
Remote capabilities

J. M. FOSTER AND I. F. CURRIE
Royal Signals and Radar Establishment, St Andrew's Road, Malvern, Worcs WR14 3PS

System-wide types, capabilities and procedure values can be used in computer networks to improve control of access and
flexibility. This paper describes a network system based on these ideas. They provide a standard, uniform way of
referring to data and using procedures in remote computers, with control over access and system type-checking. A
working experimental version of the system exists, implemented on Flex computers, which provide microcoded support of
capabilities. The mechanisms are such that normal programs written in terms of procedures, even those using procedure
parameters, can be converted into network services without change. A possible way of implementing a similar scheme on
conventional hardware is discussed.

Received March 1986

1. INTRODUCTION

Capabilities are unforgeable values which programs can
manipulate.3-410 For each kind of capability some
operations are permitted which are forbidden on other
kinds of capability and on non-capabilities. A particular
capability might give read access to an area of store.
Programs will be able to read that store only if they have,
or can obtain, the capability value. Other capabilities
might give the ability to address a particular piece of
backing store, to use a peripheral or call a procedure. In
order to guarantee unforgeability, the checking of
capabilities is usually performed by microcode. The
earlier implementations of capabilities worked by
segregating them in special areas, but there is much to be
gained by making them into values which are freely
mobile. It this is done they must still be unforgeable,
which can be ensured by using tag bits under the sole
control of the microcode. This also makes it easy and
efficient to use the notion of capability at a fine-grained
level. Flex is a computer architecture of this kind.26

We can extend the idea of capabilities to networks of
computers by allowing one computer to hold a capability
for something inside another. These capabilities can be
exercised across a network. They must still be unforge-
able, both within the machines and in transit across the
network. We shall refer to them as remote capabilities.

Capabilities enable us to control access. It is a
particular virtue that this control is provided once and
for all in the micronode, and all the protection derives
from this microcode,. So if we want to verify or validate
or learn to trust the access control mechanisms, we have
only to examine the microcode. It is true that this may
not be a trivial task, but it is a limited one. Extending
these ideas to networks means that we have only to
examine the remote capability mechanism, and we have
provided a way of controlling access across the network.

If these mechanisms are built into the machine in the
microcode by tagging, then we have control which cannot
be vitiated by wrong compilers or wrong assembly code.
The protection is provided at the level of machine words.
Each capability consists of a word, with its associated tag
bit which is accessible only to the microcode. The rules
controlling the use of this word cannot be violated. But
the microcode attaches no meaning to groups of words.
Any relations between different capabilities and non-
capabilities within the same structure or record are
unknown to it.

The type system of most programming languages
provides a means for describing data structures which are
composed of many words and may be distributed around
the store. This provides flexibility and convenience, in
that many operations can be described more concisely
and programs become clearer. Furthermore it also
provides a sort of access control: for example, the
checking mechanisms may prevent integers being used as
addresses. It has been suggested that this mechanism is
sufficient to provide the needed control of access and that
capability mechanisms might be reserved for grosser
checks, thus allowing a cruder, easier and less fine-grained
implementation. However, the language types are
normally only meaningful inside an individual program.
There may be communication of type information
between different modules of a program, but data can get
from one program into a separate one only through the
operating system. This knows nothing of the types within
those programs, so type checking between programs is
lost. This holds still more strongly if the programs are in
different languages. For some time the operating system
of the Flex computers has used its own types to overcome
this omission.1 The Flex system types are sufficient to
describe all the data structures produced by Algol 68,
Ada, Pascal, ML and other languages, together with
types appropriate to the description of backing store
values. Values produced by these languages can be passed
between separate programs, which might be written in
different languages, and type checking is maintained.
Operating system procedures can be created using the
languages, in such a way as to produce typed procedures
which can be invoked from a command interpreter, and
again type checking is performed.

The correctness of these types depends on the
correctness of the compilers, unlike the capability control
provided by the microcode. The Flex types have to be
independent of programs and of the precise form of the
text defining the programs. Though the Flex types
describe the data structures produced by Ada and other
languages, this is not because they are a superset of all
kinds of type definition, but because every data structure
produced by the languages has a description in terms of
Flex types. These types have now been extended to
network communication, providing network-wide types
and type checking. They have to be independent not
merely of particular programs but also of computers;
indeed the types must be understood throughout the
network. This is particularly important for new abstract

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 451

2 1 - 2

 by guest on O
ctober 29, 2015

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


J. M. FOSTER AND I. F. CURRIE

types, which may be invented on one machine, but must
be understood and checked by all the computers on the
network.

