
AD A166 190 PIROFLEX FIMAKIUI ROYAL SIMALS AM *OAR A
ESTAILISIMN UALVERN (ENOLAMI I F CURRIE ET AL.
DEC 85 NSE0501S 041IC-S-9S025

UNCLASSIFIED F/a 012 ut

I II.

r

..-

2I0

111I1I 5

IIIII III I

I

4,-

i

I/

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report No 8581S

Title: PerqFlex Firmware

Authors: I F Currie, J M Foster and P W Edwards

Date - December 1985

Summary

This report describes the instruction set and general firmware
architecture of the Flex computer as implemented on the ICL Perq
workstation.

Accession For

NTIS GRA&I

DTIC TAB
Unannounced ' w
Justification

By___By
Distribution/
Availability Codes

Avail and/or

4,Dist Special

Copyrlulit
Controller 14RS0 London

1M

IL

PerqFlex Firmware

Contents

Introduction

I Data in Flex

2 Program in Flex)3 Procedures

4 Exceptions

5 Storage allocation

6 Interrupts

7 External capabilities

8 Flex instruction set

9 Formats of data, blocks and exceptions

Introduction
This report describes the firmware architecture of the Flex computing
system as implemented on the ICL Perq. This implementation is very
similar to that described in RSRE Report 81009, (Flex Firmware by -I
Currie, Edwards and Foster) generally referred to as the Logica
implementation. This is rather a misnomer, since although Logica built
the hardware (to an RSRE design) on which it was implemented, Logica
had nothing to do with the micro-coding or software construction of
the Flex architecture.

The differences between the Perq and Logica implementation arise
mainly from the properties of the underlying hardware. In the Logica
Flex, for example, each byte in main-store was in fact nine bits long
rather than eight s the extra bits (the tag bits) were used to
distinguish between pointers and non-pointers ie between capabilities
and scalar data. On Perq, however, there are no bits to spare like this.
In order to distinguish between pointers and non-pointers in Perq,it
was necessary to steal a bit from each 32-bit word to act as a tag bit. .
One effect of this is that integer arithmetic on PerqFlex is 31-bits
long. Another more serious one from the point of view of compatibility
with LogicaFlex is that multiple characters and bits can only reside in
special blocks so that four characters packed into one word, for
example, cannot be confused with a capability. This means that the
uniform scheme, in the LogicaFlex, of being able to load any number of
words,characters or bits into the register has had to be modified so
that although one can still load any number of words into the register,
only single characters or Lits can be loaded in PerqFlex. This, in turn,
means that extra instructions have been introduced into PerqFlex to
allow one to manipulate characters and booleans in other ways.

Other differences arise from the treatment of peripheral devices on
Perq. For example, Perq has a bit-mapped display with some specialised
hardware for moving about rectangles of bits. Other external devices
includes Winchester and floppy discs and GPIB, RS232 and Ethernet
interfaces, all of which requires some specialised instructions.

In spite of these differences, program transfer between the Flex
implementations is relatively painless. Most of the detailed
differences in programs are coped with by the compilers. Other

differences are minimised by the fact that most of the user's
interfaces (eg to filestore) are the same and that Flex encourages a
highly modular approach to program design.

Id3

1 _ _ __ _ __ _ _

1 Data in PerqFlex

Data In Flex can be handled in words, characters or booleans. Words are
either pointers or non-pointers with distinct representations so that
arithmetic cannot be performed on pointers and non-pointers cannot be
used in indirect addressing operations. The pointers are used to
represent capabilities to data or actions in main-store.

In blocks of main-store which can contain pointers, the least
significant bit of each 32-bit word is used to distinguish pointers from
non-pointers, a pointer has this tag bit set while a non-pointer has it
clear.

1. 1 Non-pointers

The various instructions which operate on non-pointers .ise the
following representations:

Bool - I bit.

Char - 8 bits.
Packed Chars and Bools can only appear in blocks of type 3
and I I respectively (see 1.2. 1). When a single Char or Bool
is pushed or stored in another type of block, it is stored as
an int.

Int - I 32-bit word with unset Is bit.
131 bit 2's complement Itag bit-q

LongInt - 2 Ints, 1st int is most significant and second is
positive, giving 61 bits 2's complement.
wordl:ei 930 bit unsigned Itag bit=el

wordO:31 bit 2's complement tag bit-B

ShortReal - I word with unset Is bit. Biased 2's exponent in next 7.
2't-bit mantissa with sign equal to the complement of the
ms bit.
120 bit mantissa 7 bit biased exponentitag bit-B

ii,.

Real - 2 words with unset Is bits. The ms half of Word 8 is the
ms 16 bits of the mantissa with sign equal to the comple-
ment of the ms bit. Next It bits are zero with biased 2's
exponent in next 11. Next 31 bits of mantissa in ms end
of Word 1.

Word 1:1 31 bit mantissa extension (Is part)ltag bit=

Word 0: 16 bit mantissa 1880 111 bit biassed exponent tag bit0iO

1.2 Pointers

A pointer is a 32-bit word with its least significant bit set. Its
complete format is:

IL12 bit gc 081l bit type S13 bit spare 19 bit block address tag bit=1

where the the block address is expressed in 32-bit word units and the
type field gives the type of block pointed at. Each block has an
overhead word which gives the size of the block and repeats its type.
The gc bits both in pointers and overhead words are used for garbage
collection purposes. Existing pointers can be copied freely but one
cannot synthesize a pointer to an existing block, and the contents of a
block can only be accessed according to rules defined by both the
pointer and the type of the block. Even given maximum access, a pointer
only allows access within the limits of its block, not including the
overhead word. The access rules are modified if the pointer is locked
(given by the L-bit - 1). The effect of locking for blocks of type other
than 5 or 6 (see 1.2.1) is to make the blocks read-only. A pointer with
its S bit - I is a shaky pointer, otherwise it is a firm pointer. This
means that so long as a block is pointed at by a firm pointer then any
shaky pointers remain valid. However, if there are no firm pointers to a
block then any shaky pointers to it will be replaced by the non-pointer
O in garbage collection and the block will vanish. This mechanism is
largely intended to provide easy aliasing between disc and mainstore;
it is also used internally in the procedure call mechanism.

1.2. 1 Blocks

Each block starts on a 32-bit word boundary with one overhead word:

13 bit gc 1114 bit type 14 bit spare 119 bit block size tag bit-,u

The 9c bits are used for garbage collection purposes. The size is
measured in 32-bit words, with the overhead word included.

There are in fact seven different types of block:

Type I
This is a work-space block i.e. the locals of some call of a procedure,
including pointers. The first four words of a work-space block are
completely inaccessible to everybody but the micro-code. They contain
link information for exiting from the procedure or for re-instating this
work-space as the current locals. The instructions which access within
a work-space block (e.g. opcodes 8 or 3) will automatically compensate
for these extra invisible words so that, for example, a zero
displacement (a-field) will in fact give the 5-th word of the block.

Type 2
This is a codeblock which points to the instructions (a type 3 block)

and the constants (a type 1+ block) of some procedure. It also contains a
word giving the size of the workspace required to run this procedure.
In addition, another word maintains a shaky chain of workspaces which
may be used when the procedure is called in appropriate cases

Type 3
This block contains no pointers, each word in it being a full 32 bit

quantity. Conventionally, it will contain packed 8-bit characters; this
is supported by the dereference and packing instructions.

