
9 The algebraic
specification of a
target machine: TenI5
J. M. Foster, Royal Signals and Radar Establishment

9.1 Introduction

198

TenI5 is a formally defined abstract machine and a target for high-level
language compilers. It provides a basis for formal methods over the whole
area of programming, from operating systems to users' programs, from
assembler-like constructions to high-level languages, and from simple text
construction of programs to elaborate transformation systems. It also
provides a practical basis for creating programs and for program manipula
tion. So it is something on which to found a programming environment.
Meeting these requirements together is not easy, but there have been enough
advances in recent years for this to be a timely moment to make the attempt.
Experience and practical use of TenI5 have demonstrated the possibilities.
This chapter considers the requirements and describes in outline how TenI5
has met them.

It is not to be expected that one class of formal methods will satisfy all
needs. At present there are groups of methods with various foundations,
particularly in predicate calculus and algebra, and within these groups there
are competing techniques. All of these techniques are needed in our
armoury. TenI5 is intended as a groundwork for as many of them as
possible, so that tools using different methods have at least some common
factors. This will be of advantage to avoid the duplication of work and to
enable tools to cooperate with each other. TenI5 does not make a break with
current practice and start afresh; green field solutions to old problems face
almost insurmountable difficulty in becoming accepted, and it is unwise to
discard systems which have shown themselves to have at least some of the
needed characteristics. It is aimed at current methods of producing practical
programs, current operating systems and current problems, while avoiding
constraining the introduction of new methods. Practical usefulness is
paramount. TenI5 is something out of which people build a variety of
systems, not a single Procrustean system, to which users have to fit their
problems.

C. T. Sennett (ed.), High-Integrity Software
© Crown Copyright and Pitman Publishing 1989

In outline, the requirements are these. Ten15 needs to be expressive
enough to account for all the necessary kinds of programming and data. It
needs to be well matched to the way people want to think about programs,
because at times it will have to serve as an interface between tools and users.
It needs to cover a wide spectrum, from high- to low-level constructs, if it is
to serve as a basis for transformations. It must be possible to translate it into
efficient code for conventional machines, since it is to be used. It needs to be
in the intersection of predicate calculus and algebra, since it is to serve as a
basis for tools based on each of them.

9.1.1 Expressive range

Programming languages started with assemblers, autocodes and Fortran,
and have proliferated wildly. Only a few established themselves generally;
each of these has serious shortcomings, and there is no universal language
available, nor is there likely to be. The very heat and passion of the debate
between languages and its eternal fruitlessness is evidence of the need to
retain a choice. The best language depends on the problem. There are
problems for which Ada is better than Lisp, and problems for which Lisp is
better than Ada. Problems which cut across such categories are in difficulty.
A programming environment needs to have a number of languages avail
able, and to have the languages capable of working together, in the sense
that systems can be made out of components written in different languages
and such systems can be analysed.

Operating systems developed on different lines from application pro
grams. Early operating systems were introduced in order to make the best
use of the computer, and to provide standard ways of driving peripherals
and allocating resources. They evolved by adding features to make this more
convenient for users, particularly by introducing job control languages.
These languages were developed ad hoc, and were interpreted, not com
piled. It has often been remarked that they were programming languages and
should be considered as such, and that considered as languages they were
crude. But progress along this line has been disappointing.

The programming of the operating system itself has usually been done in a
mixture of assembly code and high-level language, the high-level language
wherever possible and the machine code for the parts which could not be
expressed in the language or which would be too slow if they were. Operating
systems and the corresponding programs in operational computers are
among the most important programs to be analysed, since on them the
correctness of all other programs depends. No matter how well a program is
validated in itself, if the operating systcm wrongly allocates store to it or to
other programs then that validation is destroyed, and the errors that can be
introduced may be very difficult to diagnose.

Ten 15 i:s illLended nol only lo provide a basis for conventional users'

199

200

programming but also for the programming of operating systems and for the
equivalent of job control language, so that analysis and manipulation can be
carried out on all these classes of program.

The need to support operating systems as well as user programming forces
Ten15 to include types and operations which are adequate to express the
extra features. For example, types to handle database and network values
are essential. The kinds of value which conventional systems handle on
backing stores and in databases are curiously rudimentary. It is common that
the only method of communicating between programs is through files, the
structures of which are closely related to the physical properties of disc
drives. In some cases sequences of lines of characters are the only data
structure supported and dictionaries provide the only way of accessing them.
Even in more sophisticated databases the data structures are closely tied to
the specific view of data which that particular system uses, and are usually
provided in order to implement individual and elaborate mechanisms. Ten15
provides types and operations which can be composed to make such systems,
while retaining the advantages of type checking. The data structures on
backing store need not differ very greatly from those used in main store.
Certainly the relative speeds of operations are different in the two cases, but
the needs are much the same. In terms of an appropriate set of types for
backing store all the conventional types of data management system may be
programmed and more besides.

Similar remarks apply to networks. The growing use of remote procedure
calls [Xerox1981 , Foster/Currie 1986, Spector1982] suggests that for loosely
coupled networks many of the kinds of data familiar from main store can be
used. A number of important problems arise here, outside the scope of this
chapter [Currie/Foster1987].

Operating systems have to handle users' programs as data, since they have
to be able both to allow for their creation and to supervise their running.
Procedures and processes are the basic ideas here, and this implies that true
procedure values are needed. Operating systems also have to provide
debugging facilities; this is an interesting area to treat formally.

A characteristic of operating systems and of the control programs for
operational computers is that they contain deliberately non-terminating
programs. A command line interpreter is an example; it interprets every line
as it is presented and goes on doing this indefinitely. The formalism has to
deal with this situation.

Concurrency is another topic which must be included. Unfortunately,
pseudo-parallel processing on one computer, loosely coupled networks of
computers and tightly coupled networks each seem to require different
primitives [HoareI978, Milnerl980]. At present Ten15 does not include
methods of treating tightly coupled networks and research in this area is
continuing. The problem is not to provide the primitives for tightly coupled
networks, but to unify the treatment of all types of concurrency.

9.1.2 Structured for people to use

In spite of the deficiencies of current languages, it would be generally agreed
that there has been progress in their design. One important area of
improvement has been in the use of types. Types were originally introduced
because compilers needed to know the size of objects and the meaning of
operations on them in order to produce the appropriate code. But other
advantages soon became clear. The types introduced in Algol60 provided
checks that found many errors in programs at compile time. The code that
was produced did not have to check for these errors at run time and so could
be more compact and faster. There were only a fixed number of types in
Algol60-ignoring the dimensionality of arrays-but later languages, for
example Pascal, introduced the generation of indefinitely many types.
Neither Pascal nor Algol had a system of types which made it easy to be sure
at compile time that there were no type errors, since parameter types were
not fully specified. The importance of strong type checking was realized
later.

Strong type checking guarantees that, on any path through a program,
operations expecting arguments of a particular type are applied only to
values of that type, which provides a powerful check at compile time against
certain errors. But this fact can be considered in a different way. Type
checking guarantees that only operations expecting type X values can be
applied to a type X value, but it also ensures that a value of type X must
have been generated by one of the operations which produces type X values
and by no other operation. This means that it is relevant to integrity and to
information hiding. For example, suppose that a reference is passed from
one program regime, P, to another, Q. Consider a type system in which
there are values of type reference, which can be written and read, and values
of type read-only reference, which can only be read. Let there also be an
operation which converts references into read-only references, without
otherwise modifying them, but no operation to perform the reverse trans
formation. Then if P applies this operation to one of its references and
passes the result to Q, it can be sure that Q can at any time read the contents
of the read-only reference, but cannot ever alter it, because of the absence of
operations to do so. This particular access control is similar to that which
can easily be provided on capability machines or in file stores, where the
operations are interpreted. But the type mechanism is potentially a much
more refined method of access control, and it operates at compile time, so
avoiding the interpretive overhead.