There are thus two levels of access control in the system
which is being described: capabilities, which work on
individual words and depend only on the correctness of
the microcode, and types, which work on groups of words
but depend on the correctness of the compilers.

Network-wide types not only enable us to perform
checks, but also function as a description of data. This
function of types is used in the Courier protocol,13 but
the types we are about to describe are very much more
powerful. It will be seen that we can transfer capabilities
for dynamically created procedures around the network,
and thus send new procedure capabilities to other
machines to be called in due course. The types of the
procedures, which of course contain the types of their
parameters (including procedure parameters), describe
how their parameters are to be handled. They give in an
abbreviated form a description of what can be done with
them and make explicit the possible protocols.

Procedures are free-standing values in Flex.5 The
values and references that they need to use are bound into
them. A capability for a procedure can be created so that
it provides the only access in the whole system to some
particular object. This procedure can then give arbitrarily
programmed control over access to that object. These
procedures, which are proper values, allow an 'object-
oriented ' approach to the creation of new abstract data
types, in that packages of procedure values implement
the possible operations on an abstract type. Flex permits
procedures or packages of procedures to be written to
the backing stores - a Flex computer can have several
backing stores - and so new abstract data types and their
values can be written to backing store, with the
appropriate type checking on their use. Such procedure
values can have an indefinitely long life.

Flex uses a remote procedure call mechanism for its
network.12 On Flex, unlike other RPC networks, the
possible procedures which can be called do not have to
be agreed between the machines from the start. New
remote procedure values can be made up by any program,
capabilities for using them can be passed to another
computer and then used for remote calls. The mech-
anisms allow for exception handling in remote calls, of
which timeout is one example, and they allow for
aborting or breaking in to remote calls.

The discussion in this paper is independent of the
failure semantics of the network. Flex operates an 'at
least once' semantics,911 but all the following remarks
would apply equally to ' exactly once' or to' at most once'
semantics.

Capabilities encourage the use of values rather than
names, and Flex takes full advantage of this throughout
the system. Any types of value can be used on backing
stores as well as in main store. So directories, for example,
play no special role, since procedure values, files or indeed
any values can be held anywhere on disc. In Flex the
actual external modules used by a program are put in the
text which is to be compiled. The meaning of the text is
not dependent on the particular context at the time when
it was compiled, but is self-contained. This relieves some
significant problems of configuration control. Exactly
the same principle is used in the network. The system
holds the actual remote capabilities, not just their names,

so changes in the association of names with values are
irrelevant and again much confusion is avoided.

The mechanisms that are to be described attach a
network meaning to normal constructions of program-
ming languages, in particular to the procedure statement.
It will be shown that the use of procedures in distant
machines appears exactly the same as the use of local
procedures. Changes do not have to be made in order to
use a procedure from another machine even if it involves
procedure parameters; the remote capability mechanisms
allow the existing procedures to be used. This feature has
proved of considerable practical use. Procedures devised
for one Flex machine have been converted into network
services by the simple means of providing remote
capabilities for them. Their parameters, results, excep-
tions and break-in properties remained unchanged. Of
course, procedures which would require a large band-
width for communication may be impracticable on the
network, but the mechanisms would permit them.

Flex supports processes as well as procedure values.
Processes are necessary when true parallelism is needed,
but if the purpose is only to create a context, procedures
are simpler and more flexible. Procedures are used as the
preferred mechanism in Flex. This certainly helps when
we wish to convert an existing procedure into a network
service, since programs written in conventional languages
are likely to be in terms of procedures - it is not normal
to use a sin or cos process in Pascal. It is also the current
practice to define abstract types by the operations which
can be performed on them, which again corresponds
more naturally to the procedures that can act on them,
rather than to processes.

The next section gives a simple example of the use of
remote capabilities. This is not intended to be realistic,
but to exhibit some of the features which are needed. The
third section shows how the remote capabilities can be
encoded and used so that remote and local calls are very
similar. Section 4 gives further examples. The fifth section
discusses the initialisation of the system and what
capabilities must be present when the computer is
initialised, and the sixth considers the lifetime of remote
capabilities.

