
AD-Aii35 513 KERNEL AND SYSTEM PROCEDURES IN FLEX(U) ROYAL SIGNALS 41i
AND RADAR ESTABLISHMENT MALVERN (ENGLAND)
I F CURRIE ET AL. AUG 83 RSRE-MR-3626 DRIC-BR-89750

UNCLASSIFIED F/G 9/2 NLEEEEEEElllllllIEl
EIIIIIIIEIhIEE

* flf flfl l EN

1.0 . a2

lel

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF StANDARDS-1963-A

.--

- V 4 4

,' 8S975
MEOANU No.362

EMOLANYSE RAN DUME INo 3626

Author: I F Currie, J M Foster
P,W Edwards

N

dPROCUREMENT EXECUTIVE)

4 z MINISTRY OF DEFENCE,

RSRE MALVERN, ~1C

WORCS. ci

o E:.IE
8A"i

LJN1 IRA!Tr

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3626

TITLE: KERNEL AND SYSTEM PROCEDURES IN FLEX

AUTHOR: I F Currie, J M Foster, P W Edwards

DATE: August 1983

N- 6

SUMMARY

-)This Memorandum describes the basic Kernel and System procedures
on which the operating system for the Flex computer is based. These
are the low level procedures which are used to implement the compilers,
file-store, command interpreters etc.,pn Flex.

Acoession For

NTIS GRA&I

DTIC TAB
Unannounced Q
JustificatiLon

Distribution/
Availability Codes

Avail and/or
Dist Special

This memorandum is for advance informat ion. It is not necessarily to be
regarded as a final or official statement by Procurement Executive. Ministry
of Defence

Copyright
C

Controller HMSO London

1983

Kernel and System pocedures in Flex

Cont.ents

1. Introduction

2. Virtual machines and Processes

3. File stores

4. Vdus

5. EXOepions

6. Loadin, and assembly of progrms

7. Name and value Identification

8. Dictionary utilities

9. The User procedure

10. Conclusion

11. Index and Glossary

B,

I. Introduction

The Kernel of Flex In a set of procedures which do the resource
allocation and raw peripheral transfers of the Flex system. Generally
these procedures run i privileged mode (see Flex Firmware (1); in
fart, one could almost define Kernel as being that set of procedures
which run in privileged mode.

Some of the procedures in Kernel are available directly to the general
user; these form the Kernel interface. To the user, all procedures are
treated In the me manner, so he should find no difference between a
Kernel procedure and any other. In common with all Flex procedures, the
pointer which is a Kernel procedure can only be passed around and called
- one cannot use the pointer to dig into information which the procedure
uses. To this extent then, the Kernel interface should be regarded as an
extension of the firmware in that the user Is completely free to use any
of the non-privileged instructions and any of the interface procedures
in any maner.

The exact definition of a what is meant by a system procedure is much
less clear. The procedures which I call System procedures are all
written in non-privileged mode. They form the interface between the
user and a particular operating system written on top of the Kernel.
This operating system Is sometimes called Curt, although the name should
more properly be applied to the command interpreter of the Flex
operating system E21. The charaotertistics of this operating system are
such that the dividing line between system and non-system procedures is
largely dependent on the observer; a user could construct a new system
in Flex which uses as much or as little of the current system as he
required without a great deal of trouble. Thus, the choice of the
particular procedures to be described as System procedures is largely
subjective. My usual criterion is to ask whether I can give a program
text which describes it completely, taking other Kernel and System
procedures as being defined. If the answer is no, then the procedure is
an System procedure. This usually arises from the fact that there is
some non-textual value bound into the procedure, for example a
dictionary held in rile-store.

The procedures described in chapters 2-5 are all Kernel procedures with
most of the rest being simply non-privileged System procedures. They
all happen to have been written in Flex Algol 68 and so the descriptions
of the interface procedures in the folowing chapters are generally
expressed in Algol 66. However this does not imply that they can only
be called from Algol 68 programs or indeed that Flex is an Algol 68
machine. The underlying structure of Flex is much more powerful than
any hypothetical Algol 68 Maohine 0 . The total relaxation of all of the
Algol 68 scope restrictions in the Flex compiler is one indication of
this.

2

2. Virtual machines and Proees

2.1 General

A Virtual Machine on Flex In initiated by the reception of an WHITE
Control/A from a vdu. This results in the construction of procedures
and data structures partioular to the Virtual Machine. Each Virtual
Machine Lets a time-slice, sharing the total time with other Machines in
a round-robin. Cammunication between Virtual Machines is usually done
via the file-store.

Each Virtual Machine has a set of processes which (given that they are
not held up for other reasons) will be run in a local round robin using
process time-slices, regarding the Virtual Machine time-slices as though
they were contiguous. Any process which does not complete its process
time-slice through being held by a peripheral transfer, will be run for
a time equal to its unexpired time-slice as soon as the transfer is
completed.

The set of processes of a Virtual Machine initially consists of :

1. The normal control process , which will usually be the one which
runs Curt and normal programs. This is the principal process of
the Machine.

2. The break-in process which initially is in a loop demanding to
read the BREAK IN LINE on the vdu. If and when this read is
completed by sending the break-in line, process 1 will be failed.

The Kernel Interface procedures given here allow one to create,
Identify and synchronise processes.

2.2 PROC makeprocess a PROC (PROC VOID)VOID:

Make process Is a procedure which will create a new process in the
Virtual Machine. A call of make process delivers a procedure called
the soft interrupt for this new process. In order to rm a PROC VOID
f In the new process, one calls the soft_interrupt with f as a
parameter. A subsequent call of the soft interrupt with another PROC
VOID g will result In a FAIL(O, g) if fi i not completed in the new
process; otherwise g will run In the new process.

2.3 PROC osi n (PROC VOID action)VOID:

The procedure oweal io the soft interrupt for the principal process
of the current Virtual Machine. This would usually be used to fail
this process from other processes.

