
Compiler Techniques for Fast Migration
of Embedded Applications

Thilo S. GAUL1 and Günter SCHUMACHER2

1Universität Karlsruhe, Institut für Programmstrukturen und Datenorganisation, Zirkel 2
76131 Karlsruhe, Germany; Tel: +49 721 608-7398; Fax: +49 721 30047

Email: gaul@ipd.info.uni-karlsruhe.de
2Universität Karlsruhe, Institut für Angewandte Mathematik,

Postfach 6980, 76128 Karlsruhe, Germany; Tel: +49 721 608-2841;
Fax: +49 721 6087669; Email: guenter.schumacher@math.uni-karlsruhe.de

Abstract: With a number of microprocessor architectures in use today, the
flexibility to change from one target platform to another, in respond to market or
customer demands, is decisive for competitiveness for application developers. In
order to increase this flexibility, the Architecture Neutral Distribution Format
(ANDF) has been developed within OMI (Open Microprocessor Systems Initiative).
After some demonstrating applications, it turned out, that the availability of
respective back-ends (installers) becomes the most crucial part of this technology.
During the OMI/SAFE project, an adequate solution has been found to this
problem. By means of special compiler generating tools developed at the University
of Karlsruhe, an installer for a specific platform can be provided with much less
effort than before. The approach also allows to build configurable installers which
is of great importance for families of microprocessors and for DSPs.

1. Introduction

The development of software technologies to improve portability has been identified as one
of the key strategies in the software area within OMI. This is because the increasing
importance of software reuse in all kind of microelectronics developments. For example, a
number of silicon vendors in OMI have recently stated that they expect the number of
software engineers in their development teams to grow from 15% to 50% in the next 2 years
due to the increased supply of software and mixed software/hardware functions. Another
fact is that adding programmable features to a chip requires libraries or a new compiler, or
both. And last but not least, developers have to face the fact that IP design reuse could
decrease product turnaround time to 6 months or less.

Consequently, many efforts have been spent to develop software reuse techniques, among
which the Architecture Neutral Distribution Format (ANDF), a pure European development,
is going to become a world-wide recognised standard for exchanging software components
among different platforms. As the standard not yet established and other assumed
alternatives such as Java coming up, potentially interested industry was going to drop
ANDF. This was mainly due to the lack of practical experience how ANDF favours
embedded system development and how it fits into traditional development environments.

In the meantime, two European funded projects (OMI/ANTI-CRASH and OMI/SAFE)
have demonstrated the superior nature of ANDF as a technology. It turns out that through
ANDF not only the software functionality can be ported to other platforms but also the
quality aspects. It also features properties which are predestined for the special needs of
safety critical applications. Nevertheless, platform independence always implies higher

intelligence of the corresponding compiling tools which normally means higher complexity
and higher costs as well. Whilst higher compiler costs have to be compared to the reduced
costs of software porting, the increasing complexity of such components have still to be
considered.

This was the starting point for an investigation towards automatic generation of compiler
components within the OMI/SAFE project. The goal was to evaluate the feasibility of using
compiler-generating tools with respect to

• development time for back-end components
• architectural flexibility through parameterisation
• output quality of the generated component (code size, performance)

In this paper, we describe the first promising results that are expected to give new
stimulation for promoting ANDF as an international standard.

2. The Architecture Neutral Distribution Format

In its original meaning, Architecture Neutral Distribution Format means just the idea of a
platform independent format. In 1989 the OSF issued a Request for Technology for an
implementation of an architecture-neutral format, an intermediate language to support
application portability. Among 15 qualifying submissions, OSF announced in 1991 that they
had selected a subset of TDF developed by the Defence Evaluation and Research Agency
(U.K.) to be the core technology of ANDF. Therefore, TDF (TenDRA Distribution Format)
is now the ANDF and no distinction is done between these two terms.

ANDF

C/C++ Fortran 77 Ada 95 DYLAN OCCAM

80X86 MIPS SPARC PowerPC RS6000

Installers for each target platform

Producers for each programming language

ANDF
production

ANDF
installation

Besides the definition of an intermediate language, the term ANDF Technology means the

rigorous separation of the front-end (taking the source program) and the back-end
(generating the binary) of a compiler. Any such front-end (called producer) is intended and
designed to be target independent whilst the back-end (called installer) is language
independent.

Any API (for any source language) therefore has a source level definition and a platform
specific definition (provided together with the installer). APIs are closely related to standard
programming libraries like ANSI C, X11 or POSIX. Because a producer only uses

abstractions of APIs, no further assumptions about the architecture on which the program is
supposed to be run are necessary.

