
6/29/93 04:32 pm richford@osf.org 1 of 11

GANDF: A GCC-based ANDF Translator
Richard L. Ford

Open Software Foundation Research Institute

January 26, 1993

GANDF implements a family of translators for ANDF
by interfacing ANDF to the gcc back-end.

1. Introduction

ANDF is an architecture- and language- neutral distribution format being
developed by OSF and other collaborators around the world. It is based on
the TDF technology provided by the Defence Research Agency (DRA) of
the UK Ministry of Defense.

GANDF is an experimental ANDF translator1 being implemented at the
Open Software Foundation (OSF) Research Institute (RI), based on the
back-end technology of the Gnu C Compiler(gcc), produced by the Free
Software Foundation, along with some support routines from the DRA
technology.

This distinguishes GANDF from the other existing ANDF translators,
which are all either written by DRA, or directly derived from the DRA
installers. Each of the existing translators is for a single target, whereas
GANDF will be targeted to any of the targets supported by gcc.

1. This paper follows the following terminology used by DRA. Aproducer is all of the software
that is used to produce the ANDF form of an application. The primary component of a producer
is thecompiler, which does the actual translation of source code into ANDF. Aninstaller is all
of the software used to install an application on a target. The main component of an installer is
thetranslator, which does the actual translation of target-dependent ANDF into machine code.
When not used in the ANDF context, the wordcompiler will have the more usual meaning.

GANDF: A GCC-based ANDF Translator

Objectives

2 of 11

2. Objectives

Preserve Investment in System Vendor Compilers

Most computer system vendors have a large investment in compilers. Much
of this is in the middle and back-ends of the compilers where sophisticated
techniques are employed to get highly optimized code. This makes the
system vendor’s machine look good. If ANDF is to be successful, there
must be ANDF installers which are competitive with such system vendor
compilers in reliability and code quality. In addition, many customers of
ANDF applications would feel more confident if they used an installer that
was supported by their system vendor.

One way to achieve these goals would be to interface ANDF to the system
vendor’s compilation system. One objective of the GANDF project is to test
the feasibility of interfacing ANDF to system compilers, by using the Gnu
C Compiler (gcc) as a readily accessible test case.

Initially we only address the problem of interfacing ANDF to the back-end.
ANDF is more powerful than many existing intermediate languages. We
point out some problems that arise when trying to interface ANDF to a
compiler back-end, and ways that these problems can be solved.

Another aspect of preserving the system vendor’s investment in compiler
technology has to do with the front-ends. Many vendors have their own
dialects of programming languages that they would want to maintain, even
if they are moving to the ANDF technology. Their front-ends may provide
special information to their back-ends that allow for special optimizations.
So another question to ask is, how easy would it be to change a compiler
front-end to emit ANDF? That topic is not currently being addressed by the
GANDF project, but is a possible follow-on project. We could take the gcc
front-ends (for C, C++, and F77) and try to make them produce ANDF
instead of the usual gcc IL.

Increased Availability

In addition to providing a case study on interfacing of ANDF to a compiler
back-end, GANDF has the potential for being useful as a means of quickly
producing new installers for ANDF. GCC currently supports2 (in some
cases experimentally) the following cpus:

GANDF: A GCC-based ANDF Translator

Role of GANDF

3 of 11

alpha, a29k, arm, cN, hppa1.0, hppa1.1, i386, i860, i960, m68000, m68k,
m88k, mips, ns32k, romp, rs6000, sparc, vax, we32k.

and the following operating system types:

bsd, sysv, mach, minix, genix, ultrix, vms, sco, isc, aix, sunos, hpux, unos,
luna, dgux, newsos, osfrose, osf, dynix, aos, ctix, msdos (with dos
extender), and windows nt.

In addition, gcc is designed to make it relatively easy to add a new target.
The GANDF code will be target-independent in the same way that the gcc
code is target-independent, namely, where target dependence is needed, it is
parameterized and the target-dependent information provided as part of the
machine description. The target parameterization already available with gcc
will satisfy most of the needs of GANDF. Thus once one GANDF port is
finished, there will be very little extra work needed to port to additional
platforms.

The gcc compiler is a widely used and respected compiler. It is hoped that
having ANDF installers based on the same technology will help to increase
the ANDF momentum.

