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Summary = 
Tents is an abstract machine which Js defined algebraical ly  wi th strong typing 
enforced throughout. The structure and operations o£ th is machine are su f f i c ien t l y  
r ich to al low the e f f i c i en t  implementation o£ a general purpose program-support 
environment extending over networks. Since Tenl5 is an abstract ion o£ programming 
languages rather than hardware, i t  also serves as a target in the compilat ion o£ 
standard languages. As wel l  as giving common addressing mechanisms, Ten15 provides a 
common system o9 types which is enforced throughout the system whether in user 's  
programs, system u t i l i t i e s  or any other tools,  a l lev ia t ing many o£ the in ter fac ing 
d i f f i c u l t i e s  encountered when independently wr i t ten programs t ry  to interact .  Porting 
an environment based on TenI5 to a new machine consists o£ wr i t ing  a t ranslator o£ 
Ten15 programs For the new machine together with a re la t i ve ly  small part of  the 
system kernel mainly concerned with peripheral d r ivers ;  a normal bootstrap gives the 
ported environment. The result ing environment is one in which the type system ensures 
the in tegr i ty  o£ any data or program in i t  and is used as the basis to give both secur i ty 
and privacy. [n addit ion the algebraic nature of  the machine helps one to do formal 
reasoning about programs running in i t .  

l .  Introduction 

Strong typing is general ly accepted to be a highly desirable property of  a high order 
language; among other things, i t  improves programmer product iv i ty ,  increases program 
por tab i l i t y ,  and gives one greater confidence in the in tegr i t y  and correctness o f  the 
running program. Most modern languages are strongly typed so that one is  reasonably 
sure of  the structural  in tegr i t y  o f  programs wr i t ten in them, at least as far  as the 
part icular  typing model can describe one's data and program structure. This typing 
model del imi ts  the class of  program that one can wr i te  in the language. Stepping 
outside th is class Forces one to cheat the type system to some degree, usually by 
going outside the language into some system level which has a far more rudimentary 
notion o£ the types o f  objects. Indeed there is usually no useful correspondence 
between the types used by a programming language ( l i ke  ar rays , l i s ts  or procedures) 
and those used by the underlying system ( l i ke  Files or commands). This contr ibutes 
handsomely to the problems encountered inter fac ing independent ly-wri t ten programs, 
even when they are wr i t ten in the same language. Usually the inter face is reduced to a 
least-common-denominator consisting o£ f i l es  o£ characters where a l l  the typing 
information of  the results of  the programs is lost.  One cannot use the information 
about the types o£ values gathered in compilat ion e i ther  to provide more e f f i c i en t  
inter faces or to give a basis For ensuring structural  in tegr i t y  across di££eren~ 
programs as wel l  as wi th in individual programs. 

The extension of the use o£ a common type system to cover al l  the levels o£ the use 
of  a computer system immediately eases the inter fac ing problem. For example, user 
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programs, system u t i l i t i e s ,  commands in the command inter face,  general tools etc, 
could a l l  be described as being o£ type procedure, wi th some parameter and resul t  
types. The in ter fac ing of  any of these programs together reduces to normal procedure 
or function composit ion with the normal typing rules For procedure appl icat ion. There 
is no need to reduce an intermediate result  to a character Fi le or stream, thus losing 
al l  the structure of  the data, and necessitat ing restructur ing and re-va l idat ion before 
i t  can be used in Further steps of the computation. 

A common type system is only one facet of the inter facing problem, a lbei t  an important 
one. A even more important one is having common methods o£ accessing data. A common 
"address-space" (as wel l  as a common type system) in which the objects manipulated 
can be addressed uniformly reduces the inter facing problem by an order of  magnitude. 
The part icular  methods o£ accessing these objects, together with the operations which 
one can apply to them, are determined precisely by on the type o£ the object. Thus we 
know that one can access the integer elements of  an object o£ type vector oF integer by 
indexing in a per fec t ly  standard manner throughout the system. Furthermore, th is is 
to ta l l y  independent of  how or where the vector was created; i t  could be the resul t  of  a 
system command, user program or even a value Found in the diagnosis o f  a fa i led  
program. This unanticipated use o£ arb i t rary  values ( including those which are, in 
fact,  program) is  highly important in any support environment; one seldom knows 
a p r i o r i  just exact ly what tools,  programs and diagnostic aids one requires at any 
time. I f  a value is bound into part icular  address-space ( e g a  fa i led  program) so that 
one cannot ext ract  i t  in th is  unanticipated way, then the only too ls  that one can apply 
to i t  are those those which were put into the address space when the program was 
created. These tools could range from nothing to some f i xed  program to display some 
kinds of  values; they seldom include the poss ib i l i t y  of  applying some program of one's 
own to the value. 