Type le
This is a normal data block which can contain pointers.

Type 5
This is a closure block, containing pointers to a codeblock and a

non-locals block. A pointer to a closure is a procedure. The only
operations allowed on procedures are calls i.e. the contents of the
closure are hidden. When a locked procedure is called, the resulting
call will be run in privileged state.

Type 6
This is a keyed block whose access is controlled by knowledge of first
word in block. Access to a keyed block via an unlocked pointer makes it
identical to a normal data block: access via a locked pointer is barred.
A locked pointer to a keyed block may be unlocked if one knows the
contents of the first word of the block using instruction 160. Locked

pointers to other types of blocks cannot be unlocked.

Type 11
This block contains no pointers. It is conventionally used to contain

packed booleans. The bit-map for the screen is contained in such a
block.

6

I

1.2.2 References, vectors and arrays

Since pointers only refer to complete blocks, several of the
instructions make use of references i.e. (pointer, non-pointer) pairs
with the interpretation that the first word gives a block and the second
some kind of a displacement within it, subject to the usual access
constraints of the pointer. The kind of displacement is defined by the
type of block pointed at ie:

types 1,2,4.6 - word displacement.
type 3 - char displacement from logical start of block,
type 11 - bit displacement from logical start of block.

The contents of type 3 blocks cannot be examined and so cannot form
part of a reference.

A vector is defined as a triple consisting of (non-pointer, reference)
where the first word is the upper bound (implicit lower bound = 1).
This upper bound expresses the number of elements in the vector; the
element size will be defined by the instruction using the vector and the
type of its reference.

An N-dimensional array is a tuple of words consisting of N non-pointer
triples (lower bound, stride, upper bound) followed by a reference.

7

2 Program in PerqFlex

While running program, Flex is always obeying the code of some
procedure, the current procedure.

2.1 The local stack

The locals of this procedure,the current locals, are contained in a
work-space block (type I); these locals are directly accessible using
instructions such as loadIword-local (op code 6). Two other areas
are similarly accessible - the non-locals (eg op code I) and the
constants (op code 2) of the current procedure. The non-locals (if any)
are in one of the blocks (type It) pointed at in the closure which forms
the current procedure while the other gives a type 2 block containing
pointers to both the constants and code of the procedure.

The locals operate as a stack entirely contained within the current
work-space block. The next free word on this stack is the stack-front
(sf). Clearly sf is always constrained to lie within the limits of the
current work-space; any attempt (either explicitly or implicitly) to go
outside its bounds will result in an error.

2.1 The U register and tos

There is only one general purpose register in PerqFlex - the universal
register U. U may hold:

any number of words
a single character or a single boolean
an illegal value (ie an Exception)

or void (ie the unique value requiring no bits)

The instructions which load U (op codes 0 - 37 etc) push the old value
in U (provided it is not an exception) onto the local stack (updating sf
in multiples of words) before loading the new value.

Most of the arithmetic instructions use a value on top of the stack

(tos) together with the value on U to produce results. The tos value
is removed and sf reduced by the operation of the instruction. The
number of words in tos depends on the particular instruction, and

also sometimes on the value in U (eg equality, op code I1'). Thus
the intjmultiply instruction (op code 168) multiplies a I-non-ptr U
by a t-non-ptr tos, giving the answer as a 1-non-ptr, reducing sf by
I word. The realjmultiply instruction works similarly removing 2
words from the stack while the equality instruction removes the
number of words required to hold the value in U.

IB

2.3 Program control

The flow of control instructions only allow jumps within the current
procedure code and even then only in a restricted form in that usually
only forward jumps are allowed to carry a non-void U. The only ways to
escape from the current procedure code is to call another procedure,
exit from the current one, fail, or obey the goto instruction (op code
71). The address of the instruction currently being obeyed is held in
the program control register pc; clearly pc is constrained to be within
the limits of instructions within the current codeblock.

2.. Privilege

Some of the instructions are only allowed if the procedure code is
being run in privileged state. These instructions are mainly concerned
with peripheral transfers. This state is a property of the procedure
itself. If one calls a locked procedure then its code will run in
privileged state otherwise in unprivileged state. Thus, if an
unprivileged procedure is called from within a privileged one, on exit
from the inner call the outer will remain privileged and similarly in the
reverse sense. Clearly the operation which locks a procedure can only
be obeyed in privileged state.

_1

. iI'

9 , ,g i -

3 Procedures

A procedure is a pointer to a closure block of size 3 words:

non" locals i ins tr'utios

Type J yp

, code- constants
no- cs consts- _o

cel ws-chain --- o-haky chain of exited workspaces
ws-size size of workspace required for proc
py pe size = 5 words.

The current work-space block is:

local I sf somewhere in this area

local 0>
own proc --- Closure of current proc as above

hidde sf dump Only set by inner call.
part pc dump . . .

of bloc last ws----o Workspace in which current proc was called
Type I rize given by ws-size in current codeblock.

The workspace chain given by the last ws chain in a work-space is
terminated by a zero word, in the first work-space of a process.

3.1 Procedure calls

The action of a procedure call (op codes 6'+-67) is as follows. The
current values of pc and sf relative to their respective blocks are
stored in the second and third words of the current workspace. The
privilege state and the TO state (see It) also stored along with sf. The
codeblock derived from the procedure to be called is now examined. It
contains, in its first two words, information to produce a work-space
block for the procedure being called. If the second word (ws-chain in
diagram) is a pointer, then we know (see exit 3.2) that this is shaky
pointer to a chain of work-spaces suitable for running this procedure
and hence we have the desired work-space by removing it from this
chain. If ws-chain is not a pointer, then a new work-space block is:;" igenerated given its size in the first word in the standard manner. This

may involve one in a garbage collection so the procedure call
instructions are arranged so that they can be restarted after such a
garbage collection.

Having produced a work-space suitable for the new procedure, a pointer
to the current work-space is put in its first word, and the new
procedure in its fourth. This new work-space now becomes current, sf
is set to its fifth word (word 0 of locals), pc to the first byte of the
instruction block pointed to by the fourth word of the new codeblock,
and the internal registers set up so that the current locals, non-locals
and constants come from the new locals, non-local block and constant
respectively. If the procedure being called is locked, the code will run
in privileged state; otherwise it is unprivileged.

During all of this, the contents of U remain unchanged so that

parameters to a procedure are normally passed in U.

3.2 Exit from procedures

Exit from a procedure (op codes 68, 69) is essentially the reverse
process: if a pointer to the current work-space has not been loaded
while obeying the current procedure (ie instructions 31t or 168 have not
been encountered) then the current work-space is put on the ws-chain
in the current codeblock. The previous work-space (in 1st word of
current work-space) is now made current, and sf, pc and the two states
are reset from their dump positions in this work-space. The locals are
made current in this work-space and non-locals and constants are reset
from the own-proc dumped within it.

During exit, the contents of U remain unchanged so that results of
procedures are normally passed in U.

3.3 Demand loading

The description of procedure call given above is somewhat simplified
in that the codeblock or the entire procedure can reside on filestore.
In both cases, the appropriate pointers will be filestore capabilities
represented by pointers to keyed blocks (type 6). The firmware will
interpolate a call of a system procedure, load.proc, in the operation of
a call instruction whose closure is, or contains, such a keyed block.
Load-proc is rather similar to the scavenge procedure, in that it can
accept any parameter. It can access the keyed blocks as non-locals, and
it uses information from the keyed blocks to load the actual code etc,
from backing store into mainstore. Load.proc will then exit to repeat
the original call instruction that provoked it, ensuring that this kind of
closure is only fully loaded when it is actually called. The alias fields
of the filestore capabilities will ensure that the discs are not
accessed if the procedure or codeblock is already in mainstore.