2.4 PROC break sl a (PROC VOID breakin action)VOID:

The procedure breaksi Is the soft interrupt for the break-in
process of the Virtual Machine. The Initial procedure running in the
break-in process is written so that failures are trapped and, in
particular, the FAIL(O, S) produced by break ai(g) will result in g

3

- t~. 1 -- 17.177 1-717 ---77 -- -

being called from within the break In process. This may be used to
allow the user to create his own break-in action.

2.5 PROC aksesa (INT n)SENA:
Mhere 32MA a PROC(OOL)VOID;

The value of the parameter, a, of a call of make sema Is the Initial
value of a new semaphore given by the answer to the call. The
operation of domiing (securing) the semaphore Is performed by applying
a FALSE parameter to the SENA; raising (releasing) the semaphore by
applying a TRUE parameter. The usual definition of a semaphore
applies; the value of a semaphore is non-negative and any process which
tries to down a zero semaphore is suspended until the semaphore is
non-zero.

2.6 PROC tined wait a (INT seos)VOID:

The call, timed wait(s) holds up the action of current process for at
least a seconds, rFunning thereafter when there are no other runnable
processes.

2.7 PROC own time a LONG INT:

The value delivered by own time is the time In milli-seconds that the
current process has been running. (The time of day Is given by an
Instruction, opoode 35).

2.8 VECTOR (ICKAR date

The current date given In the form day/month/year eg. 10/1/83

3. File stores

3.1 Gneral

Usually the user will only be aware of one file-store,entirely
resident on disc. His knowledge Is defined entirely by the disc kernel
procedures and disc pointers that he possesses. These disc procedures
are arranged so that (except in one carefully controlled case) no
overwriting of date occurs - one can only read data from an existing
disc pointer or write a chunk of data to create a new block on disc
pointed at by a new disc pointer.

As explained in El], the main memory representation of a disc pointer
is a locked pointer to a 4-word block. The key for unlocking this
pointer is the same for all pointers belonging to the same file-store.
Disc pointers can also exist in their own file-store where their
representation is 4 bytes. The mediation between the two
representations is done by the disc reading procedures in such a way so
that if a disc pointer to a file-store block is read in two different
places the main memory representation will be the sane locked pointer in
both cases. This Implies that it is relatively easy to alias file-store
blocks with main memory blocks to facilitate sharing of common blocks.
The correspondences and alias information are tied together with shaky
pointers so that the memory does not become clogged up with disc
pointers and their aliases.

The only exception to the no overwriting rule is the use of disc
refterences. A disc reference is essentially a variable on disc which
can contain a disc pointer. This variable can be read using dOto b
and can be assigned to (with caveats) using todr.

Since most writing to the disc will increase the size of the filestore,
the filestore is periodically garbsge-collected. This is done by an
off-line progran and, except for the fact that the filestore is
Inaccessible during garbage-collection, the user is usually unaware of
its action, except for its influence on shaky pointers as
described In 3.5.

In the following procedures a DTSCPTR or DISCREF is formally an Algol
68 zUT, since no Algol 68 mode constructor can adequately describe a
disc pointer.

3.2 Disc writers

3.2.1 PROC npb to d u (VECTORE]XTYPE data) DISCPTR:
where ITrY is FLAT

or VECTORCIFLAT,
where FLAT is INT, REAL, CHAR ... ,

or STRUCT(FLAT....,...),
or UNION(FLAT,).

This procedure writes data to a block on disc delivering a disc

5

pointer to that block where data contains no pointers. The mode of the
parameter allows one to gather together data of diverse non-pointer
modes.

3.2.2 PROC pbtod u(VECTORE]XTYPE data) DISCPTR:

This procedure writes data to a block on disc delivering a disc
pointer to that block wh~ere data may contain disc pointers. Once again
the data written Is Lathered together; this time however each item
written must be multiples of words.

3.2.3 PROC c-to-d a (lINT ws,REF 'VECTORC]INT coasts,
REF VECTORECHMR oode,DOOL proc)DISCPTR:

This procedure creates, a code-block on disc, where ws Is the
work-space size required by the code. The constants of the code block,
which may contain other disc pointers are given In consts. A code-block

- disc pointer Is delivered If proc Is FALSE; otherwise a disc pointer to
a procedure with no mon-locals, Is delivered.

3.2.4 PROC P-tod a (DISCPTR ob.MCTOREJXTYPE mls)DISCPrR:

Thi procedure creates a procedure en disc with code-block given by
the gode-block disc pointer ob (produced by aoto d) and non locals
given by ala (may onain disc pointers and must be in word muliples).
A disc pointer to the preae Is delivered.

3.3 Dime r-mfr

3. 3.1 PROC d to b a SDWm O)T:

This presedue reads the dise bleak corresponding to disc pointer d,
Into a mam eamery bleack sm? P*Ufter to thi block is delivered as
amew. * Th tye of ms ness bleak predused depend e n the type of
the dis poater d ablies Sn u depends on Now It es produced.

Taus:
If d had beew predused by apb to d the bleak type Is 3 (son-pointer);
If d had been prodweed by pb To I the bleak type Is 4 (normal);
If d had beew "rwed by etUeI the bleak type Is 2 (code-block);
If d bad beaw predused by pte d the bleak type Is 5 (closure);
If d Is a dine retereso tWan Zmwr Is the oestents of the disc

retreoe, isiob Is usually a disc pointer (type 6 block).

I all cases the poiater delivered Is such that the contents of the
block cannot be altered i.e. In the first three cases above (types 2,
3 and) the pointer Is looked. This moons that this same, block can be
given as am ase to my call of' d-tob with the same parameter and
this block can be saraed between many users and programs. Since all
code blocks are reed Into memory using dtob, the saving In both disc
aocemas and main mieoy usage is quite significant.

3.3.2 PROC fram disc u (DISCPTR dVECTOR[]REF ITYPE start)REF YTYPE:
Vhere REF TrYPE can be coerced to (REFI FLAT,

or to (REV) VECTORCFLAT.