The concept of types is so important and useful that it must be considered
as a requirement of Ten 15. This presents a difficulty, since the type systems
of the various languages in use have heen developed in j<;olation from each
other, and are in any case each inadequate for the total job. Furthermore,
work on possible systems of types has advanced considerahly beyond the

201

202

systems used in well known languages [Reynolds 1985, MacQueen/Plotkin/
Sethi 1986]. So Ten 15 must have a global system of types into which the types
in existing languages can be mapped, which is capable of describing all the
necessary constructions efficiently, and which may be extended as new needs
arise.

Another tendency in the development of programming languages has been
the invention of constructions which allow programmers to separate
decisions. Perhaps the first example of this was the use of labels in assembly
code, so that one did not have to give the absolute address of the instruction
which was to be the destination of a jump, but could delay filling in that
address until the program was assembled. Such constructions usually permit
decisions to be delayed, but it would be better to speak of controlling the
time of taking decisions, since it is often separating the decisions, rather than
delaying them, which is important. The skill of programming may be
regarded as the choice of the right moment to take decisions. Examples of
this abound. The identification of variables, the introduction of procedures,
arrays of dynamically chosen size, heap storage and separate compilation are
all instances of this development. It is of the greatest importance that Ten15
should facilitate such separation.

Among the most important features of operating systems is the use of
interactive working, both on multi-user systems and on single-user work
stations and personal computers. Here is another case of the delaying of
decisions, in this case the decision of what to do. The characteristic of
interactive working is that at the start of a session the user does not know
exactly what to do, which procedures will be applied to which values, and in
what order. Constraints which prevent programs from working together, or
which funnel interactions through a narrow data channel, such as converting
the output of one program into a text file and then recreating a similar data
structure from it in the next program, are quite against the style of
interactive work. Data must pass directly between programs, the combina
tion of which was not anticipated, and this without compromising the
integrity of the programs or the system. Clearly, common store is needed, so
the question of integrity is raised. Strong type checking is exactly the
mechanism needed to permit and control such access.

9.1.3 Wide spectrum

In the past, programs were created by wntmg a text version and then
compiling this into machine code. Separate compilation complicated this
picture only slightly; the running program was still produced by the compiler
from texts, and it was only the compiler that produced programs. Indeed one
acted as if the text was the program. More recently, it has become common
to produce programs by other means. For example, in the Flex system
[Foster/Currie/EdwardsI982], many programs exist to which it is not

natural to attribute a text version, since they were not created by compiling
text, but by applying other program-creating programs to non-text data.

An example of this tendency is the creation of programs by program
transformation, which has been a research topic for many years. One might
want to write a program in a clear way which can be seen to be correct, and
transform it, by methods which are known to produce programs of
equivalent effect, into a version which will run with adequate efficiency. If
this is to be done, all the various versions of the program must be in a
formalism which can be manipulated by the transforming program. This
needs to move continuously from high-level constructs down to constructs
which correspond sufficiently closely with conventional machines to be fully
efficient. TeniS must have a wide spectrum of constructions.

9.1.4 Efficiently translatable

Program analysis needs to be tied as directly as possible to the program
which actually runs. If an Ada program is translated into TeniS and
analysed and then taken away to another system to be translated with an
independent Ada compiler, some confidence in the original analysis has been
lost. The Ada program or the operating system of the distant computer may
not exactly correspond to the way Ada was translated into TeniS. If instead
Ada is translated into TeniS and then that same TeniS into machine code,
this particular discrepancy does not exist. Neither Ada nor any other
language is sufficiently well specified for anyone to be confident that there
are no such differing interpretations. The same point arises even more
strongly for mixed language working or the production of programs by
transformation. In that case TeniS may be the only available expression of
the program from which code is to be produced. So the TeniS constructions
must be directly translated into machine code. If this is to produce real
operating systems the resulting code on conventional computers must be
efficient. Certainly it is permissible to pay a small price in speed and space
for the extra facilities and confidence provided by TenIS, but only a small
one. The amount is arguable; perhaps 2S070 is tolerable.

9.1.5 Formal aspects

One result of the textual bias of compiling systems has been too great an
emphasis on syntax. The syntax of a language is only there to provide a
representation for programs for an underlying machine. The bones of a
language are the operations of that underlying machine; the syntax is
cosmetic. Too often gross complexity is introduced in the syntax and
explained in terms of it, but only an elementary machine lies behind the
facade. Though the syntaxes ot languages vary greatly, in many cases the

203

204

algorithmic constructions behind them are very similar. Procedures, condi
tional statements, loops, subscripted arrays and variables are common to
most languages. If one is manipulating or proving properties of programs it
is these essential constructions with which one is concerned, rather than the
details of the text representing them. Of course, the manipulation has to be
in terms of some representation, but the linear text string of letters is unlikely
to be the appropriate one. A representation which reveals the structure is
appropriate. For many years the term "abstract syntax" has been used for
something like this concept, but it has not been well defined and it tends to
be associated with specific languages, in the sense that one might speak of
the abstract syntax of Pascal or the abstract syntax of Ada.

A curious byproduct of the textual bias has been the use of macros.
Macros were introduced early into programming languages as a method of
doing textual substitution before compiling. However, they did not have to
respect the syntactic structure of the program so long as the final output of
the macro stage was syntactically correct. This led to some very rebarbative
and impenetrable programming techniques. It is often useful to carry out
systematic substitutions in programs before they are compiled, but these
should form a part of the process of generating programs by transformation
and should respect the structure of programs.

Whether tools are based on predicate calculus or on algebra, they need
some way of describing programs which corresponds to the essential
structure of the program. Consider, as an example, conditional expressions.
Any particular conditional expression has a number of sub-expressions, and
the meaning of the whole is related to the meanings of the parts in a
particular way which is characteristic of this construction. In predicate
calculus this relation will be described by means of predicates and in algebra
by algebraic means.

For the definition of an abstract machine, the atomic program construc
tions and the ways of combining them to produce more elaborate pieces of
program have to be specified. Giving a definition of these structures is the
same as giving a semantics of the machine.

The commonest methods of defining the semantics of machines have been
to give definitions by means of denotational semantics, weakest pre
conditions or operational semantics [ScottI970, DijkstraI976]. These
methods all study the meaning of the evaluation of a program. Each
becomes more complex when applied to non-terminating programs and
procedure values. Instead of using one of these methods, the definition of
Ten15 is given by developing the whole of a program, as an infinite object,
and defining which programs are equal. This method uses laws as in Hoare
et al [Hoare 1987] but in this case to give a formal and complete definition.
The intended significance of equality is that programs are equal if and only if
they behave identically in all possible circumstances. This, however, is only
the intuitive meaning; the definition of equality is given purely formally. In
order to do this some constructions have to be introduced into Ten15

especially for the purpose. The determination of the equality of TenI5
programs is not a computable problem, nor is this desirable, for if it were
computable TenI5 would not be sufficiently expressive. But it is possible to
isolate parts of TenI5 where equality is computable, and indeed this is part
of the process of showing that Ten 15 is adequately defined.