1t

It Exceptions

An exception in Flex occurs when some attempt is made to break the
rules of the Flex instruction set. All exceptions have a characteristic
word-pair associated with them - those raised directly by the micro
code consist of zero followed by a small integer.

The treatment of an exception depends on whether it was raised in one
of two states either T-state or D-state. This state can be set by
instructions (op code 91+ and 95) and is carried into inner procedure
calls. On exit from a procedure, the T or D state is set to what it was
on entry.

%,.1 Errors and failures

Exceptions arise in two slightly different ways, called, for want of
better words, errors and failures.

An error occurs where any attempt to continue with the instruction
would compromise the access rules for blocks and pointers. Roughly
speaking,one could say that they are the compiler's fault. They include
attempts to access outside the limits of a block or applying the wrong
type of operands to instructions.

A failure tends to be more data-dependent and more likely to be the
program writer's fault. Typical failures are arithmetic overflow and
indices out of bounds. Also included are the explicit exceptions raised
by the fail and exitfail instructions (op codes 173, 69) where the
characteristic is given by the operand U.

The only difference betwee- failures and errors occur when the
exception is raised in T-state. In this case, a failure produces an
illegal value in U which has an associated word-pair identical to the
characteristic of the exception. Any attempt to use an illegal value in
instructions other than those explicitly designed to deal with them (op
codes 92, 165 etc) will result in an error whose characteristic is the
same as that associated with the illegal value. This implies that one
can deal with failures like overflow in the current procedure by using
these i Ilegal-handling instructions.

In T-state, an error results in the premature exit from the current
procedure with an illegal value in U whose word-pair is the
characteristic of the error. Since illegal values give errors unless
explicitly tested for, the net effect is that an entire chain of
procedure calls are exited from until one is encountered which is
prepared to accept an illegal result.

In D-state (Diagnostic state) all exceptions are treated identically. In

12

essence, a system procedure, failproc, is called in place of the
current procedure, so that, if an exit was obeyed in fail-proc. it would
exit to the same place as the current procedure. The parameters of the
call of fail-proc give access to the locals and codeblock of the failing
procedure and the characteristic of the exception is available as a
non-local. The (softwared) action of fail-proc is to construct a chain
of failing environments. It does this by constructing an element of the
chain and then doing an exit.fail with a reference to the element in U.
Eventually, some lower procedure will gather up the resulting illegal
and use it to construct visible diagnostics for the exception. As far as
the firmware is concerned, all that it does at an exception in D-state is
to find fail-lproc in system-block, dump the characteristic into
system.Jlock, and call fail-proc with a four word parameter consisting
of a pointer to the current locals, relative values of pc and sf, and a
pointer to the local codeblock.

13

!I

5 Storage allocation

Only the micro-code regards Flex main store as a linear store
addressable from end to end. The macro-code which is the Flex
instruction set only understands blocks and pointers to them, so that
Flex program can only address those disjoint unrelated blocks for which
it has pointers of the right sort. Running programs will involve new
blocks being created to hold data, for example by using the generate
instructions (72-7 etc) or simply by calling a procedure which
requires a new work-space block. Thus the micro-code which
implements those instructions simply grabs a new empty block from the
top of a continually growing stack in the linear store, putting in the
appropriate overhead word and delivering a pointer as result.

This linearly growing stack will eventually encompass the entire
physical store and at this stage garbage collection occurs. The garbage
collector notes all of blocks which are still "live", and compacts all
live blocks down to the bottom of store, updating all pointers in them
so that they still point to the same data. Thus the space occupied bN
"dead" blocks is recovered and, hopefully, there will be sufficient
room in the linear store for the request for a new block which provoked
the garbage collection.

Clearly the address actually held in a pointer can change on each
garbage collection. However since all pointers to a given block are
changed consistently and since arithmetic is forbidden on pointers, one
can regard pointers as immutable objects in Flex programs.

A live block is either a unique block, systemblock, or else is pointed
to from within another live block. Systemblock is a block known to the
micro code and contains the interrupt procedures and other goodies to
keep alive all currently active processes.

The actual sequence of events which happens in the micro code at a
garbage collection is as follows. The micro code discovers that a
request for the generation of a block cannot be satisfied from the
linear store. It then interpolates the call of a procedure, scavenge,
before the current instruction. Scavenge (which is found in system
block) is a peculiar procedure in that one can guarantee that there will
always be a workspace available for it and that it can accept any value

in U as a parameter. This last is necessary since the instruction
requiring the block could be a procedure call which is meant to leave
the value of U unchanged. The privileged scavenge procedure dumps the
value of U (op code 286), obeys the garbage-collect instruction (op
code 28.), and then finds if the current store demand can be satisfied;
if it can then the dumped value of U is reinstated (op code 285) and
scavenge is exited - to repeat the store grabbing instruction. If it

k cannot be satisfied, then some process must be failed so that store can
be released to continue.

• 11.*

d

6 Interrupts

Time critical interrupts (to deal with the screen refresh, for
example) are serviced entirely in micro-code without disturbing the
Flex procedure and process structure. Some of these, of course, may
require attention at the Flex level and this attention will be initiated
by a Flex-interrupt at the next available opportunity. As an example,
the micro-code services both a real-time clock and an interval timer
every sixtieth of a second, only interacting at the Flex level when the
timer count expires (see instructions with op codes 36 and 216 for
reading and setting this counter).

A Flex-interrupt can only occur when U contains void and the
instructions are being obeyed in non-privileged state. This sometimes
occurs in the middle of an instruction where repeating the instruction
would do no harm. This is the case in the load instructions where U is
void after it has been pushed but before the new value has been loaded
into U; since pushing void is a null operation, the instruction has the
same effect whether or not it has been interrupted and restarted.

When a Flex-interrupt occurs, the effect is exactly the same as if a
parameterless procedure (delivering void) had been called in the code
being interrupted. This procedure depends on the type of interrupt and
is found in system-block. The calling sequence of an interrupt
procedure will not invoke garbage collection (although inner calls may)
and is intended to be run in privileged state.

Sixteen different Flex-interrupts are possible, each with its own
procedure in systemblock. They are arranged to be called in priority
order, each interrupt being queued until it is the one of highest
priority.

I~is

rd

7 External capabilities

Capabilities which are in some sense external to the mainstore of Flex
are represented in Flex by locked pointers to type 6 keyed blocks. As an
example. filestore capabilities are "pointers" to data on disc. The
contents of the type 6 block allows one to determine where on the disc.
The key of the type 6 block is a pointer which determines the particular
filestore. In general, the key determines how (or whether) one can
transput these external capabilities, together with a system-wide
coding which gives its identity. Thus although one can store filestore
capabilities themselves on filestore, cross filestore capabilities
(those with different codings) are in general not allowed; one cannot
point from one filestore to another. This is reflected in mainstore by
the fact that the keys of capabilities to different filestores have
different keys. Note that since the keys are pointers , they are
unforgeable and, hence, only procedures which know the key can access
the information in the block.