This procedure reads the data from the block pointed at by d. This
disc pointer must have been produced by some call o npb to d or
pb to d and the data read Is identical to that given by the parameter
of this call. The data is assigned to the variables given by the
parameter, start, in order starting from the beginning of the data and
my remaining data is delivered as the answer. Usually from disc will
be called In such a context so that this remainder (of mode REF YTPE)
will be coerced to some vector. Clearly, if disc pointers are being
read Into start, then the corresponding variables in start must occur
in multiples of words.

The procedure from diso can be used as an effective inverse to
either npb_ta d or pb_td, providing a scatter-gather pair.

3. 4 Disc reference procedures

Disc references can be read using d_tb (3.3.1).

3.1.1 PROC to-dr z (DISCREF dr,INT old ,new)VOID:

This procedure assigns new (usually a disc pointer) to the disc
reference dr, provided that the old value contained in dr was old
(integer or disc pointer). If the old value was not old then the
procedure fails. Since to dr acts on the file store as an elementary
operation, this check allows a fairly simple method of resolving
difficulties caused by simultaneous altering of dictionaries pointed
at by disc references.

3.4.2 PROC newdr a DISCREF:

This procedure creates a new disc reference (containing integer 0)
and delivers It as an answer. This procedure is hidden fram most users
but is Included here for campletness.

3.5 S disc pointers

Disc pointers produced by npb tad or pbtad can exist in a "shaky"
form. That Is to say, so long as a normal or *firm" version of a
pointer exists acmeuhere in the filestore then this firm version can
always be recovered from a shaky version of the pointer by application
of the procedure firm dptr below. If there is a shaky disc pointer
with no corresponding firm version in the filestore then the shaky
pointer will be replaced by 0 (and any associated space recovered) when
the f1lestore is garbage-collected.

|*

3.5.1 PROC firm dptr a (DI$CPTR shaky) DISCPTR:

This procedure delivers the fir. version of Its shaky disc pointer
perameter.

3.5.2 PROC shake dptr a (DISCTR ptr) DISCPTR:

This procedure delivers the shaky version of the parameter ptr which

was produced by npbtod or b_to..d.

.;I.

8

4. Vdus

4. 1 General

When WHITE Control/A is typed on a vdu, Kernel creates a specific vdu
procedure to go with the Virtual Machine (see 2.1). This procedure is
now the only one capable of communicating with the particular vdu and
will remain valid until WHITE Control/A is typed again on that vdu.Thus
a Virtual Machine usually has sole possesion of a physical vdu simply by
being the only one which has the correct vdu procedure.

The Logica vdus have the capacity to display characters in various
forms eg reversed video, flashing, underlined etc. An underlined
character is indicated by adding 128 to the 0 - 127 ISO representation
of the character sent to the vdu. Other forms are indicated by the
parameters of the procedure vdu.

Each call of the vdu procedure is a single interaction consisting of
writing some lines (possibly empty) to an area of the screen and then,
optionally, waiting for a control key to be pressed to Indicate that the
lines on some area of the screen are to be delivered as the answer to
the procedure. Several interactions may be in progress simultaneously to
the same vdu arising from calls of the vdu procedure in different
processes. The NEXTREAD sequence on the vdu keyboard will cycle the
cursor through the various read areas to allow any of the extant
interactions to be completed. The most obvious example of this is the
break-in process, which is usually held up waiting for the top line of
the screen to be sent.

4.2 PROC vdu a (VECTOR[JINT preVECTOR[]TEXT mess,VECTOR[JINT post,
VECTOR[]REF INT ans)REF VECTOR[]LINE:

Where TEXT a UNION(REF VECTOR[]LINE, VECTOR[]CHAR,
VECTOR (]VECTOR[ICHAR),

and LINE a REF VECTOR[]CHAR;

This procedure sends the lines defined by mess to an area of the screen
called the write area which Is defined by the vector pre. Each element
of the vector mess starts on a new hir... If a component of mess is a
REF VECTOR [LINE then each of its elements Will start on a new line.
The components of a VECTOR E] VECTOR E3 CHAR are concatenated to form
one line.

If post Is an empty vector, then this is a write-only interaction and
NIL is delivered as the answer. Otherwise post defines a read area on
the screen the lines of which will be delivered as the answer to vdu
when the interaction is completed by keyboard action. The variables in
ans will then show how the the interaction was completed.

The vector pre must have upper bound 7, and the significance of each of
its elements is as follows:

* pre[1] : any or all of these bits may be present :-
2 - Lines after the last written will not be cleared.
_i - The cursor will not be shown for the read unless it is

invoked by next read on the vdu
8 - There will be a left margin during the read part of

*: the exchange into which the cursor will not move. Only
the characters to the right of this will be returned.
The position is set by post[4]

16- The area will be read without interacting with the user.

pre[21 : The line width in characters E 1 : 160 3.

pre[3J : Absolute line number of first lin. of write area where the
top line of the screen is 0, the bottom one 23.

pre[E4 : Number of lines of required width in write area.

Spre[5J : Relative line number (0 is the first line) within current
write area onto which the first LINE will be written. Unless
2 is present in pre[1J the remaining lines in the area will
be cleared. pre[5] may lie between -23 and 46. If it is
outside the write area the data in the write area will be
scrolled up or down so that the first line is Just inside the
area. If enough lines are written to go past the bottom of
the area the data in the write area will be scrolled up.

pre[6] : Character position [0 : pre[2J-1J in line from which writing
will start.

pre[7] : "Colour" used. Any or all of the following bits may be
present :-
1 - Blink
2 - Reverse video
4 - Half intensity
16- Invisible

The vector post must have upper bound 0 or 5, and in the latter case,

the significance of each of its elements is as follows:

postElJ : Absolute line number of first line of read area E 0 : 23 3.