Since the first release of TDF (as ANDF), several activities have been established to
provide components for the ANDF technology, i.e., producers, installers, validations suites,
etc. A reasonable part of these activities have been funded under the ESPRIT programme.
Therefore, the ANDF technology must be considered as a real European development. At
times when standards become more and more important, a successful European standard for
– generally spoken – real-time interfaces would bring greater focus on European providers
of respective technology. Although this is rather ”psychological” since ANDF is open for
anyone, examples like Java demonstrate the existence of this effect.

The lessons from Java have brought up another interesting aspect. Java is currently
considered as something like an “ANDF”, even in the real-time area – although it is quite
different from the ”real” ANDF. In fact, Java is restricted to C-like constructs while it also
features C-like uncertainties. On the other hand, ANDF (both as a language and as
technology) features language-independence while it enables also safe programming, a fact
which has been proven by the OMI/ANTI-CRASH project. Nevertheless, many companies
have started to focus on Java while ANDF is technically still the better alternative.

Therefore, a European driven ANDF standardisation (as already started at the ISO level)
is mandatory and urgently recommended. To overcome the infamous “chicken-and-egg”
paradigm (no standards without industrial interest, no industrial interest without standards),
more demonstrating actions have to be established as the one proposed by this project. The
project consortium will also closely co-operate within the newly established ANDF-Club, a
special interest group that acts as a forum for all common ANDF activities.

ANDF was always said to be too big and complicated, too much parameterisation. This is
true in a compiler environment where only one language is translated to a small set of target
architectures; in this case the intermediate representation can be driven by the features of the
target machine. But the more programming languages have to be integrated into this simple
framework, the more general the intermediate language has to be. ANDF was designed to be
a most general exchange platform, architecture neutral in the sense that it provides a real
superset of most intermediate operators and is widely parameterisable in most architecture
dependent language features. This allows building a compiler system for a lot of different
source languages and target machines, which always uses the same compiler infrastructure.
ANDF as an m to n interface between the various combinations of m front-ends and n back-
ends assures, that a lot of code can be reused, especially transformations and optimisations
on intermediate language level.

3. ANDF Based Compiler Construction

The last decades of compiler construction research have produced a lot of fancy techniques
for the construction of fast, safety or highly optimising compilers but the very few have
come to an industrial relevance. The best chance for such a technique to be used in practice
is to be integrated into a generator tool. The best known examples of such techniques are
deterministic finite automatons for lexical analysis and stack automatons for the analysis of
context-free languages. Nowadays everyone who deals with language translations knows the
corresponding tools LEX and YACC (and their derivatives) that use these techniques.
The main aspect is, that the mentioned techniques found their way into generator tools,
which generate concrete parts of a compiler from easy to maintain and extendible
specifications. Nowadays every programming language description comes with a

specification in EBNF, from which a YACC specification can be derived easily. This is not
the case for other parts of the compiler and most of industrial relevant compiler systems are
still hand-written.

The tool approach we present in this paper shows a further step in the automation of
compiler construction.

3.1 The Compiler Framework

The compiler framework developed in OMI/SAFE was designed to maximise reuse and
reliability. This „developers best friend“ goal is achieved by:

• dividing the compiler into well
manageable phases

• dividing phases into language and
architecture dependent and
independent parts

• generating compiler parts from
specifications

First the compiler is divided classically
into a front-end and a back-end where
ANDF serves as the intermediate
language. This is not only a conceptual
subdivision, but this is a concrete
interface where different front-ends and
back-ends can be exchanged - even
dynamically. In a concrete development
framework this reduces the amount of
combinations of front-ends with back-
ends from m*n to m+n and thus reduces

the costs for porting the compiler to new architectures or languages. ANDF programs
produced by the front-end can also be saved as binary files, which can be distributed and
translated further with any ANDF-back-end, without any knowledge about the language
they were produced from. The feature of being able to distribute binary coded intermediate
programs is similar to Java-Byte-Code, with the difference that the latter is neither
independent of the source language nor architecture neutral.
In the rest of this paper we will concentrate us on the back-end part (installer) of such a
compiler and the generator techniques used here.

3.2 Back-end Architecture

The main aspects at the construction of compiler back-ends are retargebility and reliability.
Efficiency of the generated code is also an import point for embedded systems, but unlike to
code generation for high-performance workstations memory considerations are often more
important. The generator approach used in OMI/SAFE allows to optimise code generators
for both runtime efficiency and memory consumption.