Educational/Technology Transfer

A further objective of GANDF is educational. Having a freely available
installer for ANDF will help other installer writer’s learn of possible
techniques for implementing ANDF. In addition, some system vendors
might choose to use GANDF to provide installers for their systems, rather
than using the DRA installer technology (some vendors use gcc as their
supported compiler). Other companies may choose to provide commercial
support for GANDF.

3. Role of GANDF

To understand the role of GANDF, one must understand the stages in
production of software using ANDF. There are the following steps
(assuming C is the source language):

2. according to documentation in gcc release 2.2.2. I’ve added the entries for msdos and nt. Support
for these is not currently completely supplied as part of the FSF distribution.

GANDF: A GCC-based ANDF Translator

Role of GANDF

4 of 11

• Driver program (tcc or gcc) is invoked to drive and coordinate the following
steps, as needed.

• Source code (.c) file is preprocessed to .i file.

• Preprocessed file (.i) is compiled to target independent ANDF file (.j)

• Target Independent ANDF files (.j) are linked together with token libraries
(.tl) by the token linker (tld) to produce a target-dependent ANDF file (.t)

• A translator (e.g. trans386) reads a target dependent ANDF file (.t) and
produces machine code, either assembly code (.s) or to direct object code
(.o), as might be done if one were concerned with compile-time performance.

• Assembly language files (.s) are assembled into object files (.o)

• Object files (.o) are linked with system libraries, using the system linker, to
produce an executable.

There are other possible scenarios. The ANDF producer actually combines
the preprocessing and production of .j files into one step. There could be
ANDF to ANDF optimizers. One could imagine translators that combine the
functions of the token binder, translator, assembler and system linker into a
single program (e.g. to do really global optimization).

The role of GANDF in this scheme is thatgandfc3 is a translator from target
dependent ANDF files (.t) to assembly language, analogous to trans386 in
the DRA technology, or cc1 in the gcc technology (cc1 is the program that
take preprocessor output (.i) and compiles it into assembly code(.s))

There is one complication in the role of gandfc. The DRA translators expect
one style of command line options from the DRA driver, tcc. On the other
hand, gandfc, being based on gcc technology, expects the kind of options
that cc1 would get from the gcc driver, gcc. For that reason gandfc would
usually be invoked via gcc4. In order to make it possible to invoke gandfc
from tcc, an additional shell script is used which translates command line
options supplied by tcc to the equivalent option of gcc.

3. I use GANDF as a generic name for the project to develope ANDF tools based on the gcc tech-
nology. Currently gandfc is the only tool in the GANDF project.A gcc-based front-end targeted
to ANDF would be another possibility.

4. Because of the way that the driver program, gcc, is table driven, using a file calledspecs, it was
possible to make gcc drive gandfc without changing gcc itself. All that was required was to edit
thespecs file.

GANDF: A GCC-based ANDF Translator

Organization of GANDF

5 of 11

Note that gandfc is only one component of an installer. Assemblers and
linkers are needed, but these would usually already be available, or the gnu
assembler and linker could be used. The other required piece is the token
linker. In addition, each installer needs a way of creating target-dependent
token libraries.

4. Organization of GANDF

Currently GANDF (or more specifically, gandfc) is composed of three
components.

GCC Component

The gcc component consists of all of the language-independent code of gcc,
as well as some of the C-specific code. A few modifications have had to be
made to this code for GANDF. This component includes the overall
compiler executive, as well as support for the expression tree and RTL
(register transfer list) data structures and optimization and code generation
routines.

DRA Component

This consists of routines to read and decode the ANDF into an internal
format, expand tokens, and perform certain other ANDF transformations
(e.g. constant folding). Some of this processing is probably unnecessary for
GANDF, since the equivalent transformations will be done by the gcc back-
end. On the other hand, it may be that the combination of optimizations
done by the DRA code and gcc code will be better than either one
individually. That is one of the things that the GANDF experiment will
determine. This component is currently available only under license. Some
of this code also has had to be customized for GANDF.

OSF Component

This is the heart of GANDF. It consists of routines which translate the
internal ANDF form into appropriate gcc structures. Further details about
this component are given in the following section. This component is being
written from scratch at the OSF RI.