2. A SIMPLE EXAMPLE

The Flex type system provides basic types and ways of
constructing compound types. Among the basic types are
Void, which is represented by zero bits, and the types Int,
Real, Bool and Char. The type of a structure (a record)
is understood to be a cartesian product and is written as,
for example, Int x Real x Char. The type of a procedure
specifies the domain and range, for example (Int x Real)
-> (Int x Char x Bool). Vectors of values have types like
Vec(Char x Real). There are other kinds of type, but these
will sufficie for the following example.

Let us suppose that we have in computer A an integer
variable, v, and that we want to give ways of altering the
variable and reading its current value to computer B. The
actual alteration and reading has to be done by A, but
B has to cause it to happen and must supply values to put
in the variable and must receive the results of reading it.
We construct two procedures in A, assignvar, which takes
an integer parameter and alters the variable, and readvar,
which delivers an integer result which is the current value
of the variable. Since Flex has true procedure values,

452 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

 by guest on O
ctober 29, 2015

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


REMOTE CAPABILITIES

these procedures are first-class values and are indepen-
dent of any context which might have set them up.

assignvar: Int -> Void
readvar: Void -* Int

A procedure accesses values which are given to it when
it is called, values which it creates while it is running, and
values which were passed to it from its context. On Flex
the latter values, its non-locals, are bound with the code,
by means of an operation called close by Landin,8 to form
an object which is the procedure. If some of the non-locals
are references, those references (that is, the appropriate
capabilities) are included. Since the capabilities are also
true values, this makes the procedure into a true value
which is now independent of the context which set it up.
The procedures assignvar and readvar do have a non-local
reference, in fact the reference to v, so each of them has
a capability for v in its non-locals. There may well be no
other references to v anywhere else in the machine.

These procedures exist and run in A and alter A's
variable, v. Now we create in A two new remote
capabilities, different from any previous ones, which A
can recognise as its own, and we associate them in A's
store with the two local procedures. A can send these
remote capabilities to B, though we shall postpone for the
moment the discussion of how it does so. B can then make
a remote procedure call to A in which one of these, say
the remote capability for assignvar, is the procedure to be
called and the parameter of the procedure is the integer
which is to be assigned to v. A will, on receiving this
request, translate the remote capability that it receives
into its own local procedure, the local assignvar, and
apply this procedure to the given integer parameter, thus
changing v. It then sends back the result, in this case Void,
which acts as an acknowledgement to B. The process in
B which issued the remote call has been held up waiting
for this acknowledgement or an exception to be returned,
and continues when it arrives. Clearly, in the case of
readvar, the value sent back - the result of the procedure -
is the required contents of the variable v.

Of course the interaction between A and B occurred
over an ordinary network, so the information had to be
coded into bytes for transmission. It is important that the
capabilities should not be forgeable. However, if the
sending and receiving of the packets of bytes, and their
coding and uncoding into proper values can only be done
by microcode, or by trusted system procedures, then we
have a safe system. Once again, in Flex, the transmission
of capabilities is done by microcode, and this ensures that
the individual words created as a result of the transfer
are safe to use. We cannot confuse capabilities with
non-capabilities. But the transfer of compound objects is
done under the control of the type system, and though
we can convince ourselves that the actual transfer itself
is correct in terms of types, since this transfer program
is written once for all, we only know that the types of the
values were correctly stated if the compilers are correct.

The two procedures in A were proper values and had
to be associated with remote capabilities which were sent
out. It might be that the procedures are not used
anywhere else in A, so the fact that the remote capabilities
have been sent to B must be sufficient to keep the local
procedures and the association alive and protected from
/Ts garbage collector. Care must be taken if B finishes

with them, or if B fails, that the procedures are not kept
alive indefinitely by the interface alone.