The detailed format of the representation of an external capability in
mainstore is:

cap-info = up to 128 scalars used to identify capability

alias- oossible pointer to meaning of capability
key

cap Type 6..... coding = ms 21+-bits of scalar
system-block
Type lo,

The pointer to the system-block in the first word of the key is there
to ensure that only authorised procedures can create external
capabilities ie those who can access system-block.

The alias word in the keyed block is usually used by the access
procedures as a short cut; for example, after reading the data
corresponding to a filestore capability into a block of mainstore, the
alias field will contain a shaky pointer to that block to avoid
unnecessary later reads of the disc. In order to make this effective,
the instructions which receive external capabilities from the outside

world will ensure that there is at most one copy of the type 6 block
with the same cap-info and key in mainstore at any one time.

Just as in mainstore, it is necessary to be able to distinguish
capabilities from scalar data on the external media, be it in networks,
or in filestore etc. Flex filestore, for example, uses blocks in
filestore and pointers to them in much the same way as in mainstore.
Just as in mainstore, some of the filestore blocks cannot contain
capabilities, in analogy to the type 3 and It blocks in mainstore.

16K

However, the majority of filestore blocks are analagous to type 2
(codeblock),'t (normal) or 5 (procedure) blocks which will contain
other capabilities usually to other data in the same filestore. In these
instances, data in transferred in multiples of 32-bit words where, just
as in mainstore, the least significant bit differentiates between
scalars and capabilities.

A privileged instruction (op code 225) transforms the mainstore
representation of an external capability to a form suitable for sending
to external devices. This external representation comes in either the
long form or the short form. If the key of the capability is the same as
the one given as another operand to the instruction then the short form
is produced otherwise It is the long form which includes the coding in
the capability key:

Long form:

Word I , 21+-bit coding in key in Type 6 11 6-bit size Ill
.Word2
.... Jcopy of cap-info in Type 6 block
Word size

The short form is just the first two words of the cap-info in the type
6 block, with the least significant bit of the first word set with its
eightth bits clear.

The instruction (opcode 233) is also privileged, and produces a
mainstore representation of an external capability from the cap-info in
these external representations. It uses a key derived from the coding
in the first word of the long form and from some procedural context in
the short form. For example, a filestore capability to a Winchester
disc on the disc itself is expressed in the short form. This instruction
makes use of a 256-entry hash table, held in systemblock, to search
for an already existing copy of the capability in mainstore so that there
are never duplicates of an external capability in mainstore.

These transformations are done via a buffer area of main store which
is used for general peripheral transfers, including dma transfers. It is
unaffected by garbage collection and is the area referred to in the
buffer transfer instructions.

17

B PerqFlex instruction set

Instructions are usually 1, 2 or 3 bytes long, the first defining the
operation code. The remaining bytes, if any, are denoted by a & sz (1
byte quantities) or p (two byte quantity). The a-field generally is a
data displacement and the sz-field gives data size. The a and sz fields
can be effectively extended by using the modifynext instruction (op
code 76). A p-field is a byte displacement from the beginning of the
current procedure code.

Almost every instruction can cause exceptions. These can arise in many
different ways eg the operand(s) of the instruction are of the wrong
type for the instruction or displacements given are too big for the
blocks. The exceptions raised by breaking the rules in such a way will
have a characteristic pair consisting of (8, small integer) (see 9.6).

Due to an idiosyncracy of the Perq hardware, instruction bytes are
expressed in a different order to that implied by the character
indexing and dereference. The first instruction byte is in the least
significant half of each 16-bit word while indexing works with the most
significant half first. The procedures for constructing codeblocks on
filestore regularise this position by re-ordering the bytes of the
string giving the instructions of the codeblock.

A superscript in the description of an instruction means that the
instruction is Flex-interruptable at that point.

8. 1 Unprivileged instructions

Load-l-word

O, s Push U a s -a t h word of locals.
* th

I , a s Push U , U,- a word of non-locals.

2 , a sPush U N Us- at h word of constants.

3 , a Us= 5 th word of block pointed at by U.

Load_2_words • th
It , a s Push U , Us word-pair at a word of locals.

5, a Push U , Us word-pair at a word of non-locals.
a th6, a Push U , U,- word-pair at a word of constants.

7, a , Us word-pair at at h word of block pointed at by U.

J #" °19

I!

LoadJl words

8, a, sz , PushU ,Us-sz*3words atath word of locals.

9, a, sz a Push U , Us sz.3 words at a-th word of non-locals.

18, a , sz s Push U , Us- sz.3 words at a-th word of constants.

11, a, sz : Us- sz+3 words at ath word of block pointed at by U.

Load-lcharacter

12,8a sPush U a Us character in ath word of locals.

13, a : Push U , Us= character in ath word of non-locals.

It, a : Push U , U,= character in ath word of constants.

15, a : Us- character in ath word of block pointed at by U.

Load_.boolean

16, a : Push U , U:- bool in ath word of locals.

17, a s Push U , U:. bool in ath word of non-locals.

18, a s Push U * , Us- bool in ath word of constants.

19, a , Us= bool in ath word of block pointed at by U.

Load-ptr.to-currentareas

28 s Push U , U: locked ptr to non-locals block.

29 t Push U ,Us locked ptr to constants block.

Load-literal

38, a s PushU ,U -a (Char).

31, a s PushU ,Uaua (Bool)

32, a t PushU ,U,=a (Int).

33 t Push U ,Us void. A

Load-ptrto_locals

34 s Push U ,Us ptr to locals block.

''I
, 2

19 jII

Load-times

35 & Push U , U:- time of day (Int jiffies).

36 t Push U , U:- unexpired slot-time (nt jiffies).

1 jiffy = 1/68t h second

Push-ond-take

37, sz z Push U , Us= sz words on tos.

StoreJU

'.8 , a a Stores U (unexceptional) at a h word of locals ,U:=void

'.3 , a = Stores U (unexceptional) at at h word of block pointed

at by tos, Us= voids.

Selectfrom_U
th

1tk , a , sz t U== sz words starting at a word of U.

Date

t5 s Push U , Us- Int date as days after 3 1st Dec 1982
(assuming 31 days per month)

Shift
't6 s U:- tos Leftshift U; (int,lnt) -* (lnt,lnt)

ie if tos X231-U *Ythen U = (X,Ym2 U

Select-ref
k7, a a Select ref i.e. add a to last word of U.

Deref

1.8, a , sz t Deref word vector in U
i.e. U:-(UPB vector a a. sz) words pointed at by vector.

t9 , sz t Deref word ref in U i.e. U: sz words pointed at by ref.
51 , sz , Deref char ref in U; NB sz ignored

Us- character pointed at by ref.
53, sz # Deref bool ref in U; NB sz ignored

Uat boolean pointed at by ref.

Pack and Unpack
54 : Unpack i.e. Us- word contents of block pointed at by U.

Unpack with U - Exception is null instruction
55 , Pack i.e. Us. ptr to block (type ') containing copy of U.

2m

F

Vector Operations

56, sz : Index vector in U with element size sz by index on tos
giving ref to element in U;
Given U = (b,pd) and Los = it
U:=(pd+(i-l)ssz) where 1 g i f b.

57 , sz : Trim vector on Los with element size sz by Int pairin U
giving trimmed vector in U;
Given U = (ij) and Los - (bpd),
U:= (jm-im.t,pd*(im-l).sz)
where ims max(1,i) and jm a min(b,j).