GANDF: A GCC-based ANDF Translator

ANDF Translation Notes

6 of 11

5. ANDF Translation Notes

In this section we will discuss some of the more interesting issues involved
in translating ANDF to a compiler intermediate form.

ANDF Types(Shapes)

ANDF types (shapes) are translated into the target-dependent data types
used by gcc. Currently only shapes easily representable by the target
architecture are supported. However, it would not be hard to extend support
to arbitrarily large integers, for example, using the GNU Multiple-Precision
arithmetic package.

Arithmetic and Logical Operators

Translating typical unary or binary operations, e.g. add, multiply, is
straightforward as long as no special error treatment is needed.

Error treatments

ANDF provides the capability to recover from errors by taking some default
action, or by jumping to a specified label. Although this concept could cover
general kinds of errors, the current ANDF only uses this facility for integer
and floating point overflow.

Currently gcc does not provide any capability for such error recovery,
though there is some work in progress to support C++ exception handling.
Note that the ANDF C producer does not use error treatments, but a C++
producer would need them.

GANDF implementation of overflow handling will have to be target
dependent. A new component of the machine description will be needed to
specify how to handle overflows.

For machines that trap on overflow, one strategy is to set up trap handlers as
part of the ANDF run-time environment. Global variables can be used to
specify what should be done if an overflow occurs.

For machines that do not trap on overflow, explicit checks for overflow must
be done following each operation that is required to be checked. Note that

GANDF: A GCC-based ANDF Translator

ANDF Translation Notes

7 of 11

whether a machine traps or not may depend on the type of operation. For
example, some machines trap on floating point overflow, but not on integer
overflow. Machines with IEEE floating point may just return infinity on
overflow.

Multiple Return Types

One difficult feature of ANDF is the ability of a single procedure to return
results of more than one type. This feature is similar to the Fortran feature
of having functions with multiple entry-points each of which may be of a
different type, but is different in that Fortran has different entry-points to
distinguish between the return types. The problem is that gcc, and I expect
most compiler back-ends, expect a function to only return a single data type,
at least for a given entry-point. This feature is not yet implemented in
GANDF, and I expect that its implementation will require some relatively
low-level modifications.

One problem with this feature of returning more than one type of result is
that for some data types, returning a value of that type requires cooperation
from the caller, e.g., passing in the address where the result is to be placed,
possibly changing the position of other parameters. There would be no
problem implementing multiple return types if one did not have to conform
to native calling conventions, but with that constraint I think it is difficult,
and perhaps impossible on some platforms. Also, the ANDF token
mechanism does not provide a way of specifying a procedure with more
than one return type. My opinion is that this is one feature of ANDF which
is not needed. It would be better to allow a function to return at most one
type of value.

Discovering the need for changes to the ANDF specification, such as that
suggested above, is one of the purposes of the GANDF experiment.

Non-local Variable Access

ANDF allows the current environment of a procedure (roughly equivalent to
its stack frame pointer) to be captured and used elsewhere, to access those
local variables of the procedure that have been marked as “visible”.
GANDF will implement this by creating a structure to hold the visible
variables. Those with non-overlapping lifetimes will be overlayed as if in a

GANDF: A GCC-based ANDF Translator

ANDF Translation Notes

8 of 11

union (or optionally they could be allocated distinct space, perhaps for
debugging purposes, or to ease garbage collection).

Identify Operator

The identify operator is used by ANDF to give a name to an expression
which is computed only once, but used possibly repeatedly. gcc has a
similar operator, save_expr. This will be used by GANDF unless the
identified value is marked as “visible”, in which case it will have to have
storage allocated for it as described above.

Local Label Variables

ANDF allows local label values to be stored in a variable. Though this is not
allowed in C, gcc does in fact allow such label variables.

Long Jumps.

The ANDFlong_jump operation takes as arguments an environment
expression (stack frame) and local label expression. It unwinds the stack
until the specified stack frame is reached and then transfers control to the
associated procedure at the location specified by the local label value. gcc
has built-in functions that perform the Clongjump. These will be used to
implement the ANDFlong_jump. Further study is needed to ensure that
these have the same semantics, e.g. with respect to preserving values of
local variables.

Local Allocation.