We can build in this example to show one way in which
procedures can be communicated. Since procedures are
true values in Flex, new procedures can be created inside
a procedure call and delivered as its result. We could
therefore produce a procedure, genvar, in A, such that
when it is called it creates a new integer variable and two
procedures like assignvar and readvar to update and read
the variable, and delivers the two procedures. Its type is
therefore

genvar: Void-* {{Int -* Void) x (Void->Int))

a procedure delivering two procedures with types like
assignvar and readvar. Consider what happens if we
associate genvar with a remote capability and send it to
B. B can call the remote capability with a Void parameter,
which activates genvar in A, creating a new variable in the
store of A and two procedures which are local to A and
have the capability for that variable bound into them.
The capability for the variable occurs nowhere else in A.
Then A has to send the two procedures back to B as the
result of the remote call. This can be done by creating new
remote capabilities for them and sending the capabilities
to B. B is now in the position of the earlier example and
can assign to the variable in A and read its value by using
the two remote procedures to do so. Each time B uses the
remote capability for genvar, A creates a new, different
variable and two procedures bound to it, creates remote
capabilities for these procedures and sends the two new
remote capabilities back to B. All these interactions, and
therefore in this sense the high-level protocols which are
possible with genvar, are implicit in its type.

We can see from this example that the possession of
a remote capability for a procedure of an appropriate
type enables us to create and pass around new remote
capabilities. Remote capabilities can be transmitted as
procedure parameters as well as procedure results. In
Section 6 we consider the initial remote procedure which
must be owned in order to start off the indefinite
transmission of other procedures, and particularly
consider its type.

Each of the local procedures should have been used
locally in A. The only operation that was necessary to
make this local ' service' available over the network was
to create and send out the remote capability for genvar.
The creation and transmission of the other capabilities
was automatically done by the system.

It would be possible to use remote capabilities standing
for other types of values than procedures. We might, for
example, have a remote reference. A remote reference
would have to have remote assignment and remote
de-reference operations denned on it, so we would have
such operations as well as remote procedure calls.
Likewise remote arrays would have remote indexing
operations. It seems unnecessary to introduce these types,
since remote assignment and remote indexing would have
to be implemented by means of some assignment code in
the originating machine, in effect a remote procedure.
The mechanisms which have been defined will suffice for
the defining operations for all types of value, including
new abstract data types in the object-oriented sense.
Indeed, the example above shows how this would be done
for references.

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 453

 by guest on O
ctober 29, 2015

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


J. M. FOSTER AND I. F. CURRIE

3. ENCODING THE REMOTE
CAPABILITIES

The Flex type system is intended to be sufficient for
type-checking operating systems. It contains basic types,
type generators (including ones for backing store), new
abstract types and new type generators, and polymorphic
types. In this it is like the type system of ML,7 with the
addition of type generators for the basic backing store
types and, as we shall see, for network types. Unlike ML,
it permits programs which are created by the compiler to
inherit type checking, which will also be correct. Part of
the mechanism for this is the use of an infinite union type,
which is the union of all types. In Flex this type is called
Moded. The procedures which control the transmission
of data are written to operate on Moded values, so that,
when they check types, that type checking is guaranteed
by the correctness of the compiler which created the
procedures.

We are trying to achieve a system in which the network
is transparent. Procedure calls, procedure parameters
and results, break-in to procedures and exception
handling are all to be like those for local procedures
except that, by using a remote capability instead of a
capability for a local procedure, we are activating a
different computer. In order to issue a remote procedure
call we need a remote capability for the procedure that
is to be called and some parameters to give to it. From
these we must form a packet by encoding them into a byte
form. The result will come back in the form of a packet
of bytes, which must be decoded into the proper form of
the procedure's results.

At the other, receiving end, a packet arrives containing
the encoded remote capability, which the receiver
recognises as corresponding to a particular local
procedure. The rest of the packet contains the encoded
parameters, which must be decoded into proper local
values. These are passed to the actual procedure which
is run in a new process created for the purpose. The result
of this local call is then encoded and sent back to the
originator. We shall not consider the detail of how the
network transfers the packet of data, though we shall
describe how time-out, rejection of the request and
abortion of the procedure once it has started can be fitted
into this picture. It can be seen that the capability for the
procedure to be called is dealt with differently from the
parameters and the results.