Our approach is to def ine (a lgebra ica l ly )  an abstract machine cal led Ten15. The 
operations in Tenl5 fo l low strong-typing rules so that the correctness of  the 
appl icat ion of  an operator (say) depends only on the types of  i ts  operands. Much of  the 
motivat ion for  inventing Ten15 was der ived From i ts  progenitor,  the RSRE Flex system 
[Currie 81,82,85, Foster 82] which used f i rmware, rather than type structure, to 
enforce the correctness of  the appl icat ion of  operations. The type system of Tenl5 is 
su f f i c ien t l y  r ich to useful ly describe a l l  the operations required For a general purpose 
program support environment (PSE) extending over a network; this,  of  course, covers 
a large proport ion o f  the spectrum of computing. Any program running in an 
implementation o f  the Tenl5 machine on some host is Fully type checked by a t rusted 
Ten15 t ranslator .  The type system,and the way that operations are def ined wi th in i t ,  is 
such that one can ensure the in tegr i ty  o£ storage al locat ion and garbage co l lec t ion  in 
mainstore as wel l  F i lestore and across networks. In addit ion, i t  forms the basis o f  
very natural ways to implement privacy between d i f fe ren t  users or between d i f f e ren t  
areas o f  concern. Both the Flex system and Ten15 implementations are very s imi lar  in 
these respects, d i f f e r i ng  only in the methods o f  ensuring that crucial  type rules are 
not broken. However, Ten15 is  not an abstract ion o f  the Flex machine (or any other 
concrete machine) but rather an abstract ion of  the concepts in programming languages 
in general. Thus Tent5 can be a target of  a compiler For any standard programming 
language; th is compiler need not be trusted since the Ten15 rules w i l l  be checked by 
the Ten15 t ranslator .  

The remainder o£ th is paper is a sketch of the def in i t ion  Tenl5 with some indicat ions 
o f  how i t  is implemented and how the higher f a c i l i t i e s  of  a portable program support 
environment are bui l t  upon i t .  



140 

2. Types and rep resen ta t i ons  o f  Ten15 values 

2.1 General 
The types o f  va lues in TenlS are fo rm a l a t t i c e  under the  r e l a t i o n  "can be coe rced  to "  

g i v i ng  the automat ic  type changing ru les .  The f o rm  o£ t h i s  l a t t i c e  i s  ske tched  in F igure  
1. The l a t t i c e  i s  des igned so tha t  an automat ic  type change o£ a value can only occcur  
where  the re  i s  no change in the  rep resen ta t i on  o f  the  value~ the  Ten15 t r a n s l a t o r  does 
not  need to  produce any e x t r a  code f o r  such a coerc ion .  A la rge  p r o p o r t i o n  o£ the  types 
and t h e i r  co r respond ing  ope ra t i ons  in Tenl5  have f a m i l i a r  analogues in programming 
languages and need l i t t l e  d e t a i l e d  d e s c r i p t i o n ,  The o the r  less  f a m i l i a r  types and 
o p e r a t i o n s  a r e  d e s c r i b e d  below.  

Void 
Mode andModed (see 2 .~ )  
Exception (see 2 .6 )  
Process, P rocesso r ,  Flag e~c (see 2 .8 )  

in teger  ranges - severa l  r ep resen ta t i ons  I 
R ~ R i f f  same repr  a n d R l c  R t ........ Z • - z I 

Reals - severa l  r ep resen ta t i ons  range 
R 1 ~ R z i f £  same rep r .  and inc luded accuracy and 

Structures 
(Y t ..... Tn) ~ (S 1 ..... S n) i f f  T i ~ S i 

Disjoint  union 
(rtt . . . I  r n) ~ (Sl1...I S.)  iC f  r i ~ S i 

Assignable addresses I < 
e g P ~ r  T, Re£ T, Vec T, Pervar  T 1 no coe rc ions  w i t h i n  these 

Procedures and ions (see 2.2 ) 
( r  t ~ S t )  ~ (T z ~ s z) i f f  (T  z ~ T t ) ^ (s  t ,~,,,sz, ! 

P e r s i s t e n t s  ( see 2.3 ) S 
Persis~en~ T ~ Pers is tent  S i f f  T 

Po lymorph ics  (see 2.5 ) e t c  
O x F(X) ~ fly G(Y) i f f  F(X) ~ G(X) 

Rem'otes ( s ee  2 .7  ) S 
Remo~e T ~ Remo~e S i f f  T 

For'mals - no coerc ions  po lymorph ics  
used in defn o f  ADTs and 

A'bstract '  data types ( see 2.9 ) 
eg Module T, Lis~ T, Lazy T 
coerc ions  cons is ten t  w i t h  concre te  rep r .  