The ANDFlocal_alloc operator is analogous to C’s alloca, which allocates
space by extending the stack. gcc also has built-in support foralloca, so
support oflocal_alloc should be straightforward. ANDF operators related to
freeing up such space may be harder.

Global Scoping

In ANDF, all the top-level variables and procedures (represented by TAGs
in ANDF) are visible globally. This supports mutual recursion, and allows

GANDF: A GCC-based ANDF Translator

Status and Availability

9 of 11

the initial values of some variables to contain the addresses of procedures or
other variables. The support routines in gcc expect variables and procedures
to be declared before use. As a result, GANDF must perform an initial pass,
which only looks at top level definitions and declares the top level entities.
Then a complete pass actually produces code.

ANDF run-time environment,

For the most part, ANDF constructs translate straightforwardly into
machine code. However some constructs, e.g. catching of overflow traps,
could require a run-time environment. Also, if GANDF supports arbitrary
precision integer arithmetic it will need run-time routines for that.

6. Status and Availability

Status

GANDF is still under development. There is currently support for about half
of the ANDF operators, but some of the basic features, such as procedure
parameters (on the callee side), are still unimplemented. So far GANDF has
been successfully configured and executed for three targets:

• HP PA-RISC 1.1/HPUX

• IBM RS-6000/AIX

• DEC ALPHA/OSF1.

Most of the development is being done on an RS-6000.

Statistics

To give some idea of the size of the components of GANDF, here are the
number of lines of source code, including comments, for them:

• GCC component: 432k lines, of which 285k lines are target independent
code and 147k lines are target dependent (machine descriptions or
configuration files).

• DRA component: 24k lines. This is just the part used by GANDF.

GANDF: A GCC-based ANDF Translator

Conclusions

10 of 11

• OSF component: 5k lines. When GANDF is completed this is likely to be
more like 20k lines.

A complete installer will also require a token binder. The current token
binder, tld, is about 7k lines of source.

Availability

GANDF is currently just an experiment, and whether it will become
generally available depends on the outcome of the experiment. The most
valuable outputs of the GANDF experiment will be its influence on the
evolution of the ANDF specification and the knowledge gained on
interfacing ANDF to compiler back-ends (and possibly front-ends).

Because GANDF makes use of gcc, if it ever is distributed, it will be subject
to the terms of the Gnu General Public License, meaning it will be freely
available in source form. The only potential problem with this is that the
DRA component is currently only available under license from DRA.
However there is a possibility that the part of the DRA ANDF technology
used by GANDF will be made freely available (or freely licensed) by DRA.
Otherwise, that component could be rewritten based on the public ANDF
specification.5

7. Conclusions

Final conclusions of the GANDF experiment will have to await completion
of the experiment. However here are our current guesses of what the
conclusions will be:

• The GANDF will provided feedback on the ANDF specification which will
result in an ANDF that is more compatible with existing compiler
technologies, and which will thus make it easier for system vendors to adapt
their compiler’s to ANDF technology.

5. I have an idea for general table-driven tools (encoders, decoders, assemblers, and pretty-printers)
for handling ANDF-like data. These would use data description files written in an ANDF meta-
notation. Such tools could be used to describe and process user data, thus allowing user data to
be distributed in a compact and target neutral way. Such tools could be used to replace some of
the DRA code.

GANDF: A GCC-based ANDF Translator

Conclusions

11 of 11

• GANDF will be a practical and useful way of producing ANDF installers
with quality characteristics similar to those of gcc. For many applications
these installers will be quite adequate, but user’s who want the most
sophisticated optimizations may want to use installers produced by
commercial compiler vendors (either system vendors or compiler
companies). Some commercial companies may choose to support GANDF
for their customers.

• GANDF will provide a valuable educational tool for those wishing to learn
more about ANDF technology.

For further information please contact:

Richard Ford
richford@osf.org
(617) 621-7392

Copyright 1993 by Open Software Foundation, Inc.

All Rights Reserved

Permission to reproduce this document without fee is hereby granted, provided that the copyright notice and
this permission notice appear in all copies or derivative works. OSF MAKES NO WARRRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for any direct or indirect, incidental, special or consequential
damages in connection with the furnishing, performance, or use of this material.