It would be possible to write the procedures, flatten
and unflatten, which encode and decode the parameter
and result values, and give them the types

flatten: Moded -» Vec Char
unflatten: Vec Char -* Moded
If we did this we would have to encode the actual mode
into the vector of characters in the packet. It would be
possible to write flatten and unflatten this way, and have
them known to be correct in terms of type because of
the type checking inherited from the compiler which
produced them. However, as we shall see, both ends of
the transaction know the types that are being transmitted.
Thus in order to avoid the waste of encoding the types
into the packet but still maintain type-correct program-
ming the procedures have been given the types

flatten: Moded -* Vec Char
unflatten: (Vec Char x Type) -> Moded

The form of these is not symmetric. The flatten routine
does not encode the type into the packet, but at the end
of the transaction where unflatten is used the type of the
data is always known, as we shall see below, and can be
supplied as a parameter. Supplying the type in this way
does not break the type-checking rules, since even if this
information is wrong it is still only possible to create legal
data. If the wrong type were to be supplied, either the
incompatibility of this with the packet would be dis-
covered, or the result, while being of the specified type,
would not be the result that was required.

Such values as Int, Real, Char and Bool can easily be
encoded, and so can structures, vectors and unions of
them. We are assuming in this that the representations of
the primitive values are the same in both the source and
destination machine. The more complex considerations
involved by different representations have not been
studied in the implementation on Flex.

The more interesting question is how to encode the
values which are procedures. Suppose that we are in the
following situation. Computer A is about to issue a
remote procedure call upon computer B, using a remote
capability for a procedure in B, say m, which has a
procedure parameter. We wish to arrange that the
procedure which A is going to supply as the actual
parameter, say / , is encoded and passed over to B. But
B's procedure m, which is a normal procedure in B, is
expecting an ordinary procedure parameter. We have
therefore got to produce in B an ordinary procedure, say
bf, to pass to m. When bf is called it must issue a remote
call to A, where the real procedure /resides, wait for the
result, decode the result into an ordinary B value, and
return this to m. The procedure bf must have its proper
type in B.

Suppose then that the procedure / in machine A has
type Par-*Res and we are applying flatten to / i n A.
Flattening the procedure must produce a new remote
capability to transmit to B, and it also creates, in machine
A which does the flattening, an association between that
capability and the procedure. However, the procedure
that is associated with the capability is a modified version
of the original procedure/. In fact we create a new remote
capability, cf say, in A, and a new procedure, ff say, in
A.

ff: Vec Char -> Vec Char
ff= Xv. flatten(to_moded(J{unflatten(v, Par))))

and associate ff with cf. The effect of ff is to unflatten
the rest of the packet containing the remote call from B,
producing a value of type Par. The local procedure / is
applied to this, the result is converted to a Moded value
by tojnoded, and flattened back into a packet. Hence the
procedure//"accepts packets, translates them into proper
parameters for / calls/and translates the results back
into packets, which it delivers.

Note that we can keep//in an association list for the
remote capabilities because true procedure values are
manipulable objects. As long as the association between
cf and / / persists, we shall be keeping//", and therefore
also/ alive and protected from ,4's garbage collector. We
now encode cf in a unique way, so that its encoding is
different from that of every other kind of value and from
any other remote capability created either in this machine
or any other. To do this we need to incorporate
something equivalent to the machine A's identity and the

454 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

 by guest on O
ctober 29, 2015

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


REMOTE CAPABILITIES

time of creation. We also include the type of/ encoded
as a sequence of bytes.

It is worth pointing out the level of protection provided
by the assumed correctness of various parts of the system.
If the microcode controlling the transfer of capabilities
is correct, we cannot confuse capabilities with non-
capabilities, so we can be sure that we have only the
capabilities that we are allowed to have and are using
them in the proper way. But we may be wrong about the
Flex types of the objects that have been transferred and
indeed we may have transferred the wrong values, though
they must be ones to which access was possible. If the type
checking derived from the compiler is also correct we
have data of the right type, but it might not be the data
which we thought was the parameter of the remote call.
If the procedures Jtoten and unflatten are correct then we
have the right data.

The remote capability cf is associated with / / in such
a way that A can find ff if it is given cf. Let the procedure
to find ff from cfbzfind_proc, where

find_proc:RemoteCap -* (Vec Char -> Vec Char)

so if A receives a remote call, in which the capability is
cf and the packet representing the parameters is v, it can
implement this by launching a process to obey

find_proc(c) (v)

and sending the bytes delivered by this back as the result
of the remote call.