58 If UPB vector on tos * UPB vector in U then fail (8,2).

Array operations

59 , a , Index a. I dimensional array in U by a+ I indices on tos
giving ref to element in U;
Given U = (lb 8 s ,ub 8 , ... ribaSauba p,d)

and tos = (i ,i 13.... ia),

U:=(p,d + seu(ie-lba) F ... sa (i a-lb a))

where lb n i sub for Bgnsa.n n n
68 , a Trim a. 1 dimensional array on tos by integer triple in U

giving a+ I dimensional array in U;
Given U = (fu,tu,nlb)
and tos = (b,s 8 ,ub8, ... lb as aub apd),

U:=(nlb,s,nlb~t-f, lbs 1 ,ub ! lb atubat

p, d+(f-lb),s 8)

where f - max(lb8 ,fu) and t - min(ub,tu).

61 , a Slice a+1 dimensional array on tos by index in U,
giving a dimensional array in U.
Given U = i
and tos - (lb 8 ,s 8,ubEl ... 9lbasatub aPd),
Us- (Ibi,,s ,ubi, lb aIsatuba ,P, d+ s a (i0- lb))

where lbB s i s ub:
Unite

62 , a , sz tUnite U with a and make it a sz word object, i.e.
U,- (a, U, e...).

21

Assign

63 Assign (unexceptional) U to position given by ref on tos,
and let U s= ref;

Procedure calls and exits
th65. , a Call the procedure given at a word of locals.
th65 , a : Call the procedure given at a word of non-locals.

66 , a t Call the procedure given at at h word of constants.

67 : Call the procedure given on tos.

68 t Exit from current procedure.
69 , Exit from current procedure and fail U .

Goto

71 s Goto label given in U, where label is pair (pointer to
destination workspace, p-displacement in codeblock).

Generate new blocks

72 s Us- ptr to new closure (type 5) formed from ptr to code
(type 2 or 6) in U and ptr to non-locals (type It) or zero
on tos; (Ptr,Word) -* Proc.

73 s Us - ptr to new normal array block (type It) of size in
words given by U.

7N : U:= ptr to new block (type 3) of size in words given by U.

Modifyjnext

76 ,aI,szI s Modify the a & sz fields of next instruction (if present)
by a!=256 & sz1=256.

Stack front operations

77 , a , Set sf to start of locals + a words.
78, a sIf sfc start of locals . a then fail (0,5)

Discard

79 s Us -void

Operations on pointers

8e : U,- shake Ug Ptr - Ptr.
81 1 U,. firm U, Word -4 Word, Scalars unchanged. "1
82 , Us- U is a ptr; Word - Bool.
83 s Us, block type of ptr in U, Ptr Int.
84 s Us -byte block size of ptr in U; Ptr -int.

22

Null instructions

85 , Null instruction
86 t Null instruction

Modify.text _dynamical ly

87 a Modify the a & sz fields of next instruction by int pair
on tos.

Jumps and branches

88, p = IF Uthen jump topFl , U- void

89, p IF not U then jump to p FI , U:=void.

98 , p a IF U then jump forward to p ELSE U:= void' Fl.

91 , p a IF not U then jump forward to p ELSE U:= void' Fl.

92 , p = IF U is illegal then jump to p, U:=void Fl.
93 , p a Jump to p (if U not void then jump must be forward).

Set failure state

91* : Set D-state.
95 : Set T-state.

FOR instructions

96 , p : For test; (FOR,BY) in U , TO on stack

IF (TO-FOR)aBY < 0

THEN U:-void, Pull TO , jump to pa Fl.

97 , p , For stepa (FOR,BY) on tos , U:=(FOR.BY,BY), jump to p.

Switches

98 , a s Case switch; jump to next (1 U a I 3aU I 8).

99 , Associative switch - tests equality or ranges;

Followed by sequence of byte triples or quads:
(biP i) or (xi128,yi,pi)

terminated by (b n=,p n), where b.<128 and x.<2128;

FOR i DO
IF Uubi (single byte) OR U 2 x. AND U i yi THEN

jump to pi, U:=voido

ELIF b. 08 THEN jump forward to pi FI

OD.

23ti

Integer arithmetic

180 s U:=tos+U; (Int,int)-*Int.
181 : U:-tos-U; (IntInt)-+!nt.
182 : U,=tos*U; (Intint)-Int.
103 : U: -(remainder,tos/U) ; (lnt,Int)4(Int,Int);

Sign of non-zero remainder is same as divisor.
Integer tests

le8t : U:=tos U: (int,Int.)4 Bool.
185 s U: tos < U (Int,Int)-4 Bool.
186 : U:=tos U (Intjnt)4 Bool.
187 : U: tos > U; (Int,nt)-* Bool.

Monadic operations

108 : U: -ABS U; nt 4 Int.
189 : U:= -U; lnt -+ Int.
118 t U:= ABS U; (Char or Bool or Word) 4 Int.
112 : U:=REPRU; Int -Char.
113 t U.=ODDU; Int Bool.

Equality

1I , U:= tos=U (Any,Any) 4 Bool.
115 : U: tos*U (AnyAny) -+ Bool.

Logical Operations

116 : U:- tos OR U; (Bool,Bool)4Bool or (Int,Int)->Int.
117 : U:= tos AND U; (BooI,Bool)4Bool or (IntInt)->lnt.
118 : U.- tos EXOR U; (Bool,Bool)4Bool or (Int,lnt)->lnt.
119 : U:= tos EQUIV U; (Bool,Bool)-*Bool or (lnt,lnt)->Int.
121 : U:- NOT U, Bool -+ Bool or Int-lnt.

String equality

122 t U:-(string in vector on tos = string in vector in U);
(Vec Char,Vec Char) 4 Bool.

123 t U,*(string in vector on tos * string in vector in U);
(Vec Char,Vec Char) 4 Bool.

? 2t

Real arithmetic

12N t U:" tos*U;
(Real, Real)-*Real or (ShortRealShortReal)-ShortReal.

125 : U:= tos-U;
(Ra,Real)-*Real or (ShortReal, ShortReal)-.ShortReal.

126 : U:= tosaU;
(Real ,Real)-+Real or (ShortReal ,ShortReal)4+ShortReal.

127 : Us- tos/U;
(Real, Real)4Real or (ShortReal ,ShortReal)4ShortReal.

Real tests

128 : U: - Los 2 Us (Rea1, RealI) or (ShortRea1, ShortRea I) -. Boo!1.
129 : U:- Los < U; (Real,Real) or (ShortReal,ShortReal) -4 Boo!.
138 : U: - Los i U; (Real,Real) or (ShortReal,ShortReal) 4 Boo!.
131 tUs- Los > U; (RealReal) or (ShortReal,ShortReal) Boo!.

Real monadic operations

132 : U: -ABS U; Real-+Real or ShortReal -4 ShortReal.
133 a Us- - U; Real-+Real or ShortReal -4 ShortReal.
131+ s U t ENTIER U; Real or ShortReal 4 lnt.
135 t U: -ROUND U; Real or ShortReal -* Int.
136 s Us-widen U; lnt -+ShortReal.
137 s Us- widen U; mnt or Longlnt 4+ Real.
138 : Us- ENTIER U; Real 4+ LonglnL.
139 : Us- ROUND U; Real -4 Longlnt.

