procedure, which gives the required KEEPS to these "in-store"™ modules
as well as doing the standard operations as described above to normal
modules. Thus, if m is a standard module then the answer is the
ansver to a call of the procedure derived from the prog field of m
with 1 and ¢ as parameters; otherwise, the KEEPS corresponding to this
module is already bound to the procedure and this is the answer to
get_module. A non-standard module is recognised by its deref and
assign fields, both being scalars rather than disc-pointers.

The kernel and system procedures defined in this paper are mostly
accessible in program using the module names (defined in the common
dictionary) formed by using the _m suffix on the procedure name e.g.
vdu m, from disc_m etc.

A loader is usually constructed by using the standard, procedure
make loader:

PROC make_loader = (PROC(MODULE,LOADER, INT)XEEPS g_m, INT c)LOADER

The answer to a call of make_loader is a loader which calls g_m
exactly once for each different ‘module found in the tree of evaluation
of the program being loaded; the loader supplied as a parameter to g m
is this loader itself. If the same module is encountered more than
once then the KEEPS which was the result of the first evaluation is
used for subsequent ones. This means that the same set of values are
bound to the program, regardless of how many times the module was
used,

The reason for this apparent complication in loading and assembling is
that the meaning of a particular module may depend on the context of
use. As a trivial example, the module vdu m must give different
values for each Virtual Machine. A less trivial example occurs where
one enters a new naming regime; the procedure find (which gives a
value corresponding to an identifier, see 7.2) contained in the module
find_m must allow one to enter (and leave) new scopes. The general
method for doing this is to re-define get_module in an inner scope,

usually via the command interpreter, Curt. The new get_module would
intercept some modules, delivering already evaluated KEEPS in these
cases and call the old get _module for the other cases. Notice that
the module get_module_nm “almost certainly would be one of the
intercepted modules, delivcring the new get module in its KEEPS, so
that a further inner redefinition will include the outer one.

15

6.2.2 PROC current_loader = (MODULE m)XKEEPS

This procedure is the loader which was used to load the currently
running program. A call of this procedure from within this program
will load the requested module normally if it is not already part of
the program; if it is, then the interface values already bound into
the program are delivered.

16

7. Neme and value identification

Most name and value correspondences made in Flex are done at the level
of the Qurt interpreter or within compilers. The following procedures
are those primitives used to do it.

The meaning of a name in Flex is dependent on the context or
enviromment of use. There are two different ways of naming an object -
first, where the name is only valid for the current session (temporary)
and secondly where the meaning of the name persists from session to
session. Any value created in Flex can be named in the first way:
however the second way can only be done for filestore objects. A
filestore object is essentially one which contains no main-store
pointers - it can of course contain disc-pointers.

Most users of Flex have access to two dictionaries which gives the
file-store name-value relationships; one which is private to the user
which he can update and the other which is held in common across the
systems which he cannot update. Both of these of these are obviously
held in file-store. The temporary dictionary is held entirely in
main-store and no name clashes are permitted between this and the
private file-store dictionary. Thus the temporary dictionary can be
regarded as a main-store extension of the private file-store dictionary.
Any name clashes between the private and common dictionaries are
resolved by giving precedence to the former.

7.1 PROC basic_find = (VECTOR[ICHAR name)REF VECTOR[JUVALUE

where UVALUE = UNION(REF VECTOR[]IINT,
REF VECTOR[JSTRUCT(INT fn),
REF VECTOR[]CHAR,
REF VECTOR({]BOOL)