B needs to issue the call, and to do this the primitive
procedure remote_call is defined.

remote_call:(RemoteCap x Vec Char) ->• Vec Char

B therefore obeys a procedure bf, which has the same
type as the original procedure / . It flattens the actual
parameter and uses the resulting Vec Char and the
capability c/in a remote call. It then unflattens the Vec
char which is returned, producing an object of the correct
type. Obeying bf in B thus has the effect of calling/in A.
Note that if/has procedure parameters, so will bf. These
will be supplied in B, and flattening them will create
remote capabilities and associated procedures. So when
/, running in A, calls its procedure parameter the call is
transferred back to B and is obeyed there.

If an exception occurs in A during the execution of the
procedure/ perhaps an overflow, an index out of bounds
or a user-stimulated exception, we would like to have this
transferred back to B, the originator of the remote call.
Accordingly it is necessary for the call of flatten in the
body of ff to trap the exception and deliver a version of
it coded as a vector of characters. Likewise, when B
receives the packet containing the encoded exception,
the unflatten operation causes the appropriate exception
in B. A time-out in the remote call, if one is implemented,
must cause a time-out exception to occur in B. Flex imple-
ments exceptions and exception traps.

In Flex, when a process is launched, a procedure is
delivered which when called will abort (break into) the
process. Over the network we want to achieve the same
effect. B, having started a remote call in A, now wants to
abort it. There is therefore the provision to send from B
a further packet, an abort packet, belonging to the remote
call, on receipt of which A will abort the process it
launched to obey / and return the exception value it
receives as a result, duly encoded as above, back to B.

The call to abort the transaction had to occur in a
different process in B from the one which issued the
remote call, since that process waits for the reply from A.
It is necessary to specify what happens if the abort packet
arrives in A after the completion of the call off. Since any
abort has to be issued from a different process, it is always
possible that the process in question has terminated
before the abort is acted upon (it is impossible to schedule
with semaphores or monitors, in the very nature of an
abort). So the correct programming of aborts always
allows for the possibility that it is too late, and this rule
can also be insisted upon for remote calls. Hence it is
adequate for an abort package which arrives too late to
be ignored.

It can be seen that the remote procedure call in B
behaves exactly like an ordinary procedure call in B, in
respect of parameters, results, exceptions and break_in.
So it is often possible to test programs locally, not using
the network, and then when they are working to use them
remotely. This can simplify the debugging process.

4. FURTHER EXAMPLES

4.1. Remote use of dictionaries

A dictionary is an abstract type with five defining
procedures, one to make a new dictionary, one to add
names and values to a dictionary, one to look up names
in a dictionary, one to delete and one to produce a visible
form of the dictionary.

new_dict: Void -> Diet
add_dict:(Dict x Vec Char xModed) -• Void
find_dict: (Diet x Vec Char) -+ Union(Moded, Void)
delete_dict:(Dict x Vec Char) -* Bool
show_dict: Diet -» EditableFile

Using the object-oriented approach we can say that each
dictionary which is made up by new_dict consists of a
group of four procedures, derived by binding in the actual
dictionary. We can write a procedure, make_dictionary,
which calls new_dict, and then delivers four procedures.

make_dict: Void-*
((Vec Char x Moded) -> Void x {add}
Vec Char -> Union(Moded, Void) {find}
Vec Char -»• Bool {delete}
Void -* EditableFile) {show}

Note that a dictionary can contain values of any type and
holds them as Moded values. The look-up procedure,
find_dict, produces a Moded value if the identifier is
present, and a Void value if not. The only operations on
the resulting Moded values are those which can be
produced by the compiler, so type checking has not been
breached.

We can use a dictionary across the network by passing
some or all of the procedures delivered by make_dict in
the form of remote capabilities. Procedure values, and so
the object-oriented approach, are being used across the
network in exactly the same kind of way as they are used
locally.

4.2. Different file transfer protocols and the associated
types

We consider how the type of the procedures characterises
the kinds of communication. Suppose that we are doing