Long arithmetic

10+8 : U:-tos+U ; (lnt,lnt or LonglnL) -4 Longlnt.
lit 1 : U.-tos-U ; (lnt.lnt or LonglnL) 4 Longlnt.
14.2 : U:ztosoU ; (Int,lnt) -+ Longlnt.
14e3 aU: -(remainder,tLos /U); (Longlnt,lnt) 4 (Int.lnt)

Sign of non~zero remainder is same as divisor.

Long to decimal
14 Us =(remainder,U/18) , Longlnt -4 (Int,Longlnt). 4

Long conversions

14S t Us - LENGTHEN U; mnt 4 Longint.
116 : U:"- SHORTEN U; Longlnt 4 Int.

Decimal to long

11,7 s Us- V.18 . U 0 Los I-tos); (lntLonglnL) .. Longint

25

Long tests

10+8 : U:= tos U; (LonglntLonglnt) - Bool.
1N9 : U:. tos < U; (Longlnt,Longlnt) 4 Booi.
158 : U:= tos Ug (Longlnt,Longlnt) - Bool.
151 : U:= tos > U; (LonglntLonglnt) - Bool.

Real conversion

152 U:- LENGTHEN U; ShortReal 4 Real.

Max and Min

15. , U:- max(tos.U); (Int,Int) -+ Int.
155 t Us min(tos,U); (lnt,lnt) 4 nt.

Range checks

156, a, sz s U:= (a UTsz); (lntorChar)4Bool.
157 , Given U- (l,u), U:= (1 stos s u);

(Int or Char, (lnt,lnt)) 4 Bool.
Keyed block operations

158 , U:- open ptr to new keyed block of size U words; nt 4 Ptr.
159 : U:= locked version of pointer in U; Ptr - Ptr or Ref 4 Ref.
168 : U:= open ptr to keyed block in U with key on tos;

(Word,Ptr or Ref) -+ Ptr or Ref.
161 : Given U - pointer to keyed block with system block

as key, U:- 2nd word of block. Ptr 4 Word

Load dto-b

162 a Push U , U: - dtojb (in 9 th word of system block).

Decimal exponent conversions

163 : U:- (e,l) given JllO e , U;
ShortReal 4 (lnt,lnt) or Real 4 (Int,Longlnt).

16. 3 Us- U M1 tos;
(mt, Int) -* ShortReal or (I A , Longlnt) 4 Real.

Unite with Exception

165, sz , U:-IF U isnt exception THEN (1,U....8....)
ELSE (2,characteristic word pair of U,....,)
Fli

(Any or Exception) 4 szmWord.

26
mm u m d m m mm/

Vector pack and unpack

166 : Pack U into new vector;
(noWord) -* Vec Word, Char -+ Vec Char or Bool 4 Vec Bool.

167 , Unpack vector in U to produce nowords, char or bool in U;
Vec Word -+ naWord, Vec Char - Char, or Vec Bool -) Bool.

Unpack applied to an exception is a null instruction.

172 : Null instruction

Fail

173 U:= Exception formed from word-pair in U;
(Word,Word) -* Exception.

173, a , U t- IFUTHEN void ELSE Exception(8,a) Fl;
Bool -) Exception

Generate Char. Bool and Code blocks

174 , U 3= pointer to new type 3 block just large enough to
contain U chars; Int -+ Ptr.

175 : U = pointer to new type I I block just large enough to
contain U bools; Int - Ptr.

176 t U ,= pointer to new code-block (type 2) given by
U (ws, nls, instr) where:
ws = no of words of locals required by codeblock
nls = ptr to type '+ block containing constants
instr = ptr to type 3 block containing instructions

(lnt,Ptr,Ptr)4Ptr.

Char and Bool multiple assignments

188 , Assign chars in Vector given by U to Vector given
on Los and let U - Vector from tos.

181 : Assign bools in Vector given by U to Vector given
on Los and let U - Vector from Los.

182 : Assign bools in 2-d array given by U to 2-d array given in
on Los and leave U unchanged.

I t stride of both arrays must be a multiple6.

2n d stride of both arrays must be 1.

Real conversion

183 a U,=SHORTEN U; Real 4 ShortReal.

27

Load literal string

184 , sz Push U a U a= (sz.lnstrpc*2) and pctmsz*2*d
where pc is the current program displacement and is odd

before the instruction and d =0 or I is chosen to make
it odd after,

and instr is locked version of current instruction block.

Bool array operations
181t+i fi(Bool 2-d array on tos, Bool 2-d array in U), 1 g i g 7

U unchanged;
1st stride of both arrays must be a multiple of 6t

2n d stride of both arrays must be 1.
Where
fI(a,b) = a:=NOTb,

f 2 (a,b) - a:= a AND b,

f 3 (a,b) = a:= a AND NOT b,

f,4(a,b) - a:= a OR b,

f 5 (a,b) - a,= a OR NOT b,

f 6 (ab) - a,= a EXOR b,

f 7 (a,b) - a:- a EXOR NOT b.

Multiple adds and subtracts

192 s U:utos+U (N-lnt,N.lnt) -+ Nolnt
ie (1,2) , (4.5) - (5,7)

193 : U:-tos-U (Nalnt,Nmlnt) 4 NoInt

Enable

281 Set non-privileged state.

128

29.

8.2 Privileged instructions

Any attempt to use these instructions in unprivileged mode will
result in error(, I I).

Append

153 a U s. tos Append U ,where tos - ref to block whose Ist
word is chain ending in zero. (RefWord or Ref) - Ref

Lock procedure

159 : U 3- locked version of proc pointer in U

Winchester disc

191., s Set disc header address from U (Vec Char); Us =void.
191., I : Set disc data address from U (Vec Char); U=•void.
19's., 2 : Start disc access. U - (Int action, Int disc-address);

UV -void.
19t, 3 a U t- disc status (Int).
19+, : U :- disc-address (Int) obtained from next 4 bytes of

currently selected i/o buffer.
19, 5 s Put disc-address (Int) in U into next 4 bytes of I

currently selected i/o buffer; Us-void.
19, 6 a U : outermost discaddress (INT)
194, 7 t U a- ordered sequence number of discaddress in U;

lnt -* Int.
19t, 8 : Read disc drive details from i/o buffer.
19't, 9 a. tos < U in disc address sequence; (Int,lnt) - Bool.

Laser printer

19, 16 : Set left and right hand margins to 1. 16 and ra 16 pixels
and set get ready state where U • (l,r);
U -- status of printer; IntPair - IntPair.

19+, 17 : If s - 1 then start printer and insert I pixel lines,
where U- (s, I) i IntPair - Void.

194, 18 a If U - 6 then Us-status of printer

Elsf U a I then Ua=status at last interrupt
Elsf U - 2 then Reset interface; U,-(0,)

FiI
tnt -+ IntPair.

19. 19 a Output I pixel lines starting from bit position given by r
alligned to 16 bit word boundary where U - (Mr);
(lntRef Bool) -# Void.

Scaveng
20 a Do a garbage collection, delivering the number of

words recovered In U as an Int.

29

Dump and reset U

286 , Dump U (in internal form) to the first 5 words of the
current work-space, leaving U void.

207 , Reset U from dumped value in first 5 words of the
current work-space.

Ethernet channel

268 t Ethernet accept; Vec Char 4 Void.
289 , Ethernet read, Vec Char - Void.
218 1 Ethernet send; Vec Char - Void.