Later sections will show how the Ten 15 algebra is defined inductively. The
basic algebra is rather like a word algebra with extra constructions. A
congruence is then given on this algebra and Ten 15 is identified with the
quotient of this algebra by the congruence relation. Many properties may
be evaluated by means of homomorphisms on the algebra, and by other
algebraic means. This definition lies easily within a predicate calculus
formulation and so allows predicate calculus based tools to be used.
Whether the form of the definitions will prove intuitively easy to use remains
to be seen.

9.1 .6 Present state

TenI5 is an abstract machine, formally defined as an algebra. It is the target
of a number of compilers which are in various stages, including compilers
for Ada, Pascal and Algol68, and more are planned. It can also be produced
by transformations and other non-compiler tools. It can be translated into
machine code for conventional computers, at present Vax and the Flex
computer. Programs for TenI5 can be the object of manipulation, by both
algebraic and predicate calculus methods. It supports the range of program
ming discussed above.

Some of the manipulations of TenI5 that are needed have been discussed,
in particular compilation into machine code and the transformation and
combination of programs to yield new ones. Many other kinds of tools will
be needed and, though it would be against the spirit of this chapter to think
that an exhaustive list could be given, it would be useful to skim through
some of the possibilities. Possible tools, in no particular order, are: proof of
correctness, proof of properties, examination for deadlock, symbolic evalu
ation, showing that a program lies in a particular class such as time-bounded
programs, showing that particular stylistic programming rules have been
met, producing a concordance, producing other program annotations to
help in understanding it, showing that overflow cannot occur, showing that
there can be no error in indexing arrays, fmding the places in a program that
would be affected by a proposed change, producing an abstract program
that can be specialized to particular uses in a systematic way, and making
systematic changes to a program that can only be done if its structure is
known.

The rest of the chaplcr discusses the type system, the TellIS machine and
its formal definition.

205

9.2 Types and operation

206

Strong typing has been used in many programming languages, but not in a
completely uniform way. Different languages have had different ideas of
what types mean.

Ten15 regards types as sets of values. Types are used for a number of
different purposes: to give control over access, to guard against program
ming errors of certain kinds, and to allow the translator to deduce
constraints on the program that allow it to produce better code. The types of
conventional programming languages must be mapped into the Ten15 types,
in the sense that values belonging to the Ten15 types serve to represent values
operated on by the programming languages. The needs are not antagonistic,
but the conclusions to which they lead have to be merged together into a
coherent system.

The types are related to the operations in an obvious way. If an operation
is said to take a parameter of type X it must be applicable to all values of
that type. If an operation is said to deliver a type, then all values that it can
deliver must belong to that type. These rules do not determine which sets can
be chosen as types. The choice is a pragmatic one.

Consider some simple examples. Suppose that there is a conditional
expression, yielding an integer answer

if a<10 then 2*a else al2 ti

The type of the result depends on the original value of a. Suppose that
min-evenint is twice the integer part of minint/2. If the original value of a
lay between minint and to, then the values less than half minint will cause an
overflow and so will not appear here. The remaining ones will produce all the
even values between min-evenint and 18. If the original value of a lay
between 10 and maxint, the result will be all the integers between 5 and the
integer part of maxint/2. Thus the result values considered as a function of
the value of a are given by the following expressions:

a E minint, minint+ 1, ... 9
~ min-evenint, minevenint+2, ... 18

a E 10,11, ... maxint ~ 5, 6, ... entier(maxintI2)

What can be said about the type of the conditional expression? The type
could be a function from the state of the machine to possible sets of values,
which is approximately what is written above. The disadvantage of this
approach is that it discards no information: the type theory is no different
from the semantics of the machine. Indeed, if general loop constructions are
introduced the type is not in general computable. But the types must be
deduced at compile time from the program, and the above sense of type will
not allow this.

The input state information could be discarded, giving a type like

min-evenint, min-evenint+2, ... 5,6, ... maxintl2

but even this formulation is too difficult to handle. It is quite a complex set
description in itself, and for arbitrary expressions the complexity increases
very rapidly. A much cruder viewpoint says that the sub-set is determined
just by its smallest and greatest members. In this case the type would be

min-evenint .. maxintl2

and this is the type chosen for TeniS. This is an arbitrary notion of type, but
it has the advantage that it can be computed and that it is useful for all the
purposes outlined above. All type systems in use are arbitrary in some such
way. For the purposes of TeniS a type system must of necessity discard
information, and there is no uniquely satisfactory way of discarding it, nor
need there be.

The TeniS notion of type, then, is an arbitrary but carefully chosen
collection of sets which is such that the type of the result of each of the
machine operations can be calculated if the types of its parameters are
known.

An area where programming languages have differed is in type declara
tion. There appear to be three different ideas involved. First, a new type
could be defined to be equal to some composite type purely as a shorthand
way of referring to that type. Second, a new type could be defined as being a
different kind of thing from any present type, and represented by some
existing composite type. This is really part of the notion of abstract data
type. Third, a type could be defined as being equal to a type expression as
part of the definition of a circular type, that is, the intention is to solve the
type equations. Pascal mixed up the functions of the first two reasons, and
made similar type declarations in different places in the text produce
different types. The intention was probably to achieve the effect of abstract
data types, but this was not made explicit. The effect in fact was to tie these
type declarations to the text in a way which made it difficult to make them
global. Algol68 used type declarations for the first and third purpose. This
meant that it was necessary to recognise what was going on if one wanted to
see which were the circular types. TeniS provides abstract data types and
circularity as separate essential constructions; renaming is available, but
merely a convenience.

The type system is built up from basic types, from type constructors which
form types from given types, and in more complex ways such as polymor
phism and abstract data types. In various places in the basic types, pragmatic
choices have to be made. This is especially true about floating point
numbers, since, even with the advent of the IEEE standard, there is a great
variety in floating point implementations on machines. A choice which made
great difficulty for some common machine would be unfortunate. so
compromise forces a less-than-ideal solution. Similar remarks apply, though

207

208

less strongly, to integers, where different word lengths and conventions
about signed and unsigned arithmetic apply. Apart from these two major
areas, it has been possible to make satisfactory decisions, without much
constraint arising from the nature of existing machines.

9.2. 1 Basic types

TenI5 has a large but finite set of basic types. This is not a necessity, as
similar arguments could have led to an infinite but countable set of basic
types.

The simplest basic type is Void, a type which has exactly one value. This
being so, no bits are needed to represent it. The name Void for the set is a
clear misnomer, but it has been traditional since the days of Algol68 and has
been retained in TenI5. In effect, this is the value delivered by an operation
which has no genuine value to deliver, because it is an operation performed
for its side-effects. Thus assignment delivers a Void value.

Other simple types are Bottom and Top. Bottom is the empty set, which
can only be the result of an operation if control cannot reach that point, and
Top is the set of all values, which is not delivered by any operation, but can
arise in error situations. The names are chosen because of the position of
these sets in a lattice of types.