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 455

 by guest on O
ctober 29, 2015

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


J. M. FOSTER AND I. F. CURRIE

a simple file transfer of named files from one machine A
to B. Let A provide for B the remote capability for

transfer\: Vec Char -> (Void-> Vec Char)

in which the parameter gives the name of the file to be
looked up in some particular dictionary in A, and the
result is a procedure for producing successive lines of the
file. The actual transfer I runs in A, having been remotely
called from B. It creates a procedure to deliver the lines,
flattens it giving a remote capability, and sends that
remote capability back to B. B now issues a remote call
using this capability each time it wants a new line from
A. So it is B which is the active partner in the actual data
transfer and determines when each line is to be sent. On
the other hand suppose that A provides

transfer!: (Vec Char x (Vec Char -> Void)) -> Void

The first parameter is again the name of the file and the
second is a procedure for receiving successive lines of the
file. Once again transfer! is local in A and remotely called
from B. But this time B has to create, flatten and send
a remote capability for a procedure local to it, which will
deal with the lines when A cares to produce them. This
time it is A which controls the actual data transfer. So in
the same way as in a purely local type scheme, we can see
the kinds of interaction which are possible across the
network, just by examining the types of the procedures
involved.

4.3 A command-line interpreter

A command-line interpreter could have the type

interpret .((Void -* Vec Char)
x (VecChar -> Void)) -> Void

The first parameter delivers characters to be interpreted
each time it is called and the second parameter receives
messages to display in return. If the local procedure for
interpret lies in A, and B has a remote capability for it,
B can activate the command interpreter in A, passing
procedures which A will call in B to produce the lines to
interpret and display the messages. If A fails when B is
accessing it, B will get a time-out exception, which can
be trapped and turned into an appropriate message. Note
again that the type of interpret is such that it could be
used locally in A, and so tested in A alone before being
used on the network. We may expect this, since an
object-oriented procedural approach will of its nature
lead to a procedural definition which can be used
remotely. This will usually be possible, but not always
useful, since the bandwidth of local communication is
likely to be much higher than the bandwidth available
from the network. It is not likely, for example, that large
block moves of pixels could usefully be performed if the
data has to go across the network. Hence remote graphics
programs are likely to have to communicate in a coded
way, whereas within one machine this need not be so.

5. INITIATION

All the kinds of transfer which have been discussed so far
have needed the possession of a remote capability before
anything can happen. Given an appropriate capability
more capabilities can be propagated around the system.
Indeed, given a suitable capability involving the type

Moded, we can arrange to transfer a capability of any
type. But we do need at least one capability to start all
this off. This has to take the form of some capability
which a computer automatically has as soon as it is
activated.

On the Flex system we have chosen to provide an initial
function first_fn

first_fn: Computerldent -» (Vec Char -* Moded)

which is given the identification for a computer and
delivers a function from names to Moded values. The
names are looked up in a particular dictionary on the
nominated computer.

6. LIFE-TIMES
When machine A flattens a procedure in order to send a
remote version of it to a distant computer, the procedure
is kept alive and protected from the garbage collector by
being associated with the corresponding remote capa-
bility in the list used by find_proc. The distant procedure
can in turn pass the remote capability for this procedure
on to other computers, which could use it directly to call
the procedure in A. If A's store is not to become choked
up by these procedures it must garbage collect them
away, and to do so it must discover whether any of the
other computers which are still on the network are
keeping the remote capability alive in its store and might
therefore use it. Computer A therefore periodically asks
all the other computers about each of its own remote
capabilities. If none of the others requires the capability
A can remove it from the association list, and the
procedure will be removed at the next local garbage
collection. The other computers therefore have to have
access to all the remote capabilities which they hold, in
order to answer this question.

The identification of the computer that is included in
the encoding of remote capabilities serves two purposes.
It enables the system procedures to send the information
to the correct place to be acted upon, and it is part of
the unique identification of the remote capabilities. The
remote capabilities that we have described only have a
meaning as long as the computer in which they originated
is switched on. So the network address is a sufficient
identification of the computer. In systems where the
computer moves about in the network (cellular systems),
the address which is used to identify the computer will
serve.

When a computer is switched on again, after having
been off for a period, it is necessary to avoid confusing
packets created in the new incarnation with old packets
still in the network. A time of switch-on is therefore also
a necessary part of the identification of a computer.

7. CONCLUSIONS

We have described mechanisms for interactions between
machines on a network which preserve the safety of
capability machines and include a network-wide type-
checking mechanism with inheritable checking and
abstract data types. This system has been implemented
on a network of Flex machines and is in use.

The already existing system of capabilities was clearly
essential as a base for remote capabilities. However, it
was the presence of true procedure values that made the

456 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

 by guest on O
ctober 29, 2015

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


REMOTE CAPABILITIES

rest of the system and its implementation relatively easy.
It would not have been possible to use this method if
procedure values could not have been kept in an
association list, regardless of their origin in particular
programs.