* post[2] : Number of lines of required width in read area.

post[3J : Relative line number [0 : post[2]-1J within read area for
initial position of cursor.

post[4 : Character position [0 : preE2J-1J for initial position of
cursor,

post[5j : "Colour" to be used for read area. As for write.

The vector ans must have upper bound <z 4I , and the significance
of each element, provided it exists and is not NIL, is as follows:

10

ans[1] A codification of the keystroke(s) which sent the read data
152 - DUPL
153 - DEL LINE
1118 - INS LAST
150 - INS LINE
1115 - up arrow
1147 - south west arrow
139 - down arrow
176 - VOID
177 - GO IN
179 - RESULT
181 - DO
<128 - given by WHITE/x and ans[1] is ascii code for x

ans2] : Multiplier number; will be 1 unless the 10 key has been
used immediatly before the sending keystroke(s), in which
case it will be a multiple of 10 < 230 minus the number of
times the operation was performed on the screen before
needing to send lines. If it is >230 then the *MAX key was
pressed.

ans[3] : Relative line number [0: post[2]-1J of final position of
cursor.

ans[41] : Character number [0: pre[2]-1] of final position of cursor

The lines returned depend on the key which was pressed to send the data
back.

Let q z in(post[2J, ans(2J)
r a min(post[2] - ans[3], ans[2])

VOID, GO IN, RESULT, DO send back the whole read area.
Up arrow sends back the bottom q lines.
Down arrow and south west arrow send back the top q lines.
INS LAST sends back the bottom r lines.
DEL LIKNE and DUPL send back r lines starting from line ans[3J
INS LINE sends back the bottom r lines if ans[11]zO, the bottom
post2J-ansE3] lines if ans[4]/xO.

WHITE/x sends back no lines.

The definition of the lines which are returned may appear complicated;
however, It can be sumarised by saying that the minimum number of lines
are sent, compatible with the implementation of the nominal action of
key pressed.

N

"i 11

5. Exo@ptions

As described in the Flex Firmware Ell, a exception in D-state provokes
the call of an otherwise inaccessible Kernel procedure, failure, to
record and pass on Information about the exception. The failure
procedure is called in place of the procedure call which contained the
Instruction which raised the exception and it generates a structure of
mode F where:

NODE F a STRUCT(PTR locals,INT pc,sf, PTR code block, EP ep)

where the fields are:
locals is a pointer to the workspace in which the exception occurred.
pe Is byte displacement from the start of code of the instruction in

code block which was in error.
af Is byte displacement from the start of locals of the stack front

when the exception occurred.
code block is a pointer to the code block in which the exception

occurred.
ep Is the error pair corresponding to the error.

Mapce failure does a Exit-fall Instruction (Op code 69) with a ref to
this structure in U, the mode EP could be REF F. The net effect is that
a chain of mode REF F is formed by successive failures through various
procedures until an Instruction is encountered which can cope with the
illegal value produced. This is usually the unite-illegal instruction
(opcode 165) which allows one to access the characteristic word pair of
the Illegality (in this case the REF F). This chain may then be
analysed by procedures such as diagnose to indicate error positions in
the code an? the values of locals In the chain of failing procedure
workspaces.

12
mammon

6. Loadins and assembling program

Compilers for Flex use the primitive disc writing procedures to
create filestore codeblocks and procedures. Thus, most of the
code-blocks used in Flex are formed by creating a disc code-block using
oto d. Of course, the code can only be obeyed when this code-block is
loaded from disc into main memory. This usually takes place when a
procedure made from this code-block is called - an interrupt occurs in
the middle of the calling sequence and the interrupt procedure then
called will replace the disc code-block pointer with a main memory
pointer using d tob (see E1). This is entirely invisible to the user
and hence the distinction between disc and main store code-blocks tends
to be rather academic.

The basic unit of programing In Flex is the procedure and a Flex
compiler produces a filestore procedure corresponding to the source text
as a part of Its result. This procedure is one which will deliver the
interface values defined in the source text as its result, eg those
values corresponding to the KEEPlist in an Algol68 module or the
"specification" part of an Ada compilation unit. In the course of
evaluating the procedure, a value from another module or compilation
unit USEd by the former is derived simply by calling its corresponding
procedure. Thus the filestore procedure corresponding to a program text
contains (usually in its non-locals) means of deriving the filestore
procedure corresponding to each of the external modules used by that
program text. Usually, the external filestore procedure is not itself
in the non-locals, but rather a kind of a reference to the procedure
called a Module.
The reason for a Module to be a reference to the procedure rather than

the procedure itself lies in the requirement that one should be able to
recompile and reconstruct program units without invalidating other units
which use them. This implies some degree of assignability. The details
of whether or not one can change a Module belongs more properly to a
description of the language and compiler; however the kernel of Flex %
does define a language independent mechanism for the construction of
programs in this modular fashion such that one can ensure their
consistency at least at the modal level.

6.1 Modules

A Module in Flex is a three word object:

MODE MODULE a STRUCT(DEREF deref,ASSIGN assign, SPEC spec)

This structure effectively defines a variable (existing in filestore)
containing four words. The space for these four words form part of the
user environment (see 8.1 and 9.). The deref and assign fields of this
structure allow one to access and change these four words, subject to
certain constraints. The field, spec, is a pointer to filestore disc
block produced by some call of npb tod; when used by a compiler this
will generally be som. translation of the interface specification of a
compiled module.
The deref field is a disc-pointer to a procedure of mode PROC DATA

and where DATA has been produced by the compiling system

13

-, NODE DATA a STUCT(PROG prog,
SPEC shaky spec,
E FILE text,
WORD spare)

Here the shaky spec field 1s a shaky version of a disc-pointer to an
Interface specification 0s above. Its shaky properties allow one to
recover the space occupied by DATA when the NODULE is no longer
referred to.
The assign field of a NODULE is another disc-pointer, this time to a

PbOC(DATA, BOOL)VOID. Letting these two procedures be deref and assign
respectively, the call assign (d, b) will alter the DATA referred to by
the NODULE to d if b Is TRUE (as In the function change_spec). If b is
FALSE and the Interface specifications given by specOFd and shaky spec
OF deref are the sme, then the prog, text and spare fields the MODULE
are changed to that of d (as in the function amend). The comparison of
the specs is done by reading the non-pointer blocks given by the specs
and comparing them character by character. If b is FALSE and the specs
are not the same then the call fails.