Integer types force the consideration of the word lengths of practical
machines. If arbitrary integer ranges were allowed, some constructions
might be excessively slow. These considerations dictate a compromise, which
may be uncomfortable to the purist, but which has worked without much
awkwardness in practice, no doubt because of the similarity of many current
machines. TenI5 has chosen a number of preferred lengths, corresponding
to one bit, eight bits, 32 bits and 64 bits, and permits contiguous subsets of
the corresponding numbers as integer types. Normal arithmetic operations
are defined on these types. With this scheme a type might be (64 bits,
- 5 .. 63) or (8 bits, 10 .. 10). The latter type contains only the one value and
is the type of a suitable constant value in a piece of TenI5. The subset
information is used to guarantee that operations are permissible without
run-time checks; for example indexing a vector by means of a subscript
known to lie within its domain need not be checked. This means that
overflow must always produce an exception, since an unchecked overflowed
value might not lie in the correct range.

For Real types, again something of a misnomer, floating point would be
better, TenI5 works in terms of numbers of bits, in this case significant bits
in the mantissa and exponent. A Real type is specified just by these two
parameters, and questions of accuracy and range are not dealt with in the
type system. The usual arithmetic is defined.

There are a small number of cases where run-time checks have to be
performed because, in some cases, they cannot be made at compile time
from the particular types given. The important ones are conventional:

overflow, division by zero, and index check. These checks can usually be
implemented directly in terms of hardware constructions. The mechanism is
described later, but it involves a type, Exception, which gives information
about such errors back to controlling procedures. Though this control is
provided in TenI5, it is not intended for use as a control mechanism by
normal users since it seems to be bad practice, though it is required by Ada.
Other safer mechanisms are provided in TenI5.

There are other minor basic types which are not discussed here, including
the type of type values itself. The only other major basic type is Typed,
which is described later.

9.2.2 Type constructors

Given any type, X, a type of vectors of such values can be created. On this
type the main operations are the creation of the vector, indexing and
obtaining the number of elements. So Vee is a way of making a new type
from a given type and there are many such type constructors.

The type constructors are not confined to having only type parameters:
Vee, for example, takes a type parameter, and also a boolean parameter
which says whether values of the type are read-only. It also takes a further
type parameter, the type of the size of the vector, so the full vector type has
the form

Vec(type a/item, read only, type a/size)

Vectors are indexed by positive integers. A compiler, say for Pascal, wishing
to translate an index which is an enumerated type, will use the representation
of that enumerated type. If the type of the size of a vector is given as (32 bits,
5 .. 5), for example, then the vector will have exactly 5 elements. This will
enable the translator to omit index checking if the type of the index is
appropriate. Indexing the vector gives a reference to a type of item, and this
reference is read-only if the vector is read-only.

It is frequently necessary to consider whether one set of values is a subset
(£;) of another. This is affected by the type constructor. For example, if
A£; B, the relation between Vee A and Vee B can be considered. It is
possible to put values into the vector by assignment to a reference obtained
by indexing, and get values out by de-referencing. If Vee A were a subset of
Vee B, then every operation which can be done to a Vee B would be possible
on a Vee A. However, a value of type B can be put into a Vee B but cannot
necessarily be put into a Vee A, since some B's may not be A's. So Vee A is
not a subset of Vee B. Conversely, if Vee B were a subset of Vee A, the values
obtained by applying an operation to a Vee B would be a subset of the values
obtained by applying the same operation to a Vee A. But the values that can
be extracted from a Vee B belong to B, and those from a Vee A to A, and B
is not necessarily a subset of A. So even though A£; B neither Vee A nor
Vee B is a subset of the other.

209

210

This holds because the vector types could be both assigned to and
de-referenced, which is true if neither is read-only. But suppose that both
vector types are read-only. In this case it is true that Vee A is a subset of
VeeB.

Values of type Ref X, are references to values of type X. Again there is a
read-only property. De-referencing is defined on all references, and assign
ment is defined if the reference is not read-only.

Values of type Ptr X have de-reference and assignment defined, but are
not able to point inside other structures. They can be implemented by
packing the value of type X into a new block and giving the address of that.
Whereas references might be to parts of such a block, pointers have to be to
the whole of it. Pointers are only provided because they can be implemented
in less data space than references; efficiency rather than necessity is the
rationale.

The type Struet(A, B ... N), where A, B ... N are any number of types, is
the Cartesian product of its parameters. The operations are tupling, which
creates a structure, and selection, which selects a field from a structure. Here
pr:;;. Q implies that Struet(P, B ... N) r:;;. Struet(Q, B ... N) and similarly for
all fields.

There are also union types, Union(A, B ... N). This is disjoint union, not
set union. It can be implemented as sets of pairs of numbers and values.

(1, ad, (1, a2), (1, a3) ... (2, b 1), ••• (n, nd .. .

pr:;;. Q implies Union(P, B ... N)r:;;. Union(Q, B ... N).
Values belonging to Proe(X, Y) are procedures, expecting a parameter in

X and delivering a result in Y. A Proe(J .. 10, Y) can be used everywhere
where a Proe(2 .. 5, Y) is needed, since the first proc is applicable to all 2 .. 5
values. So if A r:;;. B, then Proe(B, Y) r:;;. Proe(A, Y). This is an illustration of
the usual Galois relation between sets of values and sets of procedures. In
TenI5, a procedure has just one parameter, so the Struet construction is
used to group them if more are needed.

A special type construct, Unique X, is discussed in a separate section.
There are other minor type constructors for main-store values, but the major
type constructors which remain are concerned with backing store and with
network values. Remote X is the type of any value of type X in another
computer on the network. Full details are beyond the scope of this chapter,
but are discussed in [Foster/CurrieI986].

In TenI5, backing store information is organized into data stores, which
are identified by values of basic type DataStore. A computer may have
access to any number of data stores. In TenI5 operations are provided to
manipulate these explicitly, though of course the data store operations can be
made invisible to users by software built on top of these primitives. The
types involved are Persistent X and Persistent- Variable X [Currie/Foster/
CoreI987, Atkinson/MorrisonI985]. Any type of value can be written to
data stores and the result of writing a value of type X is a Persistent X. The

operation to read this value back produces a copy of the original value, of
exactly the same structure: that is, common pointers and references remain
common. Writing a value in this way puts it in a new area in the data store as
an atomic operation. In order to be able to change information in a data
store a persistent variable has to be used. The operations on this are
assignment and de-referencing, just as in main store. TenI5 provides
facilities for the atomic update of a number of persistent variables within
one data store. The more difficult problem of atomic update of data
distributed between different computers on the network can be solved, but
the primitives for this are still under development.

9.2.3 Circular types

Consider the type of conventional linear lists of values of type A. Such a list
might be either null or a pointer to a structure containing an A and also
another list:

List = Union(Void, Ptr Struct(A, List))

This equation is not just a renaming for convenience but has in some sense to
be solved in order to obtain the actual type. Exactly the same techniques
used elsewhere in this chapter to explain loop constructs in programming
can be used here to give a meaning to the solution of this equation. An
equation-solving operator, Y, is introduced, so that List can be defined in a
way which is a renaming:

List = YAt. Union(Void, Ptr Struct(A, t))

The Y operator, least fixed point or equation solution, can be extended
to multiple equations in a direct manner. It can be shown that the equations
can be solved, one at a time, in any order, giving the same result. This
interchange theorem also applies to program semantics.