In the exploration of the system it has become apparent
that we need a concept of' universal' capabilities, that is,
capabilities which have the same purpose network-wide.
For example, a Pascal compiler in the local filestore of
machine A is related to the Pascal compiler in machine
B, even if they are not at the same level in terms of
updates. We may want to send a procedure call to a
machine saying 'use your Pascal compiler' rather than
' use this specific remote capability'. Another example lies
in the use of new abstract data types. It is natural to
implement these as remote capabilities, but once again
we want the meaning of types to be the same across the
whole network. We want to refer to a particular abstract
data type, using the same 'universal' capability in a
transaction with any machine on the network, not a
different capability for each machine which happens to
stand for the abstract type in that machine. The required
properties of these universal capabilities are being
explored in the Flex system.

The implementation has not addressed the question of
mixed types of machine. Clearly, data may have different
forms which must be translated in transactions between
different types of machine. There are further, more
difficult problems. The Pascal compiler, though still

recognisably serving the same purpose on two machines,
does not produce the same form of code for different
machines. Some uses of a capability for the compiler will
mean 'use your compiler'; others, such as updates, will
mean 'use the type A compiler'; still other will refer to
a specific capability.

So far all Flex implementations have been microcoded.
The system-wide types would present no problem on a
conventional computer, and the procedure values present
only the problem of achieving an efficient implemen-
tation. But the capabilities present a more serious
problem. One approach would be to depend entirely on
the type system and the checking provided by the various
compilers in the system. The reliability of compilers is not
at present good enough to make this a satisfactory
solution, and we would like to allow for the possibility
of the development of new compilers which will certainly
go through a stage of containing errors which must not
be allowed to crash the whole network.

Accordingly an abstract machine has been developed,
known as Ten 15 and based on algebraic principles. This
machine is implementable on conventional computers
and uses the Flex type system, enforcing it with complete
rigour. We therefore have to depend for our network
correctness only on the correctness of the implementation
of Ten 15, which can be used as target by many compilers.
The Flex Ada and Pascal compilers already use Tenl5 as
their basis.

REFERENCES

1. I. F. Currie and J. M. Foster, Curt: The Command Inter-
preter Language for Flex. RSRE Memorandum 3522
(1982).

2. I. F. Currie, P. W. Edwards and J. M. Foster, Flex Firm-
ware. RSRE Report 81009 (1981).

3. D. M. England, Capability concept mechanisms and struc-
ture in System 250. Revue francaise d'automatique
informatique, recherche operationnelle 9, 47-62 (1975).

4. R. S. Fabry, Capability based addressing. Comm. ACM 19
403-412(1974).

5. J. M. Foster, I. F. Currie and P.W.Edwards, Flex: a
working computer with an architecture based on procedure
values. Proceedings, International Workshop on High-level
Architecture, Fort Lauderdale, Florida, 181-185 (1982).

6. J. M. Foster, C. I. Moire, I. F. Currie, J. A. McDermid,
P. W. Edwards, J. D. Morison and C. H. Pygott, An Intro-
duction to the Flex Computer System. RSRE Report 79016
(1979).

7. M. J. C. Gordon, A. J. Milner and C. P. Wadsworth, Edin-
burgh LCF. Springer-Verlag, Heidelberg (1979).

8. P. J. Landin, The mechanical evaluation of expressions.
The Computer Journal 6 (4), 308-320 (1964).

9. B. Liskov and R. Scheifler, Guardians and actions:
linguistic support for distributed programming. ACM
Transactions on Programming Languages and Systems 5,
381-404(1983).

10. R. M. Needham and R. D. H. Walker, The Cambridge
CAP computer and its protection system. Operating System
Reviews 11, 1-10(1977).

11. A. Z. Spector. Performing remote operations efficiently on a
local computer network. Comm. ACM 25 (1) 39-59 (1982).

12. J. E. White, A high-level framework for network-based
resource sharing. AFIPS Conference Proceedings, National
Computer Conference 45, 561-570 (1976).

13. Xerox Corporation, Courier: the Remote Procedure Call
Protocol. Xerox Report XSIS 038112 (1981).

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 457

 by guest on O
ctober 29, 2015

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/