6.1.1 PROC new z (PROG prog,SPEC spec,EDFILE text)NODULE:

This procedure creates and initialises a new NODULE in the current
environment. The Initial DATA in the NODULE is:

(prog, shake dptr(spec), text, 0)
The three words which form the parameters of new are usually the

"o result of a compiler e.g. the procedure algol68.

6.2 Assembling program

Most prog.e loading in Flex is done implicitly in the interpretation
of Curt commands; what follows here is a description of the primitives
Involved.
In order to load the progras corresponding to a NODULE, one applies
a procedure of mode WADER to It where:

NODE WADER x PROC(MODULE)KEEPS

* where KEEPS is a (mainstore) pointer to a block containing the set of
Interface values of the program. The internal structure of this block
Is deducible from the spec field of the module; its details depend on
the compiler and language. A call of a loader, say load(m), will fail
in a characteristic manner if specOFm and speoOFderefOFm are unequal;
one cannot load programs which contain inconsistent use of modules.
The actual loader used depends on context; the user can write his own.

The action of a loader is usually fairly trivial, since the prog field
of the DATA is Itself a disc procedure produced by the compiler which

4. evaluates its own KEEPS and loads any modules used by it. In order to
- do this, it requires to call the loader recursively on any internal

module, and so the procedure in the prog field has a loader as a
parameter i.e. the mode PROG is a disc-pointer to:

PROC(LOADER, INT)KEEPS

The integer parameter is currently not used by the compilers on Flex.

14

6.2.1 PROC get module (MODULE , LOADER ,INT c)KEEPS

Not all program defined by modules lives in filestore; most of the
procedures In the kernel, for example, can only exist in main memory
in a transitory fashion. These modules are recognised by this
procedure, which gives the required KEEPS to these "in-store' modules
as well as doing the standard operations as described above to normal
modules. Thus, if m is a standard module then the answer Is the
answer to a call of the procedure derived from the prog field of m
with 1 and c as parameters; otherwise, the KEEPS corresponding to this
module is already bound to the procedure and this is the answer to
get module. A non-standard module is recognised by its deref and
assign fields, both being scalars rather than disc-pointers.

-I

The kernel and system procedures defined in this paper are mostly
accessible in program using the module names (defined in the common
dictionary) formed by using the .m suffix on the procedure name e.g.
vdu m, from-discm et.

A loader is usually constructed by using the standard, procedure
makeloader:

PROC make loader z (PROC(MODULE,LOADER,INT)KEEPS gin, INT c)LOADER

The answer to a call of make loader is a loader which calls g_
exactly once for each different module found in the tree of evaluation
of the program being loaded; the loader supplied as a parameter to g_m
is this loader itself. If the sme module is encountered more than
once then the KEEPS which was the result of the first evaluation is
used for subsequent ones. This means that the same set of values are
bound to the program, regardless of how many times the module was
used.

The reason for this apparent complication in loading and assembling is
that the meaning of a particular module may depend on the context of
use. As a trivial example, the module vdu m must give different
values for each Virtual Machine. A less trivial example occurs where
one enters a new naming regime; the procedure find (which gives a
value corresponding to an identifier, see 7.2) contained in the module
find m must allow one to enter (and leave) new scopes. The general
method for doing this Is to re-define get-module in an inner scope,
usually via the command interpreter, Curt. The new get module would
intercept some modules, delivering already evaluated KEEPS in these
cases and call the old get module for the other cases. Notice that
the module get module m almost certainly would be one of the
intercepted modules, delivering the new get module in its KEEPS, so
that a further inner redefinition will include the outer one.

4q

I!

oI

I,

6.2.2 PROC current loader a (NODULE)KEEPS

This procedure Is the loader which vas used to load the currently
running progrm. A call of this procedure from within this program
will load the requested module normally If It is not already part of
the program; If it Is, then the Interface values already bound into
the progrm are delivered.

16

ip

16 -a

ILIL

7. sNe and value Identification

Most nme and value correspondences made in Flex are done at the level
of the Cart interpreter or within copilers. The following procedures
are those primitives used to do It.

The meaning of a name In Flex Is dependent on the context or
environment of use. There are two different ways of naming an object -
first, where the name Is only valid for the current session (temporary)
wnd secondly where the meaning of the name persists from session to
session. Any value created in Flex can be named in the first way;
however the second way can only be done for filestore objects. A
filestore object Is essentially one which contains no main-store
pointers - It an of course contain disc-pointers.
Host users of Flex have access to two dictionaries which gives the
file-store name-value relationships; one which Is private to the user
which he an update and the other which Is held in common across the
system which he cannot update. Both of these of these are obviously
held in file-store. The temporary dictionary Is held entirely In
main-store and no name clashes are permitted between this and the
private file-store dictionary. Thus the temporary dictionary can be
regarded as a main-store extension of the private file-store dictionary.
Any name clashes between the private and common dictionaries are
resolved by giving precedence to the former.