9.2.4 Polymorphism

TenI5 supports both conventional kinds of polymorphism [ReynoldsI985].
If lists are as defined above, a procedure, map, could be defined with two
parameters, one a List and the other a Proc(A, Void)-taking an A
parameter and delivering nothing-which applies the procedure to each
member of the list:

map E Proc(Struct(List, Proc(A, Void)), Void)

Thc body of the procedure map would be the same no matter w hal lhe type
A was. It is quite practical to implement map so that the same code will
suffice for all A. The implication is that the value map is a member of all the
types obtained by putting a particular type III tor A. Hence it is in the

211

212

intersection of all such types. This type will be written as

(J AU. Proc(Struct(Y At. Union(Void,

Void)

Ptr Struct(u, t)),

Proc(u, Void)),

meaning the intersection of all types arising by substitution of any type for u
in the lambda expression.

The procedure map is polymorphic in the sense sometimes referred to as
v-polymorphism, since the value lies in all the types of the given form.

It is important to be clear about the difference between the type of map
looked at from the outside, where it lies in all suitable types, and the type of
the parameters of map looked at from the inside, that is how the parameters
appear in the body of map. When the body is being compiled the parameters
are known to lie in a particular instance of their form. During the whole of
the body it is known that the same u is involved, although it is not known
what actual type u is. This is a dual kind of polymorphism, often called
3-polymorphism. The value lies in a type which is some instance of the given
form.

As another example, consider the operation de-reference and the set of
values to which it is applicable. Can this set be described as a type? It
consists of all values of types of the form Ref X for some X. That is to say
they are in the set union of all these types. By analogy this type is U)..u. Refu.
When de-reference is applied to a value of this type it is known to be a
reference, but the type of the contained value does not have to be known in
order to see that the application is permitted. This kind of polymorphism has
been described as being what is involved in abstract data types [Mitchell!
PlotkinI985], but in TenI5 it is used much more widely.

A further very important use is discussed in the section on the type Unique
X.

9.2.5 Abstract data types

Abstract data types have been included in TenI5, though it would be
possible to argue that they were more properly constructions of the
languages that might be translated into TenI5 than of TenI5 itself. On
balance it seemed better to provide a standard mechanism, following the
argument that TenI5 must be a wide-spectrum machine in order to permit
transformations.

It is possible to define both new basic abstract types and new abstract type
constructors. In all cases the mechanism is to specify the representing type
and the defining operators. The change from abstract type to its representa
tion is itself protected from unauthorized access by the type checking, in the
same way as other forms of access control.

9.2.6 The type Typed

Ten 15 itself is strongly typed, but so far in this chapter no mechanism has
been described by which programs can be written which themselves check
types, at least not in a way which makes sure that they cannot err. Nor has a
way been given of writing programs which handle values of types not known
at compile time. Such programs are needed; for example, a command line
interpreter will have to handle values of types determined by the user, and
these must not be limited to a fixed finite set of types by using the Union
construction, which is the only mechanism so far described which is at all
helpful. Furthermore, the command interpreter must check types before it
applies procedures to their parameters, and this check must be guaranteed by
the type system.

Ten 15 provides the single basic type Typed. This can be thought of as a
value and its type wrapped up together. There is an operation to extract the
type from a Typed, but this cannot be used to do guaranteed type checking,
since the associat!s;;. between this type and the original value is lost. The
typed value is something like the union of an infinite number of types, and so
it would be possible to consider a case construction to decompose the values,
one level at a time, without loss of strong typing. After experimenting with
this approach it became clear that it was too difficult to implement
effectively. TenIS in fact implements operations on typed values which are
derived fr om the corresponding ordinary operations.

For example, there is an operation, Call, which has two parameters, a
procedure, j, of type Proc(A, B) and a value, u, of type A. Call applies the
procedure to the other parameter and delivers a value, j(u), of type B. From
this an operation is derived which takes two Typed values, checks that the
actual types correspond, applies the procedure, and delivers the resulting
values as a Typed. This is just like interpreting the Call operation, the data
being everywhere typed. It is a heavyweight operation, so other methods
should be used whenever possible.

A typical use of Call is in a command line interpreter. A Typed value has
been obtained by looking up a name in a dictionary; the user thinks it is a
procedure and has also provided what seem to be suitable parameters; again
these are Typed values. Now the user asks for the procedure to be applied to
the parameters. The command line interpreter is an ordinary program which
has been produced by translating TenIS into machine code. In order to make
sure that the procedure can only be applied to parameters of the correct type
the command line interpreter uses the typed version of the Call operation.
The translation of this operation into machine code contains instructions
which check that the actual typed values supplied to it do indeed match in the
correct way. There is no way of applying the procedure to its arguments
without performing this check. Clearly in this case the check has to be
dynamic, since it was not known what procedure value might be fetched.

213

9.2.7 The type Unique X

Every designer of PSEs has found that many uses can be made of a way of
constructing tags such that each new tag created is guaranteed to be different
from every other tag on the current machine and every other machine. In
effect this can be implemented as a combination of the identity of the current
machine and the date and time. In TenI5 it has been found that this idea is
especially useful if these tags have a type associated with them, so Unique X
is a type constructor with one type parameter.

As an illustration of this TenI5 use, consider a structure of the following
type:

U At. Struct(Unique t, Ptr t)

Suppose there is a tag which is a Unique Real. This can be compared with the
Unique value in the structure, since equality can be tested between Unique
values of whatever type. If they are equal, that in the structure must be a
Unique Real, and so the associated pointer must be a pointer to a Real.
TenI5 provides an operation (of the kind called assertion in TenI5 and
described later) with two arguments, a Unique value and a pair of this sort,
which performs this test and delivers the associated pointer value, now with
known type. Given a vector of such pairs, in which each pair contained in the
vector can be a different instance of the form, and given a Unique, the vector
can be scanned, using this operation, to look for an associated value and to
obtain it with known, guaranteed type. This is much more efficient than
using a Typed value for the same purpose.

This is an operation of wide utility and an interesting use of the
3-polymorphic types. The pair is something like a Union, but the decision
about which types to unite has been delayed. It has proved particularly
useful in writing a loader, which would otherwise have had to use the much
slower interpreted Typed operations in a place where speed is very
important.

9.3 Features of the Ten15 machine

214

In many respects TenI5 is conventional, as indeed it must be to act as an easy
target for conventional languages. It provides such constructs as case
expressions, conditionals, loops of various sorts, integer and real arithmetic,
boolean operations, string handling, vectors and arrays. This section will
take these for granted and concentrate on the less usual features.

TenI5 is defined algebraically; complex pieces of program are built out
of less-complex ones by means of composition constructs. It is essentially
tree-like. As an example a conditional expression is built out of an
expression which delivers a boolean and two expressions which deliver values
of types which have a least upper bound (not Top). Each of the expressions

below, and the whole, are pieces of TenIS program:

if(boolean expression, expression], expression2)

The expressions just considered are called Loads in TenIS, since a
technical term is needed. The name is chosen because Loads produce values
when evaluated in some state of the TenIS machine. They may also produce
a change in the state, that is a side-effect. Note that these are items in the
TenIS algebra, that is fragments of program for a TenIS machine.

A unary operator is a piece of TenIS which takes in a value and from it
produces a value, whereas a Load produces its result value from nothing. A
conventional basic unary operator, such as Not, can be applied to a Load,
using the construct operateJ.

operate] (Not, expression)

The result of this is itself a Load.
The standard unary operators are examples of Unary-Operator, but

operators do not need to be basic and can also be built up by means of TenIS
constructs. One construct in particular, make-op, builds a Unary-Operator
from a Load, expJ, and an Identifier, id. Operating with such an operator
on a Load, exp2, identifies the value produced by exp2 with the given id and
evaluates expJ, using that value wherever expJ contains id.