l= l , .n  l 

i= l . .n  

Read-only addresses  
I P~r T ~ Ro_p~r S i f f  T ~ S 

Figure 1 - The type l a t t i c e  o f  Tenl5  

T 

2 .2  Types f o r  p rogram values 
As b e f i t s  a system in tended f o r  program suppor t ,  Tenl5  values inc lude seve ra l  k inds 

o£ program values.  The most f a m i l i a r  are p rocedures  wh ich  are  f i r s t  c lass  o b j e c t s  in  
Tenl5~ they can be ass igned,  he ld  in data s t r u c t u r e s  o r  d e l i v e r e d  f r om o the r  
p rocedures  j us t  l i ke  any o the r  value.  The rep resen ta t i on  o f  a p rocedure  in ma ins to re  i s  
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bas ica l ly  po in t e r s  to blocks containing th ings  like code and non- loca l s .  I t s  type i s  
given by i t s  parameter  and r e su l t  types ;  for  example:  

i s in:  ( [ I . . 1 8 0 8 8 8 ]  -~ Bool )  ( 1 )  
i s  a procedure with an in teger  parameter  de l iver ing  a boolean. A cal l  of a procedure  is  
just the most dynamic way o f  binding new values (the parameters) to a piece o f  
program. Other binding times are possible and TenI5 permits one to bind values to 
other kinds o£ program values in a general fashion. The most basic program value in 
Ten15 is a "nucleus" consist ing only of  the code of  the procedure. This code w i l l ,  in 
general, access some f ree var iables and i t s  correct  operation w i l l  require some values 
to be bound as non-locals to replace these f ree var iables. These values can be bound in 
stages producing " ions",  each d i f f e ren t  ion having addit ional non-local values unt i l  a l l  
are bound giv ing a runnable procedure. The types of the non-local values (and the order 
in which they w i l l  be bound) are al l  included in the type of  the nucleus to ensure that 
only the correct  kind o f  values are operated on by the code of  the procedure. For 
example, the nucleus of  the procedure is in  in (1) might be an algor i thm expressed 
roughly as : 

Ax. v [£ (x ) ]  
with type : 

([I..188888] -~ [l..lS]) ~. Vec Boo] ~ ( [ I . . 1 8 e 8 8 8 ]  e Boo]) 
by f i r s t  binding £ (a procedure of  type ( [1 . .188888] -~ [1 . . I8J ) )  to give an ion of  type: 

Vec Bool ~. ( [ 1 . . ] e e e e e ]  ~ Boo]) 
and then, sometime later ,  binding v:Vec Bool to give isin. Note that the value is in is 
independent of  any scope res t r i c t ions ;  i ts  existence does not depend on any contexts 
of  £ or v. Indeed,i t  is easy to arrange matters so that a ca l l  o f  isJn becomes the only 
way to access £ or v. 

The general isat ion 0£ th is  idea of  hiding values behind the procedure in ter face is the 
basis for  implementation of the privacy and securi ty aspects of  the Tenl5 PSE. For 
example, the ion corresponding to a user 's  log- in procedure has a type something l ike;  

(Dic t ionary,  Password, .... ) *~ (Vo id-~  Void) 
where Dic t ionary  and Password are some persistent data structures giving name 
look-up and the password mechanism. Once the actual values o f  these data-structures 
have been bound to th is ion to produce the procedure, then the only way to access 
these data structures could be a cal l  o f  the procedure. Of course, i f  th is is the case 
the user had bet ter  not forget  his password! 

2.3 Types for  database values 
Database values are c lear ly  required to al low one t o  keep data on persistent storage 

media. These are represented by values which are e f f ec t i ve l y  pointers to blocks on the 
part icular  medium and whose type is made using a Pers is tent  constructor. For example, 
a page of  tex t  l ines might have a representat ion whose type is :  

Persisten~ Vec Vec Char 
This value would have been the result  of  applying a Tenl5 operator (pers is t )  to a 

value o£ type Vec Vec Char which could then be re t r ieved at any time by applying an 
un_persist operator to the pers istent  value. It is  of ten very useful to have persistent  
data structures which contain other persistent  values thus producing t ree - l i ke  
structures ( s t r i c t l y  speaking, acycl ic graphs) in a database. For example, a bet ter  
representat ion of  a tex t  f i l e  might be one which al lows sub- f i les  wi th c i rcu lar  type, 
Txt, where : 

Txt = Pers is ten t  Vec (Vec Char / Txt) 
Note that there are no operators here for  overwr i t ing  the data pointed at by a 
persistent  value. It  is a wr i te-once value, making i t  much easier to ensure the 
consistency of  the data. Persistent var iables are al lowed with another type 
constructor,  Pevvar.  However, wr i t ing  to one of  these var iables is considered to be a 
unitary commit operat ion on the database and is more expensive to perform than the 
simple pers is t -operat ion since i t  has to guard i t s e l f  against unexpected fa i lu re .  In the 
present implementations, each database is garbage-col lected separately o f f - l i n e  to 
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recover inaccessible space. This style o£ garbage co l lec t ion means that cross- 
database pointers are not al lowed and any attempt to wr i te  a database pointer to a al ien 
database is trapped. 