This procedure delivers the set of values of mode UVALUE associated
with the name in the current enviromment. Each of these values can be
vectors of integers, characters or bdooleans. The remaining element of
the wnion is somewhat historical and is intended to differentiate those
values which are in fact disc procedures. The first value of the
result vector is the principal value. There need not be any others,
but 1f they are given the second is the Curt mode of the principal
value, the third a LONG INT representation of the date and time the
name was declared and the fourth an editadble file which contains
information on the value; this last is the file accessed by the
function info. Thus, given that d_to_b m is a name in the common
dictionary, the call basic_find("d to b m") would deliver a vector of
four UVALUEs, each of which is formally a vector of integers. The
first vector would have three elements, since d_to_b m 1s actually a
MODULE and the use of some suitable umpack operator (opcode 167) on the
integer vector could produce this MODULE. The second vector has one
element which happens to be a disc pointer, the vector itself being a
representation of the Curt mode for Module. The third vector has two
elements giving the date and time while the fourth has one which is an
editable file containing roughly the same text as given in 3.3.1.

The most common use of basic_find is in the construction of new find
procedures as below using the make_find procedure. The procedure
sake_find takes a user's basic_find ‘as parameter and delivers a new

17

'!‘ud procedure, making sure that this will bind the new find,
basic_find and get_module into any calls of new enviromments using this
new find as well as any new name associations required by the user.

7.2 PROC find = (VECTOR[JCHAR n)VM:
Where Y = STRUCT(REF VECTOR[JINT value,mode)

A call of this procedure find gives the value and Curt mode
ocorresponding to the string n in the current enviromment. If n is not
defined in this environment then the call fails.

Although the formal Algol68 mode of the value is a vector of integers,
the actual value could equally well be a vector of characters or
booleans. Thus, a suitable manifestation of the unpack operator
(opcode 167) oould transform this value to any A1gol68 value consisting
of a number of words, characters or booleans. Similarly, the use of
the pack opsrator (opcode 166) can produce the vector of integers from
any Algol68 value.

Ihe representation of the Curt mode corresponding to the name is
defined system-wide. Thus, if the name had corresponded to an editable
file then the Curt mode would have been Edfile and its representation
is that given by the call make-mode("Edfile"). ,

The find procedure that is bound to a program is usually the same as
that used as a parmeter to the current call of the command interpreter
curt (see 9.1).

7.3 PROC keep = (INT dec_type ,VECTOR[]JCHAR n,"™ v)VOID:

A call of keep adds (or redefines) the name n to correspond to the
valus-mode pair given by v in the current enviromment. Thus a call of
find in this environment with n as parameter will deliver v, If
dec_type = 1, then the association is temporary and will disappear at
the end of the current session. If dec_type = 2 then the association
18 held in file-store and will persist between sessions. 1In this
latter case the value being named must be a file-store value and in the
case of a redefinition of an existing name the modes must be the same.
No temporary name can be defined if this name is already defined in the
persistent sense and vice-versa. If any of these conditions are not
met, the call of keep will fail without changing the dictionaries.

The keep procedure that is bound to a program is usually the same as
that used as a parameter to the current call of the command interpreter
curt (see 9.1).

18

o il

RIS

8. Dictionary utilities

The file-store dictionary belonging to a user is created at the same
time as the user is given access to the system by having an enviromment
procedure named in the outermost environment (see 9). Thus the
enviromment for casual non-serious users has an environment procedure
called play in the outer enviromment. At the creation of the dictionary
it wvas initialised to contain three functions which are particular to
the envirorment. The first, new, has already been described (6.1.1) and
creates new modules in this enviromment. The other two are concerned
with showing and tidying the file-store dictionary. These are given
names specific to the user, using the same name as the environaent
procedure. Thus these procedures in the play environment are called
show_play and tidy play. In what follows the user name is denoted by
User.

8.1 PROC show User = PAGE:

This procedure will display the file-store dictionary of User using
the editor. The PAGE delivered by the procedure (by keying RESULT) is
simply the main-store version of an editable file produced by editing
the display.

This display consists of two initial lines, followed by a set of line
triples, one for each nmme defined in the dictionary. The initial
lines are values of Curt mode Module_set and 0ld_dictionary
respectively. The Module_set is a pointer to the set of modules
created in this User enviromment. The Old dictionary is a shaky disc
pointer to the contents of the dictionary before it was last updated.
This value can be used to retrieve old values by using the function
show_old provided that a disc garbage collection has not occurred.