9.3.1 Assertions and solve

TenIS has to have both high-level and low-level features. Among the
low-level features are some which correspond roughly to labels. This is an
inevitable consequence of the aim of providing a wide-spectrum machine
and being able to transform programs sufficiently close to conventional
machines to achieve efficiency. But unrestricted labels and gotos lead to
programs which can be difficult to analyse. The TenIS mechanisms for
achieving these effects are assertions and the solve expression.

TenIS takes the viewpoint that a collection of labelled expressions is in
fact a set of simultaneous equations, in which the labels play the role of the
variables being solved for, and may occur in the expressions. Solution is
interpreted with a least fixed point meaning. This being so, the labels would
be formal Loads, for which the equations could be solved to produce a
collection of actual Loads. The goto labels would correspond to the uses of
the formals in the equations. In practice, real machines jump with values and
unary operators expect values so the labels are formal Unary- Operators
rather than Loads. The solution of the simultaneous equations produces a
collection of actual Unary-Operators. This, among other advantages, gives a
much better loop construction. The construct solve takes Humber of pairs of
formal operators, the labels, and actual operators, and solves the equations.

Within the context of a solve construction a straightforward jump is
represented by a construct which takes a label and builds a Unary-Operator,

215

216

g. When g is applied to a value it will jump with that value to the label.
Control never reaches the point immediately after the jump, so the value
there is of type Bottom.

High-level constructions, such as case union, are expressible in terms of
lower-level constructions. Clearly case union works by examining the union
value to see which of the possible members is actually present and jumping
to the appropriate place. Note how, in this construction, jumping with a
value is right. The branch of the case union must be arrived at with the
component value present and ready to be identified.

Conventional programming languages, because they use boolean values to
control conditionals and loops, make it difficult to retain type information
which should be available. Consider as an example the conditional

IF x < 0 THEN -x ELSE x

It is clear that if x is in -10 .. 10 then the result will be in 0 .. 10. Not many
compilers would notice this fact. Going through the boolean value has made
it difficult to obtain the type information about x in the two branches. TenI5
uses Assertions to generalize the notion of conditionals while simultaneously
making type information more explicit.

The case union shows how it can be done. In place of the conditional,
control must split into the two possibilities, carrying into each branch a value
of the appropriate type which can be identified in the branch. Making up
some syntax by way of illustration:

IS x < O?
IF SO t:-t
IF NOTu: u

If x < 0 then take the first branch, identifying x, now known to be negative
as t; if not take the second branch identifying x, now known to be
non-negative, as u. If x is in - 10 .. 10 then t is known to be in - 10 .. -1 and
the result of the first branch is in 1 .. 10. In the other branch u is known to be
in 0 .. 10 and so is the result of that branch. Hence the result of the whole
construction is the least upper bound of 1 .. 10 and 0 .. 10, which is 0 .. 10.

The two branches are unary operators, created by make-op. The test is an
Assertion, and when combined with the two Unary-Operators and the two
argument Loads-for x and zero-it yields a Load.

It is interesting to contrast this approach with that of "continuations". In
TenI5 the program, which might be unbounded but countable, is created by
solving the program equations before any question of evaluation arises.

9.3.2 Procedures and ions

Ten 15 supports true procedure values with an unbounded number of binding

times for non-locals [Landin 1964]. These partly bound values have been
called ions.

The TenI5 procedure values are just the conventional closures of Landin,
except that instead of having only one bind time for non-locals, many bind
times have been allowed for. Though one bind time is logically sufficient,
having many allows for much greater efficiency in some important cases.
TenI5 calls the partly bound objects ions.

Consider a procedure created inside another one and treated as a true
value, so that the "display" implementation will not work. It is normal that
the internal procedure will have some non-locals which are non-locals of the
external procedure. Conventionally this would cause us to bind these values
as non-locals of the external procedure, and then copy them into the
non-locals of the internal procedure. Very often this will be the only use of
these values in the external procedure. In this case it is clearly better to bind
them as the first of two sets of non-locals of a constant ion, and to give this
partly bound ion as a non-local to the external procedure. This then just
copies out those of its locals which form the second set of non-locals to the
ion to give the required internal procedure.

9.3.3 Exceptions

When an operation fails a run-time check, as for example if an arithmetic
operation produces an overflow, an exception is produced. This exception is
treated as a value, and every operation but one which has an exception value
as a parameter is deemed to give an exception result. This would fail all the
Call operations which had called procedures leading to this situation. If this
were all, control would rapidly fall out of the program, and since the
operating system itself is also in TenI5, the whole machine would stop.
However there is an assertion, called trapply, which can be used to prevent
this. This assertion takes Unary-Operators, the second of which expects a
value of type Exception. From these is built a binary operator which takes a
procedure and an appropriate parameter for that procedure. The effect of
the assertion is to apply that procedure to its parameter in just the same way
that the ordinary Call operator does. If the procedure when run produces an
exception, then the assertion uses the second operator, giving it the value of
type Exception produced. This value contains information sufficient to
produce diagnostics if necessary. If the procedure terminates normally, the
first operator is used, so it must expect a value of the type delivered by the
procedure. The whole delivers a value of type given by the least upper bound
of the types produced by the operators.

Normally when an exception value is delivered, action will be taken to
dean up the state of the machine, stuck semaphores will be cleared and so
on. It is not expected that this mechanism should be used in ordinary users
programs, but since users can write programs which are like operating
systems, these facilities have to be available.

217

9.4 The formal method

218

TenlS is defined entirely by means of intrinsic equations which say which
programs are equivalent. There is space here only for a brief exposition and
discussion of the method.

A system will be defined which is closely related to a conventional
many-sorted algebra [Goguen 1976]. The definition starts with a finite
number of "sorts" of which Load, Operator and Assertion are examples,
and then introduces a finite number of constructs, each of which takes a
number of parameters from particular sort and produces a result in a given
sort. For example,

operate] : Unary-Operator, Load ~ Load

Some of these have no parameters, in which case they denote constants in the
result sort. For example,

load-void: () ~ Load

which will be written as

load-void: Load.

The sorts and the constructs together form a "signature".
Some of the sorts are designated as semi-lattices, in which case they

contain the constructs, least upper bound, written U, and bottom, written
..L . Least upper bound is associative, commutative and idempotent, and has
bottom as its identity. If the sort is L, then

u :L,L~L
.L:L

Given these definitions a partial order, :5, can be defined by saying that
a :5 b is equivalent to aU b = b.

Let there be, for each of the sorts, a countable set of variables. Now define
inductively a set of terms. With each term will be defined its sort, and its set
of free variables. For each sort, S, So consists of all the constructs with no
parameters which have S as result, and also all the variables of sort S. The
constructs have no free variables; the variables have themselves as their only
free variable.

For each n, Sn contains the following constituents and no others. First, it
contains all the expressions, J(tl, t2, ... tk), where the terms ti have the sorts
required as parameters by the construct f. The ti lie in sets indexed by
m < n, and at least one of them lies in a set indexed by n - 1. The result sort
of Jis S. The free variables of this term are the union of the free variables of
the ti. Second, if S is a semi-lattice sort, Sn contains all the terms Y>-x. t,
where x is a variable in Sand t is a term in Sn-l. The part of this term after

the Y is called the controlled A-expression. The free variables of this term are
the free variables of t less x. Y is to provide a method of solving equations.