Following ANDF mechanisms to divide an installer into architecture neutral and
architecture dependent parts, our approach performs a stepwise transformation from „high-
level“ ANDF to low-level machine code:

Source Program
Language1

Machine Program
Architecture1

Frontend1

Source Program
Languagem

Frontendm

Machine Program
Architecturen

Backend1 Backendn

ANDF

.....

.....

.....

.....

1. Read and link the architecture
neutral ANDF code together with
machine dependent ANDF
libraries and application
programming routines (Linked-
ANDF)

2. Select target machine code for
Linked-ANDF programs (code
selection)

3. Assemble and bind produced code
to executable programs

The latter is a standard job for a

system specific assembler/linker tool
chain and is normally provided by the
target machine manufacturer.
Implementations of task 1 (ANDF-
Linker and Reader) can be reused at
100%, because they do not depend on the target and are implemented architecture neutral.
Several C-implementations are available, one as a result of the OMI/SAFE project. The code
selection phase (task 2) performs the mapping of data types and operations to the target
machine while trying to use target resources optimally. Obviously this is the most tedious
task to implement and tool support is urgently required.

3.3 The Generator Technology

There exist a variety of techniques that address the problem of matching machine code to
intermediate languages. Common methodology is to specify source and target language
terms, which are related by code selection rules annotated with costs. From those
specifications a cost controlled rewrite system is generated, that implements the code
selector. The mechanism assures that always the cost minimal code - memory consumption
or execution time - is selected. Efficient tree transducers or bottom up rewrite systems
achieve practicability. The user of the generator does not have to bother with the generated
transducer system, he just has to assure, that the specified rule set is complete w.r.t. to the
input language (ANDF) and of course, that the single rules are locally correct.

Most powerful machine instructions can be used not only to implement one node of the
program tree but several nodes at the same time. In order to take full advantage of this
instruction set property the declarative specification of the code generator describes machine
instructions by tree patterns. This is done by defining rules. Each rule describes a node
pattern and the corresponding sequence of processor instructions, which will be the output
for this pattern. In order to produce code for the entire expression tree, the code generator
picks out a suitable set of rules so all nodes are covered once. Now the tree is traversed in
postfix order and for each rule of the set the corresponding machine instructions are emitted.

Many processors have an ample instruction set, which may lead to a lot of different,
possible covers. These covers are all correct, but the results may have not the same code
quality. In order to select the best cover, each rule has the above mentioned cost statement.
The code generator computes the total cost of each possible cover by adding the costs of all
rules belonging to the cover. Then the cover of minimal cost is chosen and for this the code
is produced.

Several generators with industrial relevance have been built in the recent years and are

ANDF

ANDF-Linker

Code Selector

Assembler

Reader

Machine Code

Generator

Code Selection
Rules

100% reuse

generated

sys. dep.

now included in compiler toolboxes (BURG, IBURG/MBURG, PAGODE, BEG). The
back-end generator BEG is the tool with most user support and is complete in the sense,
that it is possible to specify the whole code generation process. BEG produces highly
efficient code generators, includes several register allocators and also generates instruction
schedulers from specifications.

BEG was developed and used in ESPRIT-project COMPARE and is now maintained and
sold by H.E.I.-Informationstechnik, Germany. The commercial version comes with full
support, a public domain version with less features is also available. The practicability has
shown up in several compiler projects (COMPARE, MOCKA, Sather-K, Java-Byte-Code)
where code generators for different processors (VAX, 68k, Transputer-T800, MIPS, Sparc,
PowerPC, Pentium) were produced.

4. First results

This paper also reports first results and experiences of implementing ANDF back-ends with
the new generator approach. We will give an overview on human resources and technical
results of the first phase of the installer part within the OMI/SAFE project.

A code generator consists of intermediate language specific and target machine
dependent parts. The language part models the input representation and performs
optimisations on ANDF-terms. This part can be reused 100% for a new compiler and will be
available in the public domain and also commercially as a result of the OMI/SAFE project.
The machine dependent part has of course to be adapted for a new architecture, but the
specification mechanism allows to concentrate on the target machine facilities. The compiler
writer does not have to bother with the transformation process itself, but he can concentrate
on single aspects and local transformations.

Table 1 gives an overview on the usage of human resources needed related to lines of
specification and C-code produced.

 % of total

man-power
lines of code-
gen.-spec.

lines of C-code
(generated)

Reader 20% --- 17.000
ANDF-specific code-gen. part 40% 1.500 10.000

Architecture dependent 800 25.000 Target-specific
code-gen. part Processor dependent

40%
400 8.000

Tabelle 1 Human Resources

Architecture dependent means, that this part only depends on the target architecture or

family, not on the concrete processor.
These first results show, that on the one hand the specification mechanism is very

powerfull – relation from lines of spec. to lines of C-code is at least 10 to 1 – and on the
other hand that the biggest part can be reused for a new architecture or processor family.