Z86 devices

212 , Push U , U:- selected device interrupt reason (Int).
213 , Fast output data for selected device, Vec Char 4 Int;

U , - unsent size of previous data (Int).
211t Selected device status input buffer; Vec Char 4 Int;

U in pevious status buffer size.

Set times

215 a Set time (jiffies) from Int in U; Us-void.
or date and time from (intlnt) in U

216 : Set interval timer (jiffies) from Int in U; U=-void.

Load ref to system-block

217 t Us Ref to Uth word of system-block; Int 4 Ref.

3-

= I I I

I/0 buffers

219 s Write Int in U to next byte in buffer if there is room and
deliver TRUE i othewise FALSE . Int -+ Bool
Bytes in Perq i/o order

220 # Select 10 buffer; Vec Char 4 Void
221 : Write INT in U to next byte in buffer if there is

room and deliver TRUE i othewise FALSE . Int -+ Bool
Bytes in character index order

222 : Write INT in U to next 2 bytes in buffer if there is
room and deliver TRUE ; othewise FALSE . Int - Bool

225 : If U is an external capability, and the first word in its
block is identical to the word on tos, then the short form
of its representation is written to the buffer;
Other capabilities are written in long form. If U is not a
pointer, then the word on tos is irrelevant and the bytes
written are an (even) byte representation of the integer
in U.
U := (room in buffer)
(Word, Word) - Bool.

226 s Set buffer index to U (Int); U:void
227 , Push U i U = next byte from buffer as Int.

Bytes in Perq i/o order
228 : Push U , U ,= next buffer index(lnt).
229 t Push U , U = next byte from buffer as Int.

Bytes in character index order
238 , Push U ; U , next 2 bytes from buffer as Int.
231 : Push U ; U a= next '+ bytes from buffer as integer.

233 s U := next capability in buffer, given key in U
Ptr -+ Word

235 , Push U; U == type of next word in buffer

Special Areas

21+2 , U a. ptr to the block (type I I) containing the default
character font.

243 , U e= ptr to the block (type 3) containing all 1/8 buffers.

2'' U a ptr to the block (type I) containing the bits for the
screen raster.

II

, _
31 - ;

Make and break blocks

239 t U sm word-pair in first two words of block pointed at by Us
Ptr -. (WordWord)

2O a Assign word pair in U to block pointed at by toss
(Ptr, (WordWord)) 4 void.

Z88 devices

215 Control data for selected device depending on U type:
Vec Chars set new input buffer I

U ,= unused size of previous buffer.
Inta Increase unused part of input buffer (wrap-round);

U s- previous unused size.
(Ref Char.lnt,lnt,lnt)a Implement Input flow control

U s- void.
21t6 s Select Z88 device from int in U; Utavoid.
27 s Send message from Vec Char in U to Z88; U.-void.

Screen pointer

218 a Assign screen/pointer combination function (Int) and
start address of cursor pointer from Us U -void

(Int, Ref Char) - void
29 : Set vertical position of pointer from Us Int 4 Void
258 , Set horizontal position of pointer from Us Int 4 Void

High resolution tablet

251 :If U then GPIB input to be interpreted as tablet input;
Bool -4 Void

I,2

9 Data and block formats

9.1 Data Objects

Integers

One word:
131-bit 2's complementlel

most least significant bit
significant bit

Any overflows in an integer operation produces the exception fail(8,3)
as the result of the operation.

Long integers

Two words:

S2's complement ~]- Word 1
61-bit - Word 8 = most significant word of longint

I I
most least significant bit
significant bit

Any overflows in a long integer operation produces the excep2ion
fail(8,3) as the result of the operation. The least significant 38 bits
of a long integer are held as a positive integer to allow easy extension
to multiple length arithmetic.

Short Reals

One words
124 bit mantissal 7 bit exponent18•
II

most least significant
significant

The mantissa of a short real is actually a 25 bit normalised 2's
complement fraction. Since the sign bit of such a non-zero fraction is

* always the complement of its most significant bit , the sign bit is not
stored. Short real 8.8 Is held specially as all zero bits. The exponent
is biassed by 6% so that the true binary exponent is 6 less than the
7-bit pattern given in the exponent field. Any overflow In an short real
operation produces the exception fail(8,16) as the result of the
operation.

33
6 im

Reals

Two words:

Word li 31 bit mantissa extension (Is part) 18
Word 8: 16 bit mantissa10ee00l 1 bits biased exponent B

1 j
most least significant

significant
The mantissa of a real is actually a *- bit normalised 2's complement
fraction. Since the sign bit of such a non-zero fraction is always the
complement of its most significant bit, the sign bit is not stored. Real
8.8 is held specially as all zero bits. The exponent is biassed by 1821+
so that the true binary exponent is 182' less than the 11-bit pattern
given in the exponent field. Any overflow in a real operation produces
the exception fail(8, 16).

Pointers

One word,
H-bit Word address

I I
bit gc1011. bit type S13 bit sparelt9 bit block addressll

I I
I * pointer locked 1 * pointer shaky
e * pointer unlocked 8. pointer firm

The type is repeated in block overhead word in same position with H-bit
- 1.

References

Two words:

Bit disp if type - 11, char disp if type - 3 else word disp0 :Word I

12 bit gc 8'. bit type S3 bit spare 19 bit block address I :Word 8

9

Vectors

Three words,

Bit disp if type - 11. char disp if type - 3 else word disp : Word 2
IL12 bit 9clel1 bit typeIS13 bit sparelg bit block address , Word I

Upper bound of vector - lower bound - 1 1Word 0

The assignment, trimming and equality of vectors behave sensibly with
zero sized vectors.

Arrays

3n.2 Words gives an n-dimensional arrays
Bit disp if type - 11. char disp if type a 3 else word disp e Word 3n+ 1

L12 bit gcl811. bit typeS13 bit sparel19 bit block address I Word 3n
Upper bound I of array Word 3n-I
Stride 1 of array Word 3n-2
Lower bound I of array 8 Word 3n-3

Upper bound n of array 0 Word 2

Stride n of array 1 Word 1

Lower bound n of array Word 8

The assignment, trimming and other operations on empty arrays behave
sensibly.

4.

9.2 Blocks

Workspaces

etc.

First local of proc

L 2 bit gcJ8 01101 03 bit sparej19 bit block address 1 : Proc pointer
H 088Oo oI80FI 15 bit sf displacement 8: Stack link
12 bit rubbishl'e bit Is link, bpc 15 bit ms link, apc 0: Program link

012 bit gc 81001183 bit spare19 bit block address I sLast ws ptr
3 bit gc I1Joo I + bit spare 19 bit word size : Overhead word

The program and stack links are only stored at internal procedure calls
and refer to the positions in the current procedure so that this proc
can be restarted from this workspace. The various state bits in the
stack link ares

R a 1 * current ws has been loaded.
T -I * current code runs In T-state.
P a 1 current code runs in privileged state.

The sf displacement is a word displacement from the first local of the
procedure.
The program link gives a codification of a displacement from.the first

byte of the instruction block pointed to by the codebock given by the
proc pointer. The formula for getting the actual byte displacement is:

apcmakbpc-8

Clearly the first workspace of a process can have no predecessor and
hence its first word is zero.