Now the set of terms in S is defined to be the union of all the Sn. The terms
in S which have no free variable are called the ground terms. The carrier set
of the algebra for each sort consists of the ground terms belonging to that
sort. This construction is very like a conventional word algebra, differing
only in the introduction of the Y terms, and it will be called a word algebra
in this chapter. The word algebra is determined entirely by the signature and
by which sorts are semi-lattices, for example one can speak of the Ten 15
word algebra.

Congruences are defined in the usual way to be equivalence relations, one
for each sort, which have the property that if in J(tl, ... tn) and J(UI ... Un)
the parameters are pairwise equivalent, then so are the terms. The quotient
of the carrier set by a congruence is also defined conventionally.

A word algebra and its quotients form a class of algebras. It is a class of
algebras of this nature which will be used to define and study TenI5. A
major topic, therefore, is how to specify congruences.

One common technique for specifying a congruence is to give a set of
"laws" which specify which pairs of values are to be equal. If the laws are
of an appropriate kind there will always be a smallest congruence which
satisfies them. The signature, the semi-lattices and the laws then define an
algebra.

The TenI5 word algebra defines the set of TenI5 programs which are
well-formed, but nothing is known about their meaning. One could perhaps
call this the abstract syntax of TenI5. As more laws are specified, the
quotient by the smallest congruence approaches more closely to the required
semantics of TenI5, which could be called the semantic congruence. This is
not to indicate that this process is intended to be a limiting one; all of the
necessary laws will be given, though not in this chapter. But it is valuable to
look at particular programs in more or less detail, that is with more or less
laws, in order to analyse them.

As an illustration of this, consider the simple but useful task of examining
a piece of TenI5 and listing the identifiers which it uses. Clearly, making a
systematic change to the identifiers would not affect the meaning of a TenI5
program; this would yield an equal program in the semantic congruence.
Therefore programs which are the same except for the identifiers used must
lie in the same congruence class of the semantic congruence. So one cannot
ask about this congruence class "what identifiers does it use?". This question
cannot be asked or answered in the full algebra. But in the word algebra, it is
a possible question.

It is possible to define the usual idea of homomorphism mappings between
quotients of the word algebra. The only extension consists of defining tht:
mapping of the Y terms, to give the corresponding terms in the image. Many
analytic properties of programs may be obtained by evaluating homomor
phisms, including for example the task of the previous paragraph.

219

9.4.1 Particular laws and Y

The form of laws needs to be chosen, especially the treatment of the Y
terms. The simplest way of specifying laws is to give a number of pairs of
terms of the same sort, t1 = t2. The interpretation of such a law is that
equality is to hold for all systematic substitutions of the free variables
contained in the terms by ground terms of the same sort as the variables.

Such a set of laws is not adequate to carry out the definition. The form of
the laws can be extended by allowing conditional laws of the form

with the understanding that for every substitution for all the free variables
by ground terms, if the terms on the left of the implication sign are equal as
specified, then so is the term on the right. Even so, a finite number of such
laws is not enough. A countable infinity is needed, with a finite way of
expressing them.

In fact enough generality can be achieved by using special sets of variables
to stand for the lambda expressions of each sort in laws of the above
conditional form. These laws are first instantiated by lambda expressions for
the special variables and then by ground substitutions for the ordinary
variables. This can easily be shown to define a smallest congruence.

Of course, Y is intended as a least fixed point operator in the semi-lattice
sorts, thus providing solutions for the equations which define loops and
recursion [LandinI964l. TenIS does not in fact use least fixed point as the
basic definition. Let the variables for lambda expressions be Greek letters.
The laws are

Yo: = 0:(Yo:)
o:(z) :5 Z ~ Yo: :5 Z

The first says that Y is a fixed point, the second that it is a lower bound to all
values which are decreased by 0: (less than or equal). From these it is a
consequence that Y gives the least fixed point of 0: and the least upper bound
of the approximants, o:n (.1). It is not the case that substituting the second
law by a least upper bound law would be equivalent.

These laws have been chosen for Y because it is possible to prove an
important interchange theorem which says that multiple equations can be
solved one at a time in any order, rather in the fashion of Gaussian
elimination for simultaneous equations, and the results will be equal no
matter what order is chosen. Furthermore, the second law is a natural, finite
way of expressing what is required.

9.5 Formal definition of Ten15

220

The purpose of this section is to illustrate the laws of TenIS and to convince
the reader that intrinsic equations are sufficient to define its semantics. It is

easy to see that more complex constructions such as for statements and case
union can be defined by equations in terms of simpler ones. This section will
be confined to showing that the same is true of declarations. It will omit
many important areas, such as the definition of assignment and procedure
values.

Some more of the constructs for building TenI5 and some more sorts will
be needed. Value is the sort of the values which TenI5 programs manipulate.
It is defined algebraically, just like all the other sorts.

The discussion will be confined to these constructs.

load-name.' Identifier ~ Load
load-value: Value ~ Load
seq: Load, Load ~ Load

operate2 : Operator, Load, Load ~ Load
identity: Identifier, Load, Load ~ Load

The intuitive interpretations are as follows. The construct load-name
produces as its result the value associated with the identifier by some
governing declaration, and does not change the machine state. Likewise
load- value is a piece of program which delivers the value parameter. This is
therefore a denotation for a constant, and it is an important part of our
equational definition mechanism, since it can be applied to any kind of
value, reference, procedure or persistent value as well as integer.

A sequence is constructed from two Loads: it discards the value produced
by the first parameter, and produces that given by the second. The sequence
construction will only become important when assignment is introduced,
and the first parameter might change the state of the machine, but the laws
for sequences will be described. For example the associative law for
sequences is

seq(x, seq(y, z)) = seq(seq(x, y), z)

For binary operators, operate2 applies the binary operator to the two
arguments.

The identity, a declaration, associates the value delivered by its first Load
parameter with the Identifier while it processes the second Load. During this
processing, wherever a load-name for the Identifier is used, the value
produced from the first Load is intended. In order to be able to use
identifiers, one must be able to determine whether or not they are equal.
Notice that the method of definition enables us to state that two things are
equal, but inequality is quite another matter. If mequalIty IS to be used, then
what is effectively an algorithm for determining it must be given. To be able
to do this another sort, Bool, is needed. This contains two values, true and
false, and no laws relating them. So they will be different in the smallest

221

222

congruence. Let

zero: () -7 Identifier
succ: Identifier -7 Identifier

and let there be no more laws for Identifier. Then the smallest congruence
provides the other three of Peano's axioms and makes Identifier just the
natural numbers. This is more convenient than defining Identifier as a string
of characters.

The auxiliary construct eqid is introduced in order to define equality and
inequality of Identifiers. The sorts and laws for eqid are

eqid : Identifier, Identifier -7 Bool
eqid(zero, zero) = true

eqid(succ(x), zero) = false
eqid(zero, succ(x)) = false

eqid(succ(x), succ(y)) = eqid(x, y)

Clearly, because Identifiers are just the natural numbers, eqid is completely
defmed by these laws for any pair of arguments.