7.1 PROC basic-find (VECTOREICHAR nme)REF VECTOR[UVALUE

where UVALUE a UNION(REF VECTOR]TINT,
MW VECTOR[JSTINUCT(UIT fn),
M VECTORC[CHAR.
REF VECTOR[]BOOL)

This procedure delivers the set of values of mode UVALUE associated
with the name in the current environment. Each of these values can be
vectors of Integers, characters or booleans. The remaining elment of
the union is somewhat historical and is intended to differentiate those
values which are in fact disc procedures. The first value of the
result vector is the principal value. There need not be any others,
but if they are given the second is the Curt mode of the principal
value, the third a LONG INT representation of the date and time the
name was declared and the fourth an editable file which contains
information on the value; this last is the file accessed by the
function info. Thus, given that d to b m is a name in the common
dictionary, the call basic find(Nd to b.n") would deliver a vector of
four UVALUEs, each of whi7h is forailly a vector of integers. The
first vector would have three elements, since d to b a is actually a
MODULE and the use of some suitable unpack operator (opoode 167) on the
Integer vector could produce this MODULE. The second vector has one
element which happens to be a disc pointer, the vector itself being a
representation of the Curt mode for Module. The third vector has two
elements giving the date and time while the fourth has one which Is an
editable file containing roughly the me text as given in 3.3.1.
The most common use of basic find Is in the construction of new find

procedures as below using ihe make find procedure. The procedure
ma* find takes a user's basic find as parameter and delivers a new

17

find procedure, making sure that this will bind the new find,
basic find and get module into any oalls of new environments using this
new find as well as any new name associations required by the user.

7.2 PROC find a (VICTOREICAR n)VM:
Were IN a STRUCT(IEF VECTOR[]INT value mode)

A call of this procedure find gives the value and Curt mode
oorresponding to the string n In the current environment. It n Is not
defined in this environment then the call fails.
Although the formal Algol68 mode of the value Is a vector of integers,

the actual value could equally vell be a vector of characters or
booleans. Thus, a suitable manifestation of the unpack operator
(opoode 167) could transform this value to any Ahgo168 value consisting
of a number of words, characters or booleans. Similarly, the use of
the pack operator (opcode 166) can produce the vector of integers from
my Algo168 value.

The representation of the Curt mode corresponding to the name is
defined system-wide. Thus, if the name had corresponded to an editable
file then the Curt mode would have been Edfile and its representation
Is that given by the call make-mode("d file").
The find procedure that is bound to a program Is usually the same as

that used as a parameter to the current call of the command interpreter
curt (see 9.1).

7.3 PROC keep: (NT dec type,VECTOR[]CHAR n,T v)VOID:

A call of keep adds (or redefines) the name n to correspond to the
value-mode pair given by v in the current environment. Thus a call of
find in this environment with n as parameter will deliver v. If
dec type a 1, then the association Is temporary and will disappear at
the end of the current session. If dec type a 2 then the association
is held In file-store and will persist between sessions. In this
letter case the value being named must be a file-store value and in the
case of a redefinition of an existing name the modes must be the same.
No temporary nine can be defined If this nine Is already defined in the
persistent sense and vie-versa. If any of these conditions are not
met, the call of keep will fail without changing the dictionaries.

The keep procedure that is bound to a progrm in usually the same as
that used as a parameter to the current call of the command interpreter
curt (see 9.1).

18s

. . x : z ; h .:. UI , .W ± W*W. . * .-- ' 1 . -- ,* -. '- - 9-- &.- - *1

8. Dictionary utilities

The file-store dictionary belonging to a user is created at the same
time as the user is given acess to the system by having an environment
procedure nmed In the outermost environment (see 9). Thus the
environment for casual non-serious users has an environment procedure
called play In the outer environment. At the creation of the dictionary
It was initiallsed to contain three functions which are particular to
the environment. The first, new, has already been described (6.1.1) and
creates new modules In this environment. The other two are concerned
with showing and tidying the file-store dictionary. These are given
names specific to the user, using the same name as the environment
procedure. 7hus these procedures in the play environment are called
show play and tidy play. In what follows the user name is denoted by
User.

8.1 PROC show User a PACK:

This procedure will display the file-store dictionary of User using
the editor. The PAGE delivered by the procedure (by keying RESULT) is
simply the main-store version of an editable file produced by editing
the display.
This display consists of two initial lines, followed by a set of line

triples, one for each name defined In the dictionary. The Initial
lines are values of Curt mode Module-set and Old-dictionary
respectively. The Nodule set is a pointer to the set of modules
created in this User environment. The Old dictionary is a shaky disc
pointer to the contents of the dictionary before It was last updated.
This value can be used to retrieve old values by using the function
show old provided that a disc garbage collection has not occurred.

The line triples following this define each name held In the
dictionary In alphabetical order. The first line contains the name
mnd the time and date on dhich It was declared (the cursor will appear
over the most recent declaration). The second line Is the value
corresponding to this name while the third, if not empty, Is the
docuentation file associated with this value. Both of these values
can be accessed In the normal edit sense.

If one wishes to delete names from the dictionary then one deletes
the corresponding line triples from the display and applies tidyUser
to the result of the procedure.

8.2 PROC tidy_User a (PACK p)VOID:

The parameter of this procedure Is intended to be derived from
show User (or perhaps from some Show old). The identifiers and values
given in the PAGE will become the new dictionary for the User.

8.3 PROC show top a PAGE:

This procedure shows the temporary nanes and corresponding values in
the same way as show User. At the same time It removes all the
temporary values from the local dictionary; If one wishes to retain
them (or some subset of them) then one uses tldy.temp.

19

8.4 PROC tidy temp a (PAG p)VOID:

The parameter of this procedure is intended to be derived from
sbow tidy and gives a page of identifier-value correspondences which
will form the new temporary dictionary after the call.

20

9. The User grocedure

A User. .i..**d.* accessible at t ouems level of Flx(j g n
accessible by *ane when a vdu is started up) consists of the call of an
enviromt procedure with a dictionary belonging to the user and sme.
other finding procedures already bound in. The dictionary belongs to
the uuer In the sans that only he has the procedures to find mid update
Identifiers In It (be can of course give tham to other users It so
desired) .One of the other finding procedures Is one which looks for
Identifiers In the cammon dictionary. This Includes most of the modules
sod functions mentioned in this document mid also the function
sowoacn which displays its contents. Normal users do not have
access to the keeping procedure which updates the ommon dictionary; In
fact, this Is contained In the priv dictionary whose finding procedure
Is bound inte some privileged Users In the sae way as the finder flor
comem is bound Into all Users
The names In a User's dictionaries (both temporary and persistent) as

wall as all those given by the bound finding procedures form the domain
of the find procedure given In 7.2. These names are therefore
accessible within program; they are also accessible directly by the
command Interpreter, curt, which Is called In each User procedure. In
fact, only those names are accessible In the Interpretation of commands
and there Is no distinction between those created by the user and those
already present in the system (in ommon, say).