5. Conclusions

First results in the OMI/SAFE project show, that a code generator technique like BEG is
especially well suited for complex intermediate languages like ANDF and for embedded
system processors with complex instruction sets, register files and addressing modes.

Compared to hand written compiler back-ends, the usage of code generator tools decreases
the retargeting time to a new architecture significantly as well as it improves reliability.

The main benefits of using a compiler generator for embedded systems are retargebility
and reliability. Comparing hand written back-end implementation and writing a declarative
description the latter has several advantages:
• the description text is distinctly shorter than the source text of a conventional hand made

back-end (the current version is generated from approx. 2700 lines of specification)
• specifying the code generation at a higher declarative level is more convenient for a

programmer, because it improves understanding and communicativeness; even
complicated details can be described by rather simple rules

• writing a description takes less time and effort because it is shorter and clearer; the
programmer can concentrate himself to local aspects, the global mechanism is generated
and assures correct compilation

• the division of the code generation process into several phases (rewriting, covering, code
emission) allows an easy debugging of the code generator itself

• the BEG performs consistency checks on the description; this improves completeness,
correctness and reliability of the produced code.

• It supports cost controlled code generation, which allows to produce locally optimal
code (w.r.t. time economy or resource economy) and to come close to the program
global optimum.

• adding new correct rules can not cause any worsening; extensions introduced to improve
code quality of a particular coding problem won't suppress any other minimal cover
found correctly before the extension

• the correctness of the produced code can be approved easily by simply proving local
correctness of single rules

• because BEG generates automatically a register allocator, it is no longer necessary to
design and to implement one, that saves additional time.

Especially the correctness aspect is very important for reliability of safety critical
applications and a lot of work has been done on this area, too. For example in [5] we
showed how to prove the whole code generation process correct on the basis of local
correctness. The whole code generation specification can be verified against the semantics of
source and target language, which results in an most reliable compiler specification. Such a
compiling specification can then be implemented correctly by techniques described in [6] and
others. The whole generator can be proven correct, especially with the back-end techniques
described in this paper.

References

[1] Helmut Emmelmann, Code selection by regularly controlled term rewriting. In R. Giegerich and S.L.

Graham, editors, Code Generation - Concepts, Tools, Techniques, Workshops in Computing. Springer-
Verlag, 1992, S. 3-29

[2] H. Emmelmann, F.W. Schroer, R. Landwehr: BEG - a Generator for Efficient Back-Ends, Proceedings
of the Sigplan’89 Conference on Programming Language Design and Implementation. Portland,
Orgeon, June 21-23, 1989, Sigplan Notices, Vol. 24, Number 7, July 1989

[3] Albert Nymer and Joost-Pieter Katoen. Code Generation based on formal BURS theory and heuristic
search. Technical report inf 95-42, University of Twente, 1996

[4] Todd A Proebsting. BURS automata generation. ACM Transactions on Programming Languages and
Systems, 17(3):461-486, May 1995

[5] Wolf Zimmermann and Thilo Gaul. On the Construction of Correct Compiler Back-Ends: An ASM
Approach. Journal of Universal Computer Science (JUCS), 3(5):504-567, 1997

[6] Wolfgang Goerigk and Axel Dold and Thilo Gaul and Gerhard Goos and Andreas Heberle and F. W.
von Henke and Ulrich Hoffmann and Hans Langmaack and Holger Pfeifer and Harald Ruess and Wolf
Zimmermann. Compiler Correctness and Implementation Verification: The VERIFIX Approach,
International Conference on Compiler Construction, 1996, Linkoeping, Sweden.

[7] H.S. Jansohn: Automated Generation of Optimized Code. GMD-Bericht Nr. 154, R.Oldenbourg
Verlag, 1985

[8] A.V. Aho, M. Ganapathi, S.W. Tjiang: Code Generation Using Tree Matching and Dynamic
Programming. 1987

[9] A. Balachandran, D.M. Dhamdhere, S.Biswas: Efficient Retargetable Code Generation Using Bottom-
up Tree Pattern Matching, Computer Languages, 15(3), 1990, S. 127-140

[10] R.S. Glanville: A Machine Independent Algorithm for Code Generation and its Use in Retargetable
Compilers, PhD Thesis, University of California, Berkeley, 1978