Some of the laws for the constructs will be discussed, with comments on
them to clarify their purpose. The aim is to show that declarations can be
defined with equations alone. A piece of TenI5 which uses only identifiers,
which are declared within it, will be said to have no free identifiers. The laws
discussed in this section, when applied to a piece of TenI5 with no free
identifiers, which only uses the constructs introduced above, will show that it
is equal to load-value (v) and determine the value, v. The proof of this result
is not difficult and is left to the reader. A proof can be based on showing that
every expression except a load-value can be simplified by the equations, and
that this process will terminate. In the following laws simplification is
achieved by using the equalities to replace the left-hand side by the
right-hand side.

The first law shows the obvious basic meaning of declaration:

identity(i, x, 10OO-name(i)) = x

In the next law the inequality of identifiers is used:

eqid(i j) = false -7

identity(i, 10OO-value(v), 10OO-name(j)) =
1000-name(j)

The following law moves a sequence out of the definition part of a
declaration:

identity(i, seq(x, y), z) = seq(x, identity(i, y, z))

The computation of x, which is being discarded since it is the first parameter
of a seq, is only being performed for the sake of its side-effects. Accordingly,
provided that it is carried out before the computation of y, it can be inside or
outside the declaration.

The strategy is to reduce the definition part of an identity to a load-value,
so that it can have no side-effects. Then other laws are used to move that
definition into the constructions in the controlled part of the identity. For
example, the following law moves a definition part, which has been reduced
to a load-value, into a sequence:

identity(i, load-value(v), seq(x, y)) =
seq(identity(i, load-value(v), x),

identity(i, load-value(v), y))

If the definition part were not a load- value but an operate2, it would have to
be reduced to use the above law. So not only declarations but also operate
have to be removed while still making the term "simpler". For each basic
binary operator there is a function, j, such that a law of the following form
holds:

operate2(b, load-value(x), load-value(y))

= load-value(f(x, y))

In fact, this is not really adequate, since operators can change the state of the
machine, and the laws which are relevant to state change have not been
introduced.

Two laws enable sequences to be moved out of operate:

operate2(b, seq(x, y), z) = seq(x, operate2(b, y, z)

operate2(b, load-value(v), seq(x, y))

= seq(x, operate2(b, load-value(v), y))

These two laws are not symmetric, because x might have side-effects.
Whether or not this is so, the first law holds, but in the second law the
operand must be in the form of a load-value so that the move can be made.
Clearly this pair of laws defines the order in which the arguments of
operators are evaluated. A different form could have been used if the order
of evaluation were to be undefined.

By the next law a declaration is moved into an operate2:

identity(i, load-value(v), operate2(bin, x, y)) =
operate2(bin, identity(i, load-value(v), x),

identity(i, load-value(v), y))

223

and by the following law into another declaration:

identity(i,
load-value(v),
identity(j, x, y»

= identity(i,
load-value(v),
identity(j,

identity(i, load-value(v), x),
y»

The above laws are sufficient to remove declarations and operate2 from a
piece of TenI5 with no free identifiers, which uses only the given constructs.
Since operators affecting the state of the machine were not included,
sequences played a rather irrelevant role.

This can be taken as a complete definition of the meaning of pieces of
TenI5 which use the constructs discussed, even though this has been shown
only for those with no free identifiers. For consider a piece of TenI5 which
does use some free identifiers, and so does not necessarily reduce to a
load-value. It could be incorporated in a set of declarations which define the
spare identifiers as load-values. For each way of doing this, the resulting
program can be completely reduced since the result now has no free
identifiers. Clearly this can be interpreted as a definition of the piece of
TenI5, since we know its effect in any environment.

Of course there are many complications when the amount of TenI5 that is
described by laws is extended, especially when the effect of the Yoperator is
included. No such simple way exists for seeing that the whole definition is
adequate.

9.6 Conclusions

224

Enough experience has been gained to see that many of the aims of TenI5
have been met. Compilers have been written producing TenI5, as have
translators from TenI5 to Flex and to Vax. Programs translated in this way
run with conventional efficiency. Programs written directly for the TenI5
machine and translated run in some cases with substantially greater
efficiency, because constructions are available which cannot be utilized by
the conventional languages. Various homomorphisms have been tried. The
translator which produces Vax code was written as a homomorphism on the
TenI5 word algebra.

Other aspects of Ten 15 need more examination. In particular, the

References

question whether the definition of TenI5 is sufficiently convenient to admit
useful proofs being carried out is still to be decided.

In some respects TenI5 is still incomplete. The most important area in
which this is so is that of close-coupled parallelism.

[Atkinson/MorrisonI985) M. P. Atkinson and R. Morrison, "Types, binding and
parameters in a persistent environment", Workshop on Persistence and Data
Types, Appin (1985).

[Currie/Foster1987) 1. F. Currie and J. M. Foster, The Varieties of Capability in
Flex, RSRE Memorandum 4042 (1987).

[Currie/Foster/Core1987) 1. F. Currie, J. M. Foster and P. W. Core, "Ten 15: an
abstract machine for portable environments", Proc. 1st European Software
Engineering Conference, Strasbourg, pp. 149-159 (1987).

[Foster/CurrieI986) J. M. Foster and 1. F. Currie, Remote Capabilities in
Computer Networks, RSRE Memorandum 3947 (1986).

[Foster/Currie/EdwardsI982) J. M. Foster, 1. F. Currie and P. W. Edwards, "Flex:
a working computer with an architecture based on procedure values", Proc.
International Workshop on High-level-language Computer Architecture, Fort
Lauderdale (1982).

[Goguenl976) J. A. Goguen, J. W. Thatcher, E. G. Wagner and J. B. Wright,
"An initial approach to the specification, correctness and implementation of
abstract data types", Current Trends in Programming Methodology (1976).

[Hoare 1978) C. A. R. Hoare, "Communicating sequential processes" Comm.
ACM, Vol. 17, No.8 (1978).

[Hoare 1987) C. A. R. Hoare, 1. J. Hayes, He Jifeng, C. C. Morgan, A. W.
Roscoe, J. W. Sanders, I. H. Sorensen, J. M. Spivey, B. A. Sufrin, "Laws of
programming" Comm. ACM, Vol. 30, No.8, pp. 672-686 (1987).

[Dijkstral976) E. Dijkstra, A Discipline of Programming, Prentice Hall (1976).
[Landin 1964) P. J. Landin, "The mechanical evaluation of expressions", Com

puter Journal, Vol. 6, No.4, pp. 308-320 (1964).
[MacQueen/Plotkin/SethiI986) D. MacQueen, G. Plotkin and R. Sethi, "An ideal

model for recursive polymorphic types", Information and Control, Vol. 71,
pp. 95-130 (1986).

[Milner 1980) R. Milner, A Calculus of Communicating Systems, Springer (1980).
[Mitchell/Plotkin 1985) J. C. Mitchell and G. Plotkin, "Abstract types have

existential type", 12th ACM Symposium on Principles of Programming Lan
guages, New Orleans (1985).

[Reynolds 1985) J. C. Reynolds, "Three approaches to type structure", Proc.
T APSOFT, Springer (1985).

[Scott1970) D. Scott, Outline of a Mathematical Theory of Computation, Tech.
Monograph PRG-2, Programming Rt"~earch Group, Oxford University (1 nO).

[Spectorl982J A. Z. Spector, "Performing remote operations efficiently on a local
computer network", Comm. ACM, Vol. 25, No.1, pp. 39-59 (1982).

[Xerox1981) Xerox Corporation, Cour;pr' the Remote Procedult: Cui! ProlOcol,
Xerox Report XSIS 038112 (1981).

225