The 1line triples following this define each name held in the
dictionary in alphabetical order. The first line contains the name
and the time and date on which it was declared (the cursor will appear
over the most recent declaration). The second line is the value
corresponding to this name while the third, if not empty, is the
documentation file associated with this value. Both of these values
can be accessed in the normal edit sense.

If one wishes to delete names from the dictionary then one deletes
the corresponding line triples from the display and applies tidy User
to the result of the procedure.

8.2 PROC tidy User = (PAGE p)VOID:

The parameter of this procedure is intended to be derived from
show_User (or perhaps from some show old). The identifiers and values
given in the PAGE will become the new dictionary for the User.

8.3 PROC show_temp = PAGE:
This procedure shows the temporary names and corresponding values in
the same way as show User. At the same time it removes all the

temporary values from the local dictionary; if one wishes to retain
thes (or some subset of them) then one uses tidy_temp.

19

Bt Bun A,

P P S

PR T

PP W YT

T T N R S LT TR L . e NPy Ny W aT (R o RS At 4 LRSI G R

8.4 PROC tidy temp = (PAGE p)VOID:

The parameter of this procedure is intended to be derived from
show_tidy and gives a page of identifier-value correspondences which
2 will form the new temporary dictionary after the call.

S T
AR R

s

M
)
Y
Y

I
s

9. The User procedurs

A User procedure accessible at the outermost level of Flex (e.g. one
accessible by name when a vdu is started up) consists of the call of an
enviromment procedure with a dictionary belonging to the user and some
other finding procedures already bound in. The dictionary belongs to
the user in the sense that only he has the procedures to find and update
identifiers in it (he can of course give them to other users if so
desired) .One of the other finding procedures is one which looks for
identifiers in the common dictionary. This includes most of the modules
and functions mentioned in this document and also the function
show_common which displays its contents. Normal users do not have
access to the keeping procedure which updates the common dictionary; in
fact, this is contained in the priv dictionary whose finding procedure
is bound into some privileged Users in the same way as the finder for
commaon is bound into all Users

The names in a User's dictionaries (both temporary and persistent) as
well as all those given by the bound finding procedures form the domain
of the find procedure given in 7.2. These names are therefore
accessible within program; they are also accessible directly by the
compand interpreter, curt, which is called in each User procedure. 1In
fact, only those names are accessidble in the interpretation of commands
and there is no distinction between those created by the user and those

- already present in the system (in common, say).

The User procedure also maintains a monitoring file of noteable events;
these events are usually vhere the persistent dictionary changes.
Entries are made into this file by means of the procedure monitor and it
can be accessed by the procedure get_m file. Previous states of the
dictionary can be reinstated by using the procedure unwind on a
truncated version of the monitoring file.

In the following description, a typical User is expressed as an Algol68
procedure; usually it would not be called directly within an Algol68
program but only by the command interpreter as part of the
interpretation of a conmand line at the outermost level.

9.1 PROC User = (VN par)VM: ,
The Curt mode of User is Moded ~> Moded

The parameter per is sy value-mode pair. The Curt mode rules means
that any Curt value can be supplied as parameter in a Curt
interpretation of a call of this procedure. This value is declared to
have name Op in the initislisation of the temporary dictionary of the
environment. Another name im the initislisation is where which is
used to give an indication of the context of the environment by the
contents of the Curt line esch time the enviromment changes by inner
call of Qurt (more striotly inner calls of make_find).

The procedure User then oontinues by sesrching for a name PASSWORD in
the various places availsdle to it. If it finds a corresponding value
then it treats this as a PROC VOID and calls it. Most PASSWORDs are
oreated and declered in the user's dictionary dy the procedurse,
password, which binds its string perameter to a procedure which asks
m to type it ot (mutbly) on the vdu and fails if it does not

wetoh (thus 8180 failing the csll of User) . Other more complicated

21

[of 8 M

Visats

LR

ai procedures could be invented by the user.