2.k- In£inite Unions 
The t rusted TenI5 t ranslator  w i l l  r igorously check a l l  operations to ensure the 

correct  appl icat ion o£ the type rules. There are many appl icat ions where one would l ike 
to do s imi lar  type manipulations in other un~rusLed programs and s t i l l  be sure that the 
underlying in tegr i ty  o£ the type system is maintained. An obvious example is a command 
in terpre ter  where one wishes to make sure that the correct  type o£ parameters is used 
with a command which is just some procedure value. It  is  c lear ly  inappropriate to cal l  
up the Tenl5 t ranslator  to produce the code to obey the procedure. Instead, what 
happens is that the untrusted command in terpre ter  inher i ts  the type checking £ac i l i ty  
by using various Tenl5 constructions and types~ these were, o£ course, checked by the 
Tenl5 t ranslator  when i t  t ranslated the command in terpreter .  At the core o£ th is  are 
Tenl5 values which are, in e££ect, the in£ini te union o£ a l l  possible types~ th is  type is 
cal led for  various h is to r ica l  reasons, Moded. One can apply a TenI5 operator 
(to_moded) to a value o£ any type to get a value o£ type Moded~ th is  is represented by 
a pair consist ing of  the or ig inal  value together wi th a representat ion o£ i ts  type. 
Typically, a dict ionary look-up would require the use of  Moded values, except in the 
unl ikely case where the possible names al l  corresponded to values o£ the same type~ a 
procedure to f ind the meaning of  some name encountered by a command in terpre ter  
might have type (Vec Char -> Moded). A TenlS control  structure al lows one to ext ract  
the or ig ina l  value £rom the Moded value, provided that one knows the e i ther  the type 
o£ th is  value or one which is greater than i t  in the la t t ice  o£ types. Another operat ion 
al lows one to extract  the type as a value o£ type Mode and £urther operations al low one 
to explore i ts  structure. In addit ion, a l l  o£ the polymorphic Tenl5 operations ( l i ke  
assigment or procedure appl icat ion) are avai lable with Moded operands. These 
operations are e££ectively in terpreted rather than compiled with the type checking 
done dynamically. 

2,5 Polymorphism 
The use of  i n f i n i t e  unions can be regarded as a kind o£ polymorphism in which the type 

o£ an object is carr ied dynamically. Any other kind o£ polymorphism could be 
implemented in terms o£ in£ini te unions~ however, e££iciency and convenience 
considerations o£ten d ic tate the use o¢ more streamlined £orms. For example, 
et£ ic ient  polymorphism is essential in the de f in i t ion  o£ the operations o¢ some 
abstract-data types. The treatment o£ Tenl5 polymorphic types is just an extension o£ 
the type changing rules o£ Tenl5, where the representation o£ the value remaims 
unchanged. Other examples exist  where the same representation could have many 
di¢£erent types. For example, a polymorphic ident i ty  function, such as one might meet 
in ML [Gordon 79], would have Tenl5 type: 

R x (X ~ X) (2) 
This value could serve as a procedure with type (X-~X) with any subst i tut ion o£ an 
actual type £or the £ormal type X~ in a sense, the value is lower in the la t t ice  o£ types 
than any procedure (X-~X). Simi lar ly one o£ten wants to have a value that is higher in 
the la t t i ce  than some set o£ values o£ s imi lar  structure. An example would ar ise i£ one 
wished to keep a vector o£ procedures o£ di££ering types togther sui table parameters: 

Vec Ux,y((PLr X-~PLr Y), P~r X) (3) 
With some suitable consistent subti tut ions, replacing actual types by the £ormals X and 
Y, one can construct a procedure-parameter pair and assign i t  to an element o£ the 
vector.  It would be nice i£ th is  action o£ subst i tut ion in polymorphic types could be 
included in the general coercion rules so that polymorphic types are indeed least upper 
bounds and greatest lower bounds as impl ied by the U and R notations. Un£ortunately 
th is  cannot be done without introducing unacceptable res t r i c t ions  in £orming the 
polymorphic types, instead Tenl5 operations are provided to per£orm the subst i tut ions 
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exp l i c i t l y ;  any imp l ic i t  type change of a polymorphic value always results in another 
polymorphic value. 
Not a l l  polymorphic values can be created by untrusted programs in Tenl5~ the rule 

about not changing the representat ion in coercions together wi th e f f i c iency  c r i t e r i a  
l imi ts  one somewhat. These l imi ta t ions can be summarised, in pract ice, by saying that 
the size o f  the representat ion of  any object accessed must be known at t ranslate time, 
This means that values o f  types l ike (3) can be constructed and used quite natural ly. On 
the other hand, the body o£ the ident i ty  function wi th type given by (2) cannot be 
wr i t ten by an untrusted program since the size of  i ts  parameter and resul t  is unknown; 
however, a re lated ident i ty  function with type: 

n x (Ptr X -~ p~r X) 
can be written trivially. 