The User procedure also maintains a monitoring file of noteable events;
these events are usually where the persistent dictionary changes.
Entries are made Into this file by means of the procedure monitor and it
cmi be accessed by the procedure get-M file. Previous states of the
dictionary can be reinstated by using the procedure unwind on a
truncated version of the monitoring file.
In the following description, a typical User Is expressed as an Algo168

procedure; usually It would not be called directly within an Algol68
program but only by the command Interpreter as part of the
Interpretation of a command line at the outermost level.

9.1 PROC User a M1 per)YN:

The Curt mode of User Is Moded -)o Noded

Ths perneter per Is ay value-mode pair. The Cart mode rules means
that any Vurt value can be supplied as parameter In a Curt
Interpretation of a call of this procedure. This value Is declared to
have name at In the initialisation of the temporary dictionary of the
enviroamest. Another mne is the initlalisation is where which is
used to give an Indication of the context of the envionmnt by the
contents at the Caut line eash time the environment changes by Inner
call of Cort (more strictly Inner calls of make find).

The procedure User then coontinues by searching for a name PA33woRD in
the various places available to It. If It finds a orresponding value
tMen it treats this as a PROC VOID and calls It. Host PASSWORDs are
oreated and decaered In the user's dictionary by the procedure,
possumd hich~o biade Its string piemeter to a procedure which ske
4016 to tMp It out (invisibly) "m the vdu and fails If It does not
isteh (thus Blue faillog the eall Of Us~r) *Other more complicated

21

procedures could be invented by the user.
The procedure User then creates all the environment dependant values

and procedures (eg find, keep, getinodule etc) relevant to this user
and calls the procedure, curt.

PROC curt
(PROC(VECTORE[CHAR)VN find,

PROC(INT, VECTOR([]CHAR,VN)VOID keep,
PROC(INT,REF VECTOR[ECH&R)VOID monitor,
VECTOR []CHLR first line) VM

This procedure interprets comands typed at the vdu and is discussed
in [2]. The find parameter is the procedure that the interpreter will
use to give meaning to identifiers typed on the command line and its
actual in this call is the find procedure of the environment.
Similarly the keep parameter allows one to do declarations of
identifiers on the command line to update the dictionaries of the
environment by using the keep procedure of the environment. The
first line parameter of curt is the first line that will be
interpreted ad in this call it is the empty string if the mode part
of the per parameter of User is Void; otherwise it is the string "W .
The monitor parameter is called each time a declaration is made on the

*Curt line with its string parameter being the Curt line itself and its
integer parameter being 1 for a temporary declaration and 2 otherwise.
The actual used is again generally available and is described in 9.2.

The answer delivered by User is the answer delivered by the call of
curt.

9.2 PROC monitor a (IT t, REF VECTOR[]CHAR mess)VOID:

If t is not 1, then the line mess is appended to the current
monitoring file followed by the current state of the user's
persistent dictionary; this last appears, in a mendacious fashion, as
an lIt In the file. The procedure monitor is called, for example, at
each declaration In curt, at every mend module, at every new module
and every time a dictionary is tidied; the intention is to note each
possible change to the dictionary. Besides giving a record of what
one has done, the monitoring file can also be used by the procedure
unwind to forget about undesirable changes made to one's dictionary.

9.3 PROC getmafile a EDFILE:

The result of a call of this procedure is the current state of the
monitoring file.

9.4 PROC unwind a (EDFILE mon)VOID:

h parameter of this procedure must be a truncated version of the
eurrent monitoring file, ie the monitoring file at some earlier time
In the session. This cam only be produced by editing the result of a
oall of got m file with the only permitted actions being to delete
final pairs of lines (NB the lines are 160 chars long). If this

22

condition is not met the procedure will fail without altering the

dictionary. If it is met then both the dictionary and the current

monitoring file is returned to what it was at the earlier time given

by the truncated monitoring file.

23

10. Conclusion

This paper is not intended to be a teaching document but rather a
description of the basic building blocks of the Flex software. The
easiest way to learn how to use Flex is to use Flex; a good deal of
thought and energy has gone into the design of a friendly user interface
and on-line teaching and information aids. The procedures described
here are mainly those Which are not directly used by most users; they
tend to be wrapped up in less basic procedures.

There many other procedures in Flex which might have been included in
this paper. Noteable ommissions includes the listing and networking
procedures. In addition, the editor and the structure of editable files
form such an important part of programming on Flex that it could be
considered as part of the System in spite of the fact that it does not
meet my criteria for inclusion given in the Introduction. However, as
each of these topics merit a complete paper to themselves, the set given
here probably forms a reasonable compromise between brevity and
completeness. This set is sufficient to give all the primitives
required for writing compilers, editors, database managers, ... - in
fact, the basic stuff of software.

References

E1J Flex Firmware RSRE Technical Note 81009,
Currie,Edwards and Foster

[2] Curt: The command interpereter for Flex
RSRE Memo 3522, Currie and Foster

JUTELj ARE NO! NECESSARLV
A.A.,. tU F rNA3F RS)ht -

.42.