The procedure User then creates all the enviromment dependant values
“ and procedures (eg find, keep, get module etc) relevant t.o this user
and calls the procod\ro. ourt.

PROC curt =

B (PROC(VECTOR[JCHAR)VM find,
4 PROC(INT,VECTOR[JCHAR,W)VOID keep,
y PROC(INT,REF VECTOR[JCHAR)VOID monitor,
’ VECTOR[JCHAR first_line) VM
This procedure interprets commands typed at the vdu and is discussed
o in [2]. The find perameter is the procedure that the interpreter will
;i:%': use to give meaning to identifiers typed on the command line and its
3; actual in this call is the find procedure of the environment.
' Similarly the keep parameter allows one to do declarations of
identifiers on the command line to update the dictionaries of the
. environment by using the keep procedure of the environment. The
o first_line parameter of curt is the first line that will be
hiS interpreted and in this call it is the empty string if the mode part
Nk of the par parameter of User is Void: otherwise it is the string "Op”.
The monitor parameter is called each time a declaration is made on the
poes Qurt line with its string parameter being the Curt line itself and its
;‘;3 integer parameter being 1 for a temporary declaration and 2 otherwise.
w The actual used is again generally available and is described in 9.2.
% The answer delivered by User is the answer delivered by the call of
) curt.
%
'; 9.2 PROC monitor = (INT t, REF VECTOR[JCHAR mess)VOID:
I :
x5 If t is not 1, then the line mess is appended to the current
monitoring file followed by the current state of the user's
i persistent dictionary; this last appears, in a mendacious fashion, as
ik sn Int in the file. The procedure monitor is called, for example, at
W each declaration in curt, at every smend module, at every new module
R and every time a dictionary is tidied; the intention is to note each
e possible change to the dictionary. Besides giving a record of what
- one has done, the monitoring file can also be used by the procedure

wwind to forget about undesirable changes made to one's dictionary.

9.3 PROC get_m file = EDFILE:

The result of a call of this procedure is the current state of the
monitoring file.

9.4 PROC unwind = (EDFILE mon)VOID:

The parameter of this procedure must be a truncated version of the
owrent monitoring file, ie the monitoring file at some earlier time
in the session. This can only be produced by editing the result of a
call of get_m file with the only permitted actions being to delete
final pairs of lines (NB the lines are 160 chars long). If this

R N R R R T W I s N Wt S e ey N Wiy e m i L AT St S aa”a il “n taa cha e oA LT ™ L K e

RPN

. R
P ROV

L I

condition is not met the procedure will fail without altering the
dictionary. If it is met then both the dictionary and the current
monitoring file is returned to what it was at the earlier time given
by the truncated monitoring file.

el

23

ety el
H

7 Lo g e
I ';‘rf_‘.'.‘.‘v_'x

.
‘-f‘r_‘)‘

i)

£ ’ »
P2 te M

F gt A

X
%)

10. Conclusion

This paper is not intended to be a teaching document but rather a
description of the basic building blocks of the Flex software. The
easiest way to learn how to use Flex is to use Flex; a good desl of
thought and energy has gone into the design of a friendly user interface
and on-line teaching and information sids. The procedures descrited
here are mainly those which are not directly used by most users; they
tend to be wrapped up in less basic procedures.

There many other procedures in Flex which might have been included in
this paper. Noteable ommissions includes the 1listing and networking
procedures. In addition, the editor and the structure of editable files
form such an important part of programming on Flex that it could be
considered as part of the System in spite of the fact that it does not
meet my criteria for inclusion given in the Introduction. However, as
each of these topics merit a complete paper to themselves, the set given
here probably forms a reasonable compromise between brevity and
completeness., This set is sufficient to give all the primitives
required for writing compilers, editors, database managers, ... = in
fact, the basic stuff of software.