The use of polymorphism often sounds rather esoteric; however it has some very 
mundane applications in the Tent5 PSE. Thus the procedure for linking and loading 
independently compiled modules (represented by an abstract-data type with 
constructor Module) has type= 

D X (Module X ~ P6r X) 
This linker was written as an untrusted program and its body contains the use of a 
data-structure with type similar to (3) to remember which internal modules have 
already been linked. Its analogue in the Flex PSE is described in [Currie 85a]. 

2.6 Exceptions 
All the operations and constructions of  Ten]5 are fu l l y  defined. Many o f  them can give 

er ror  condit ions (eg array indexing). Error condit ions are usually trapped by means of  
the trapply operat ion which is a modi f icat ion of  the normal procedure cal l  operat ion 
where = 

t rapply :  ((P .e R) ~ P) ~ (R / Exception / Void ~ .L) 
The f i r s t  possibility in the union result  of  t rapply is the result  o£ the procedure cal l  
i f  i t  ends unexceptionally. The second, o£ type Exception is a value which is 
character is t ic  o f  an er ror  condit ion and can be queried to recover diagnostic values in 
the fa i l ed  cal l  (or  any inner ones ). The th i rd  (a procedure value) w i l l  be the resul t  o£ 
doing any "long jump" out o¢ the procedure; cal l ing th is  procedure w i l l  complete the 
long jump. 

2.7 Remotes 
Using the make_remote operation, one can construct a unique token for  an arb i t ra ry  

value in a part icular  machine which can then be f ree ly  sent round a network where= 
make_remote: X e Remote X 

The token can be used at any time to recover the or ig ina l  value in the machine which 
constructed i t .  The most important kind of remote value is the remote procedure. The 
remote_call operation can be used to apply appropriate parameters to a remote 
procedure token to ca l l  i ts  procedure value in the distant machine de l iver ing i t s  resul t  
across the network. In Ten15, th is  is a very powerful operation since the process o f  
preparing the parameters for  transmission w i l l  replace any procedure values in the 
parameters by new remote tokens corresponding to the procedures which could be 
cal led remotely by the distant machine, Simi lar ly,  procedures in the resul t  value w i l l  
be new remote procedures in the cal l ing machine. This al lows one to construct very 
general protocols,  each one being character ised by the type of  the in i t ia t ing  remote 
procedure. For a more deta i led descr ipt ion of th is and related topics including the 
garbage co l lec t ion  of  remotes, see [Foster 87]. 

2.8 Processes 
Mul t i -processing in the Tenl5 machine is defined at quite a low level .  This is mainly a 

consequence of  our desire to use Tenl5 program as a general intermediate language for  
ex is t ing languages; the conf l i c t ing  requirements o£ these d i f f e ren t  languages dr ives 
one to use very p r im i t i ve  constructs. Thus, an object o£ type Flag is used as the 
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operand o£ a simple unitary read -mod i f y -wr i t e  operat ion to be used as a p r im i t i ve  in 
more complex construct ions such as semaphores, channels, and the construct ion of  
monitors.  A Process is  the resu l t  o f  a launch o f  a procedure as another pseudo-para l le l  
process ; th i s  value can be used as an operand o{" various operat ions such a run_process 
or Tai l_process so that a user can w r i t e  his own scheduler fo r  his own processes. The 
issue o£ the fa i rness o£ a l locat ion o£ t ime between users is  largely dealt  w i th  by the 
kernel ; however the user can a l locate his own f rac t ion  of  t ime how he pleases. 
The r igorous maintenance o£ type in teg r i t y  is  a considerable problem where para l le l  

processes can have unguarded var iables in common~ th is  happens w i th  dismaying 
regu lar i ty  in Ada programs, fo r  example. Our current  solut ion to t h i s  i s  to e f f e c t i v e l y  
make assignment a unitary operat ion. The t rans la ted code o f  a Tenl5 program only 
permi ts  a change o£ process only when the t rans la to r  knows that  i t  i s  safe~ cer ta in ly  
not in the middle o£ the assignment o£ a union value, fo r  example. A more radical  
solut ions w i l l  have to be adopted when we attempt to def ine Tenl5 fo r  mul t ip le  
processors w i th  common memory. For example, by examining the type o f  the nucleus o£ 
a procedure, i one could t e l l  whether there are any external  var iab les d i r e c t l y  
accessible t o  the procedure and hence make i t  inadrnissable to launch as a process in 
another processor.  