Codeblocks

L 2 bit gc 8 8811 8 3 bit spare 19 bit block address I :lnstructions
L 2 bit gc 8 8180 3 bit spare 19 bit block address I :Constants
8 2 bit gc 8 001 1 3 bit spare 19 bit block address I :Shaky ws / zero

size of workspace required by code 0
3 bit gc1 8810 I. bit spare 19 bit word size=5 1 : Overhead word

If word 2 is a pointer it is a shaky one to a workspace suitable for this
code blocks this chain of shaky pointers is continued through word I of
the workspace.

36

Character blocks

...... etc
8 Bit Byte 21 8 Bit Bytef 8 BBit Byte 01 8 Bit Byte i
3bitgc11 8811 o + bit spareI19 bit word size 1: Overhead word

The layout of characters here is the indexing order; this is consistent
with the Vec Char assignments. Instructions, on the other hand, are
read:

8 Bit Byte 3i 8 Bit Byte 21 8 Bit Byte 11 8 Bit Byte 81

least significant

Normal word Blocks

..... etc.
pointer or scalar X

3 bit gc 181801 4. bit spare 19 bit word size i i Overhead word

Closures

LI2 bit gc 08181001813 bit spare 119 bit block address I i:Non-locals/zero
L 2 bit gc l0 8ElEM 1 3 bit spare 19 bit block addressTl!:Codeblock

bit gc 1 01 4. bit spare 19 bit word size -3 13 Overhead word

If there are no non-locals the non-word can be zero; the codeblock
pointer may also be an external capability eg a codeblock on disc.

Keyed blocks

..... tc..etc.

pointer or scalar X

key X

3 bit gc 11011i1 It bit spare 19 bit word size Is Overhead word

<37

Boolean blocks

.... etc

IQRSTUVWXYZ .. A BC DE FG HI J KLM N 0P
3bitgcj1 181 4 bit spare 19 bit word size 11, Overhead word

The bits are ordered as given by the alphabetical ordering given above
starting from the most significant bit of each 16-bit word.

9.3 System-block, the screen map and buffer areas

There are three special blocks set up at system load. They are normal
Flex blocks but their position in store means that they are not moved by
garbage collection. The i/o buffer block is a character block whose
pointer can be found with the privileged 2.3 instruction; slices of this
will be used as buffers to peripherals. The screen block is a boolean
block, usually accessed in program as a two dimensional array of bools;
its pointer can accessed using the instruction 21.

Systemblock is a word block which will be the root of all accessible
blocks at garbage collection. References to elements of systemblock
can be constructed using the privileged instruction 217.

Systemjblock layout

Words 1 and 2
- Error words at failure; Word I also has proc during

load-int and current work-space during scavenge.
Word 3 - Size in bytes of last demand for store during garbage

col lection.
Word F* - Procedure invoked by failure;

PROC(FAILQUAD) VOID fail_proc.
Word S - Procedure called when demand for space is not satisfied

PROC(ANY)ANY scavenge.
Word 6 - Procedure called when calling a proc which is external

capability . PROC VOID load.proc.
Word 7 - Procedure called when calling a proc with external

capability as codeblock . PROC VOID loadcodeblk.
Words 8 and 9

- Ref 256aPair hashtable
where Pair - (Shaky capability, (Ptr Pair or 8))
All external capabilities in mainstore are in hashtable.

Word 1e - Procedure to read external capability, d-tob accessible
by opcode 162.

Word 11 - Unused
Word 12 - Procedure called when exiting from proc with zero link;

4 PROC VOID endprocess.

39
t/

Words 13 to 28
- Flex-interrupt procedures (PROC VOID) in priority order.

Word 13 - Keyboard interrupt.
Word 1' - RS232 interrupt.
Word 15 - GPIB interrupt.
Word 16 - Tablet pointer interrupt.
Word 17 - Winchester disc interrupt.
Word 18 - Interval timer interrupt.
Word 19 - Ethernet RX interrupt.
Word 28 - Ethernet TX interrupt.
Word 21 - Floppy disc interrupt.
Word 22 - Speech interrupt.
Word 23 - Breakin interrupt.
Words 24-28 unallocated.

9.. Exceptions

Exceptions raised by the micro-code have characteristic of pairs of
integers, the first being zero. Exceptions raised by program can have a
characteristic consisting of any word pair. In particular,exceptions
raised in D-state will produce (through successive calls of fail.proc
in system-block) a chain of data giving diagnostic information about the
exception and where it occurred. This chain is a reference to a six
word object, the first four of which is the FAILOUAD given to the
fail-proc procedure as parameter (cf workspace blocks):

1 2 bit gcl00188183 bit spareJ19 bit block address I :Failing codeblk
P I 00000860008lT1R I 1S bit sf displacement B1 :Failing sf

12 bit rubbishl bit Is link, bpc IS bit ms link. apc 8 :Posn of failure

1 2 bit gc18 881 8l3 bit spare 19 bit block address I :Failing wspace

and the remaining two is either a primitive exception or a reference to
a similar object giving the failure in an inner procedure.

39

, iit"

Micro-code exception pairs

Error(me) - wrong type of value in U ,If the value in U is illegal.
then the exception pair will come from the illegal.

Fal(0, 1) - index out of bounds.
Error(O.2) - vector check fail (op code 58).
Fail(0,3) - integer arithmetic overflow.
Error(O,I,) - wrong type of block.
Error(O,5) - a or sz displacements wrong in some way,usually too big
Error(8,6) - stack overflow in current work space.
Error(O,7) - stack underf low in current work space.
Error(O.8) - attempt to access outside a block.
Error(e,9) - control value not allowed for in Case.
Error(8, 18) - attempt to use a pointer of the wrong sort in transput.
Error(e, 11) - attempt to use a privileged instruction without

privilege.
Error(8, 12) - operand on tos is of wrong type.
Error((. 13) - attempt to open keyed block with wrong key.
Error(8, 1Ik) - attempt to access locked block.
Error(O, 15) - attempt to dereference nil.
Fail(0, 16) - real arithmetic overflow.
Error(8, 17) - illegal op code.
Error(8, 18) - attempt to dereference multiple chars or bools.
Error(8, 19) - attempt to read outside buffer.
Error(8,28) - label out of scope in GOTO.
Error(8,21) - attempt to call a non-procedure.

It

/ !.

IIKV CUSTIt SWEET

Overall security classification of sheet Q |pigqguMIR4 ...

(As for as possible this sheet Mhould contain only unclassified Information. If it is necessary to enter
classified informatien. the bex concerned must be marked to indicate the classification og (R) (C) or (S)

1. OlIC Reference (if knows) 2. 0rlolotrls Reference 3. Aency Reference 4. Report Security
IReport 83015 11U/C Classi fication

5. Originator's Code (if S. Origlnter (Coporate Author) eo end Location
known) Royal Sinals and Radar Establishment

5s. Sponsorlng A9ony's Go. Sponm lrq Agency (Contract Authority) lae and Location
Code (if known)

7. Title
PerqFlex Firnvare

?a. Title in Foreign Longuage (in the case of translations)

7b. presented at (for conference spers) Title. place and dote of conference

8. Author 1 Surnme, Initials 9(s) Author 2 NOb) Authors 3.4... 10. Oate so. ref.

Currie IF Foster JIM Idvards P1

1 11. Contract lube 12. period 13. N)set 14. Other Reference

15. Distribution statement

Unlimited

Descriptors (or keywords)

continue on eperate piece of per

Ab-t|ect

This report describes the instruction set and general firevare architecture
of the Flex computor as implemented on the ICL Perq vorkstation

mias