References

[1] Flex Firmware RSRE Technical Note 81009,
Currie . Edwards and Foster

2] Curt: The command interpereter for Flex
RSRE Memo 3522, Currie and Foster

flge s f s

HUOTED ARE NOT NECESSAR" ¥
A tTU MEMBERS Nt TIHE PUZI,E
e T '

O« LU VMERCIAL ORGANITATIGNS

24

11. Index and Glossary

algol68

basic_find

break si
c to d
code-block

common

current_loader
curt

d tod

DATA
DISCPIR
DISCREF
date
diagnose

disc-pointer

disc-reference

EDFILE

Exceptions

failure

Al1gol68 compiler - with Curt mode Edfile->Moded

where Moded is either an Edfile (failed compilation)
or a Compiledpair(successful).

mentioned 6.1.1

function with Curt mode Module -> (Compiledpair ->())

used to update program without changing specification.

mentioned 6.1

finds set of values associated with an identifier in
current environment, 7.1

soft_interrupt belonging to the break-in process, 2.4
creates a code-block on disc,3.2.3
that part of a procedure which is constant,[1],3.2.3,6.

dictionary containing values generally avaiable across
the system, mentioned 7. , 9.

loader used to load current program, 6.2.2
command interpreter used by Flex system,[2] and see 9.1

transforms a disc-block into corresponding main-store
block, 3.3.1

A1gol68 mode of object refered to by a MODULE,6.1
mode of a disc pointer , INT in Algol68, 3.

mode of a disc reference, INT in Algol68, 3.

today's date ,2.8

Curt function used to diagnose run-time errors, see 5.

held as a pointer to a keyed block in main-store
held as recognisable bytes on file-store, 3.1 etec.

disc-pointer which is a disc variable containing one
word, 3.1, 3.4,

Al1gol68 mode corresponding to Curt mode Edfile,
describing an editable file, mentioned 8.

Failures either produced by software or firmware,[1],5.

innaccessible Kernel procedure used to construct
diagnostic chain at exceptions, see 5.

SHT,

15

i
DRERA R

. ?

7
VNGNS A

ARk B 7%
Y

e N

¥
N
3
N
N
)

find

firm_dptr

from disc

gets the value-mode pair associated with an identifier
in current enviromment,7.2

firms a shaky disc pointer,3.5.1

reads the contents of disc block, 3.3.2

garbage collection

get_module

get_m file
info

kccp‘

LOADER
make_find
make_loader
make_mode

make_process
make_sema
Moded

MODULE
Module_set
monitor

new_dr

npb_to_d

01d_dictionary

main-store - implemented in the micro code of Flex [1]
file-store - done off-line , see 3.1

delivers the interface values of a module,6.2.1

delivers the current monitoring file, 9.3
Curt mode : () =) Edfile

function to get the information file on an identifier:
mentioned 7.1. Curt mode : Vec Char -> Edfile

used to declare identifiers in current dictionaries,7.3
Algol68 mode of loader ,defined in 6.2

creates a new find procedure from a basic_find, 7.1,9.1
creates a loader ,described in 6.2.1

function to construct a Curt mode, mentioned 7.2
Curt mode : Vec Char -> Mode

creates a new process,2,2

creates a new semaphore, 2.5

Curt mode corresponding to Algol68 mode WM; in curt
interpreter, used to transfer mode information into
and out of procedure calls; mentioned 9.1

Algol68 mode with corresponding Curt mode Module, 6.1
Curt mode for pointer to set of modules, 8.1

records a message and state in monitoring file,9.2

creates a new module, 6.1.1

" when used as a Curt function its mode is

Compiledpair -> Module (see algol68,amend etc)
creates a new disc reference,3.4,2
write non-pointer data to disc,3.2.1

Curt mode for shaky disc pointer to previous state of
dictionary, see 8.1

26 .