2.9 Abstract data types 
The representat ions o£ values o£ the above types are e f f e c t i v e l y  def ined by the 

operat ions that can be appl ied to them~ these operat ions are a l l  def ined as part  o£ 
TentS. The only operat ions appl icable to  a Tenl5 value o f  some abst rac t  data type 
(ADT) are a l l  def ined by the inventor o£ the type who chooses a representat ion fo r  i t  
in terms o£ ex is t ing  types. These operat ions are a l l  expressed in Tenl5 ( in terms o£ 
the representat ional  type)  to be appl ied e i ther  as a procedure ca l l  or as an open 
subst i tu t ion  in the Tenl5 program. In both cases, the Tenl5 t rans la to r  replaces both 
types and operat ions by the i r  representat ional  equivalents before  t rans la t ing so that  
representat ional  i n teg r i t y  is preserved. For example, l inear l i s t s  in Tenl5 might be 
abstracted as a type List X whose representat ion is  : 

L(X) = (Void / Ro_p~r L(X)) 
wi th  operat ions : 

cons :(X,List; X) -~ List  X 
= A(x:X, ] :L(X)) ->  unite__to_L ro_pack(×, ])  

hd: (Lisl; X) -~ X 
= A(hL(X)) -~ E i t he r  ] Is  f ie ld_2 z 

Then f i e l d _ l  deptr  z 
Or fa i l  "n i l  l i s t "  
End 

. . .  etc 
Both of  the operators  here would have to be implemented as open subst i tu t ions o£ 

the i r  Tenl5 meanings since one cannot construct  polymorphic procedures o£ the co r rec t  
type (see 2 .5) .  The inventor o£ an ADT l ike Lis~ can prescr ibe  some coercions between 
d i f f e ren t  va r i e t i es  o£ Lis~s provided that  they are consistent  w i th  the permissable 
coercions on i t s  representat ion.  Thus, w i th  the representat ion above, the formal  X 
behaves in a covariant fashion w i th  List X and so a List [1..18] could be coerced to a 
Lisf; [8 .o99 ] .  However i£ the RO_l~cr in the de f in i t i on  o£ L were replaced by PLr then no 
non - t r i v i a l  coerc ions would be al lowed. 

Most of  the ADTs in the Tenl5 PSE are used to hide deta i ls  o£ the i r  representat ion and 
l im i t  t he i r  operat ions,  rather  than in the i r  more c lass ica l  ro le  of  g iv ing 
representat ional  independence. I t  is  easy to use them in th i s  l a t t e r  sense i f  t he i r  use 
is l im i ted  to single programs; however, once values o£ a given ADT are spread across 
databases and networks the problems o£ changing i t s  representat ion become formidable 
in the extreme. These problems have not been completely solved in TenlS although 
too ls  ex is t  to  do trans£ormations in l im i ted  cases. 
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3 Programming in Ten15 

3. l The Ten]5 algebra 
Various fragments o£ tex t  have been included to descr ibe Tenl5 program and types 

above. I t  must be emphasized that  these are part  o f  an informal  textua l  notat ion fo r  
Ten15 but are not themselves part  o£ Tenl5 programs. Ten15 programs are 
da ta -s t ruc tu res ,  not; t ex t .  These da ta-s t ruc tu res  are abst ract  data types based on the 
so r t s  of  an algebra which £orm part  o f  the formal  de f in i t i on  o£ programs in the 
abst ract  machine. This algebra, f ike any other ,  i s  def ined in terms o£ sor ts ,  
const ruc tors  and laws fo r  the expansion of  these const ructors .  In the Ten15 algebra, 
the compound const ructors  give the contro l  s t ruc ture  o f  the machine and various laws 
give equivalences between d i f f e ren t  cont ro l  s t ruc tu res ;  £or example expressing a 
f o r - l o o p  in terms of  labels and gotos. There are about 38 s ign i f i can t  compound 
const ruc tors  in the algebra w i th  a other less s ign i f i can t  ones def in ing various kinds of  
grouping. The so r t s  of  the Ten15 algebra include Type, Load, Name, Operation e tc ;  To 
g ive a £1avour o£ the kind o£ model intended here, a Load occupies the roughly same 
niche as a statement or expression in a standard programming language and most 
s ign i f i can t  chunks o£ program would be represented by Loads. For example, the 
equivalent of  a declarat ion in the Tenl5 machine as an element o£ the Tenl5 algebra 
would be a Load constructed using : 

identitw.~dec: Name • Load • Load -> Load (~)  
w i th  the i n te rp re ta t i on  that  the f i r s t  Load is "evaluated"~ i t s  value is  then used in 
place o£ any occurrence o£ the Name in the second Load, thus def in ing the scope o£ the 
name. A condi t ional  would be = 

cond; Load • Load • Load -> Load 
where the evaluation o£ the f i r s t  load to a Bool determine which o f  the others to 
evaluate. Another fami l ia r  one would be the appl icat ion of  an operat ion:  

operate:  Operation • Load* -> Load 
ie apply the Operation to the evaluation o£ the Loads as parameters. There are 
approximately 2Be o¢ these operat ions def ined ranging f rom a r i t hmet i c  to  remote 
access. 