9- 1. 1 7 7 77777

11. Index and Glossary

algol68 Algo168 compiler - with CUrt mode Edfile-)Ioded
where Moded is either an Edfile (failed compilation)

or a Compiledpair(SuCoessful).
mentioned 6.1.1

amend function with Curt mode Module -> (Copiledpair ->))
used to update program without changing specification.
mentioned 6.1

basic find finds set of values associated with an identifier in

current environment, 7.1

break si soft interrupt belonging to the break-in process, 2.4

c to d creates a code-block on disc,3.2.3

code-block that part of a procedure which is constant,[1],3.2.3,6.

common dictionary containing values generally avaiable across
the system, mentioned 7. , 9.

current loader loader used to load current program, 6.2.2

curt command interpreter used by Flex systM,[2] and see 9.1

d to b transforms a disc-block into corresponding main-store
block, 3.3.1

DATA Algo168 mode of object refered to by a MODULE,6.1

DISCPTR mode of a disc pointer , lIT in Algol68, 3.

DISCREF mode of a disc reference, INT in Algol68, 3.

date today's date .2.8

diagnose Curt function used to diagnose run-time errors, see 5.

disc-pointer held as a pointer to a keyed block in main-store
held as recognisable bytes on file-store, 3.1 etc.

disc-reference disc-pointer which is a disc variable containing one
word, 3.1, 3.1.

EDFILE Algol68 mode corresponding to Curt mode Edfile,
. describing an editable file, mentioned 8.

Exceptions Failures either produced by software or firmware,[1],5.

failure Innaccessible Kernel procedure used to construct
diagnostic chain at exceptions, see 5.

-25

find Sets the value-mode pair associated with an identifier

In current environment,7.2

firm dptr firms a shaky disc pointer,3.5.1

from disc reads the contents of disc block, 3.3.2

garbage collection
main-store - implemented in the micro code of Flex [E l
file-store - done off-line , see 3.1

g et module delivers the interface values of a module,6.2.1

getmnfile delivers the current monitoring file, 9.3
Curt mode :) -> Edfile

Info function to get the information file on an identifier;
mentioned 7.1. Curt mode : Veo Char -> Edfile

keep used to declare identifiers in current dictionaries,7.3

LOWDER Algol68 mode of loader ,defined in 6.2

make find creates a new find procedure from a basiC-find, 7.1,9.1

make loader creates a loader,described in 6.2.1

sake mode function to construct a Curt mode, mentioned 7.2
Curt mode : Vec Char -> Mode

makeprocess creates a new process,2.2

makeaema creates a new semaphore,2.5

foded Curt mode corresponding to Algo168 mode WI; in curt
*interpreter, used to transfer mode Information into

and out of procedure calls; mentioned 9.1

MODULE Algo168 mode with corresponding Curt mode Module, 6.1

Module set Curt mode for pointer to set of modules, 8.1

monitor records a message and state in monitoring file,9.2

neW creates a new module, 6.1.1
when used as a Curt function its mode is

Compiledpair -> Nodule (see algol68,mend etc)

new dr creates a new disc reference,3.4.2

-pb tod write non-pointer data to disc,3.2.1

Old dictionary Curt mode for shaky disc pointer to previous state of
dictionary, see 8.1

26

.4 ,,,...~. 5 . A . - . - -

own -a soYt interrupt for principal process,2.3

own time time spent by current process .2.7

ptod creates a procedure on disc,3.2.4

PAGE Algol68 mode corresponding to Curt mode Page which
is a mainstore representation of an editable file.
Mentioned 8.1,8.2,8.3,8.4

PASSWORD name of password proc (Curt mode 0->)) in User
dictionary, usually put there by proc password. see 9.1

password function (Curt mode (Veo Char)->W) which puts a
PASSWORD into User dictionary, see 9.1

pbtod writes words (including disc-pointers) to disc,3.2.2

priv a dictionary only accessible to certain Users, see 9.

shake dptr makes a disc pointer shaky, 3.5.1

show common display contents of common dictionary, mentioned 9.
Curt mode :) -> Page

show old display contents of old state of dictionary,
mentioned 8.1. Curt mode : Old-dictionary -> Page

show temp display contents of current temporary dictionary ,8.3
Curt mode : () -> Page

show User display contents of User's persistent dictionary .8.1
Curt mode : () -> Page

softinterrupt characterises a process, 2.2

SPEC mode of disc ptr to "specification" of module, see 6.1

tidy User usually used to delete names from User's persistent
dictionary, 8.2 Curt mode : Page ->)

tidy temp usually used to reinstate names in current temporary

dictionary, 8.4 Curt mode : Page ->)

timed wait procedure for waiting a bit,2.6

todr write to disc-reference .3.4.1

unwind restore dictionary to earlier state, 9.4
Curt mode : Edfile->)

User nine of a typical environment proc, accessed at outer
level, 9. Curt mode : Moded -> Moded

27

At

UVALUE Algo168 mode for a value described In 7.1

*lvdu procedure for using ones vdu, i.

'p Virtual 3hchine
the Flex machine as seen by a single user, see 2.

'N Algo168 mode giving a value-mode pair described in 7.2

28

DOCUNEN? CONTROL SHEET b

Overall security classification of sheet ...W~MU TA

(As far as possible this sheet should contain only unclassified Information. If It Is necessary to enter
classified Information. the box concerned must be marked to Indicate the classification e9 (R) (C) or (S))

1. !3RIC Reference (if known) 2. Originator's Reference [i. Agency Reference '.. Report security

Memorandum 3636 I u/c Casfcto
5. Originatorls Code (if 6. Originator (Corporate Author) Name and Location

known) Royal Signals and Radar Establishment

5a. Sponsoring Agency's Ga. Sponsoring Agency (Contract Authority) Naee and Location
Code (if known)

7. Title

Kernel and System Procedures in Flex

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference zippers) Ti tie, place and date of conference

8. Author I Surname. Initials 11(a) Author 2 9(b) Authors 3.4... 10. Dete op. ref.

15. Distribution statement
Unlimited

Descriptors (or keywords)

continue on separate piece of paper

Abdract
4

This Memorandum describes the basic Kernel and System procedures on which the
operating system for the Flex computer is based. These are the low level

rOCedures Whbich are used to implement the compilers, file-store* coummand
interpreters etc on Flex.

168