ELAAIRUSL N

S S ey N

S A Y T A T e T K S o VTt A R A P eV SV oW 8,V ~ R A i IO PCRAC R

own_si soft_interrupt for principal process,2.3

own_time time spent by current process ,2.7
p_to_d creates a procedure on disc,3.2.4
PAGE A1gol68 mode corresponding to Curt mode Page which

is a mainstore representation of an editable file.
Mentioned 8.1,8.2,8.3,8.4

PASSWORD name of password proc (Curt mode ()=>()) in User
dictionary, usually put there by proc password. see 9.1

password function (Curt mode (Vec Char)->()) which puts a
PASSWORD into User dictionary, see 9.1

pb_to d writes words (including disc-pointers) to dise,3.2.2

priv a dictionary only accessible to certain Users, see 9.

shake_dptr makes a disc pointer shaky, 3.5.1

show_common display contents of common dictionary, mentioned 9.

Curt mode : () => Page

show_old display contents of old state of dictionary,
mentioned 8.1. Curt mode : Old_dictionary -> Page

show_temp display contents of current temporary dictionary ,8.3
Curt mode : () -> Page

-

PRARAD & « AT

¥ B o8 _w era
& ‘

1‘@

show_User display contents
Curt mode : ()

soft_interrupt characterises a process, 2.2

of User's persistent dictionary ,8.1
=> Page

SPEC mode of disc ptr to "specification" of module, see 6.1

tidy User usually used to delete names from User's persistent
dictionary, 8.2 Curt mode : Page -> ()

tidy_temp usually used to reinstate names in current temporary
dictionary, 8.4 Curt mode : Page -> ()

timed_wait procedure for waiting a bit,2.6

to_dr write to disc-reference ,3.4.1

unwind restore dictionary to earlier state, 9.4

Curt mode : Edfile => ()

User name of a typical enviromment proc, accessed at outer
level, 9. Curt mode : Moded -> Moded

27

u -
T RTAR

s 0 Ay

o PSRNt | |

- gn e eee-wov
It R ’

[N |

I"'u") il)

¢

s

oo s
L)

5 "

e 8 N AR K TR Y 3o 2 fe X 200 AIEIL AN S UL R APE AR At AL iy R N N I AR A A

Ay

UVALUE 41gol68 mode for a value described in 7.1

e SBN
S

vdu procedure for using ones vdu, 4.

Virtual Machine
the Flex machine as seen by a single user, see 2.

] ™ A1gol68 mode giving a value-mode pair described in 7.2

O AT A aerh Sa e e Bt A S L St S MM el A B A Tl Sl B G b Sl S S-an g L e oy e st S S S S are comr s .—-—-1
o Rk A X A AN ST S NS A gt

..................

OOCUMENT CONTROL SHEET

Overall security classification of sheet VNGLASSARIED.................. ceerrseenonnons teerres sevenens

(As far as possible this shest should contain only unclassified inforsation. If it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S))

1. DRIC Reference (1f known) | 2. Originator's Reference |3. Agency Reference 3. Report Security
Memorandum 3636 “ Classification
5. Originator's Code (if) 6. Originator (Corporate Author) Nase and Location
knoun

Royal Signals and Radar Establishment

Ss. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location
Code (Vf knoun)

7. Title

Kernel and System Procedures in Flex

7s. Title in Foreign Language (in the case of translations)

. Presented at (for conference pspers) Title, place and date of conference

8. Author 1 Surnase, initials| 9(a) Author 2 9(b) Authors 3,4... 10. Date pp. ref.
Currie, I F Foster, J M Edwards P W
11. Contract Sumber 12. Period 13. Project 14, Other Reference

15. Distribution statesent
Unlimited

Descriptors (or keyvords)

continue on separste pliece of paper

Abstrect

This Memorandum describes the basic Kernel and System procedures on which the
ﬂ;poratin; systea for the Flex computer is based. These are the low level

rocedures vhich are used to implement the compilers, file~store » command
interpreters etc on Flex.

e}
‘.