3.2 Homomorphisms 
One reason fo r  basing Tenl5 on an algebra is the d isc ip l ine  that i t  imposes on any 

program which i t s e l f  analyses a Tenl5 program~ most such analysis programs can be 
w r i t t en  very convenient ly as though they were homomorphisms on the or ig ina l  Tenl5 
algebra. One example which w i l l  a r ise in any por t ing o£ a Tenl5 PSE is  the Tenl5 
t rans la to r  i t s e l f .  In the current  implementat ions, the Tenl5 t rans la to r  is  a 
homomorphism {Prom the Tenl5 program data s t ruc ture  expressed as abst rac t  data types 
to a funct ion s t ruc tu re  whose appl icat ion gives the t rans la ted program fo r  the ta rge t  
in question. L i t t l e  more than a sketch can be given here o£ the domains involved. For 
example, the image of  a Load is a funct ion o£ Tenl5 type : 

Load = Con¢ex~ -~ Translat ion 
where Con~ex~ i s  some type which w i l l  contain inher i ted  in format ion l i ke  the names in 
scope and "£ransla¢ion w i l l  contain the resu l t  o£ t rans la t ing code fo r  the ob jec t  
machine. The image of  a const ruc tor  l ike ident i ty_dec in (~)  fo r  example would be: 

,~denti~¥_dec: (Name, Load, Load) -~ Load 
where the f i r s t  two parameters, together  wi th  the parameter o£ the answer Load, w i l l  
be used to construct  a new Con~ex~ wi th  which to evaluate the t h i r d  parameter. 
The use o£ homomorphisms in the t rans la to r  i l l u s t r a t e  s t rongly  the advantages of th is  

method. The mapping of  each construct ion is independent and is also independent of  the 
order  that  mappings are appl ied. This makes maintenance of the t rans la to r  more 
t rac tab le  and i t s  cor rectness much easier to determine. I t  also means that  a t rans la to r  
fo r  one ta rge t  host machine serves as a very good example fo r  w r i t i ng  one fo r  a new 
host. 

The Ten]5 translator is an extreme example of the use o£ a homomorphism to deduce 
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propert ies of  a Tents program~ however, the same simple homomorphic framework can 
be used to evaluate other propert ies.  For example a t r i v i a l  homomorphism al lows one 
to evaluate, say', the set o f  names declared but not used~ a tess t r i v i a l  one could give 
a function which is a p re t ty -p r in te r  {`or the program. Also o£ considerable in terest  are 
those homomorphisms which are transformations o f  Ten]S, eg those which apply some 
o£ the laws o£ the algebra such as replacing a l l  {`or-loops by the i r  expansions in terms 
of labels and gotos. We see th is kind of  program transformation as the {`irst step in 
more general program proving; however th is requires other tools l ike theorem provers 
which we do not possess as yet. 

3.3 Propert ies o£ Ten15 programs 
Tents programs are intended to be translated into the code o£ some host computer and 

run in a Tents run-time system. This run-t ime system could be implemented on a bare 
host~ more usually i t  w i l t  be embedded in some ex is t ing operating system on the host. 
In the la t ter  case the security- and integrity" o£ the Tent5 system is only as good as that 
o£ the host system; however the p rac t i ca l i t i es  o£ producing things l ike device dr ivers  
make i t  a v i r tua l  necessity. 

The in tegr i ty  o{` the Tent5 run-t ime system (and hence the secur i ty o£ anything bu i l t  
upon i t )  depends on the typing rules never being v io lated.  In other words, a value in 
store must have the structure impl ied by i t s  type; {'or example a P~r type must always 
point to a real block in mainstore. Any mis-alignment o£ th is structure could result  in 
mayhem; anything from the garbage co l lec tor  going into an endless loop to a database 
being corrupted. This has considerable e£{`ect on the kind o£ control  structures and 
operations in Tent5. At a t r i v i a l  level ,  one can see that a var iable rnust; be i n i t i a l i sed  
to a value o£ the required type, so that any {`act that the t ranslator might deduce {`rom 
i ts  type is correct .  In fact,  a l l  declarat ions in Tent5 fo l low the pattern shown by 
ident i ty_dec in (~).  The type o£ most constructions (a notable exception being 
procedure bodies) is  not exp l i c i t  but is  deduced by the translator~ fo r  example the 
type o£ a condit ional expression is the least upper bound o£ the types o£ i t s  arms. 
Every operat ion is def ined completely e i ther  by del iver ing a value o£ some type 
depending only on the types o£ i ts  operands or by causing some defined except ion; 
there are no "unde£ineds" in TentS. Indeed, th is applies to a l l  constructions since the 
underlying bias o£ Tents is towards expression evaluation rather than state changes. 
As wel l  as being a programming mechanism in i ts  own r ight ,  Tent5 is also the target 

{'or a l l  compilers {'or standard languages used in the system. This means that Tent5 
must be able to cope wi th al l  constructions l ikely to be found in those languages, not 
just some common subset eg exception and process handling operations are de{'ined. 
Simi lar ly,  labels, branches and jumps a l l  {'orm part o{' various Tents constructions wi th 
rules for  scoping rather l ike those {'or value and var iable names. The use o£ labels is, 
in fact, essential  to implement e{` f ic ient ly the many s l igh t ly  d i f f e ren t  var iat ions in 
s imi lar  control  structures in d i f fe ren t  languages. The e{`£iciency o£ programs wr i t ten 
in standard languages compiled via the Tents route is an important factor .  We hope that 
i t  is comparable to those produced by compilers native to the host machlne~ however 
we have not yet done any extensive r igorous comparisons. 

3.$ Implementation 
In the current implementations, mainstore is al located l inear ly in blocks with a 

garbage co l lec tor  applied when some l imi t  is reached to compact l ive blocks. Most o£ 
these blocks w i l l  correspond to the construction o£ some Tents value. A pointer is 
such a value; a value o£ type P~r X is implemented as an address of  a block containing 
a value o£ type X. To be able to carry out a garbage col lect ion,  words in the host 
machine which contain these block addresses are dist inguishable from those containing 
non-addresses by using a b i t  or two o£ the words as tags. Thus, on the Vax 
implementation, the least two s igni f icant  bi, ts in each 32-bi t  word are used for  various 
tag purposes. This has some consequences on the representation of  scalar data~ for  
example, integer ranges representable in one word are l imi ted to 38 b i ts .  The type 
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rules o£ TenlS w i l l  ensure that any translated program w i l l  never con£use addresses 
and scalars or misuse these tag b i ts  in any way. The time taken £or one garbage 
co l lec t ion depends, o£ course, on the mix o£ data present. However, i t  operates in a 
time which is l inear wi th respect to each o£ variables o¢ this mix, eg, the number o£ 
l ive blocks or the to ta l  area o£ store avai lable. With a typical  mix on a s ingle-user 
Vax-stat ion, i t  takes just over a second £or a area o£ 2 megabytes. 

As mentioned be£ore, the Tenl5 t ranslator  is i tse l£  expressed in Tenl5. i t  re l ies  on 
the existence o£ a run-t ime system to run the code that i t  produces. This runtime 
system, o£ten cal led the kernel, is in three more or less d is t inct  parts. The £irst  part 
is the set o£ run-t ime routines required by Tenl5 to implement things l ike the 
mainstore storage al locat ion and garbage co l lec tor .  Code produced by Ten15 t ranslator  
w i l l  access routines in th is  part d i rec t l y  at the level o£ the host computer 's 
instruct ion set and a l l  o£ th is  part is wr i t ten using some too ls  o£ the host eg the code 
assembler o£ the host. The second part is ent i re ly  wr i t ten in Tenl5 with a £ew 
pr iv i leged operations to cheat the type rules. This part includes the routines which 
handle the run time representat ions o£ types themselves; also in th is part are the 
various "£lattening" procedures £or preparing data structures to be kept in a database 
as a Persis~en~ object or sent across a network as a remote object. The th i rd  part is 
only accessed by other routines in kernel and consists o£ device d r i ve rs ;  u~ually they 
w i l l  be implemented by making pr im i t i ve  cal ls  on some host operating system. On 
current implementations, the to ta l  size o£ the kernel is less than 188 ki lobytes and the 
amount not wr i t ten in Tenl5 just a £ew ki lobytes. The size o£ the mainstore garbage 
co l lec tor ,  £or example, on Vax is about 288 MACRO instruct ions. 

Porting a Tenl5 system to a new host w i l l  require work to create a new Tenl5 
t rans lator  together wi th  that part o£ the kernel not expressed in Tenl5~ the res~ 
consists o£ re- t rans la t ing the Tenl5 part o£ the kernel and the various programs and 
toots o£ Tenl5 PSE. These la t ter  programs and tools have beer wr i t ten in a var iety  o£ 
languages and translated to Tenl5. 

~. Conclusion 
Two diFFerent implementations o£ TenlS are in progress at present. One is a 

prototype running on the Flex system and the other is on Vax running VMS. Compilers, 
using the Tenl5 route, £or Ada TM [Ichbiah 83], Algol68 RS [Woodward 82] , Pascal[BS] 
82] and a notation £or Tenl5 are more or less complete whi le others including one £or 
ML [Gordon 79] are projected. 

Many o£ the propert ies o£ any PSE running in a Tenl5 machine can be in£erred £rom 
the broad overview given above and some o£ the more important ones have been 
h ighl ighted in the text .  The current implementations o£ Tenl5 PSEs are largely based 
on the Flex PSE; the type structure o£ Tenl5 taking the place o£ the capabi l i ty  
structure o£ Flex, Some aspects o£ the Flex PSE are deta i led in [Currie 85a]. Probably 
the most important £eature o£ both is the way that one can use values and program in 
ways that were unanticipated when they were created. This is largely a consequence o£ 
having £irst  class procedure values and a common addressing space across a l l  
programs; the in tegr i t y  and secur i ty o£ those £ac i l i t ies  being en£orced by the type 
structure in Tenl5 and the capabi l i ty  structure in Flex. 
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