
306

THE TEN15 PROJECT

De N E Peeling

Royal signals and Radar Establishment, UK

INTRODUCTIOX

This paper is a description of the background
and progress of the Ten15 project at RSRE.
The emphasis of this paper centres on the
potential advantages to the software
engineering community of the widespread
adoption of Ten15 as a kernel for software
engineering applications.

Ten15 Foster (1) provides an algebraic basis
for software development. It has three
important aspects:

- First, it provides an interface that makes
different computers compatible, thus ensuring
the portability of all programs that are
written on top of Tenl5. The use of
techniques developed for high level
programming languages, such as compilation
and strong type checking, means that this
compatibility is achieved without
compromising efficiency or integrity.

- The second major facet of Ten15 is that it
provides a powerful set of facilities for
implementing and integrating system
components and databases within a distributed
environment. Systems whose complexity or
functionality makes them difficult to
implement on conventional operating systems
should be significantly easier to build on
Tenl5. Ten15 achieves this by providing
facilities for dynamic and secure resource
allocation in mainstore, filestore and over a
network, within a comprehensive type system
that has a sound mathematical basis. The
sorts of system that Ten15 will support cover
many important areas: high integrity systems,
secure systems, IPSE developments, expert
systems, heterogeneous networks, fine grain
databases, and formal methods.

- Thirdly, Ten15 allows its users to preserve
their existing investment in software. Ten15
runs efficiently on conventional computers.
Ten15 can coexist with existing operating
systems and can share data with them. Ten15
efficiently supports most existing
programming languages and provides flexible
mechanisms for mixed language working. This
means that Ten15 provides an evolutionary
advance in software engineering practice.

The paper starts with a description of the
background that led up to the development of
Tenl5, showing how the different threads of
the research programme in Computing Division,
RSRE, came together to enable the design of
Ten15 to be attempted. This section gives a
description of Ten15 in a "bottom-up'' manner
and clearly shows the role serendipity has
played in the development of Tenl5. The next
section gives a summary of what Ten15 is, in
the sense of what it offers its users with
an analysis of the potential application
areas that would benefit from the use of
Tenl5. This is a description of Ten15 in a
"top-down" form that gives an idealised
description of the requirements that Ten15
satisfies. The paper concludes with a summary
of the current state of development of Ten15
and the plans for its introduction,

demonstration and evaluation in collaboration
with industry and academia.

Ten15 is a product of a long-term computing
research programme at RSRE. The research team
has in the past been responsible for the
development of the first MOD standard
language for real-time systems, CORAL66 (2) ;
the first Algol68 compilation system,
Algo168-R Currie et a1 (3) ; the Queen's Award
winning Hardware Description Language, ELLA
Morison et a1 (4) ; and the FLEX capability
computer Currie et a1 (5) and advanced
Programming Support Environment Stanley (6).

Ten15 is a part of the future support
environments programme at RSRE which is aimed
at reducing the costs and risks of software
development for large complex distributed
information systems for the MOD. Prime
technical objectives of the research include
support for new models of the design process
(including prototyping), better software
reuse, and better security and integrity.

Ten15 arose when two major strands of
research within Computing Division came
together in an unforeseen manner. The name
Ten15 was first used for a formally defined
intermediate language that was developed as
part of the formal methods research
programme. The intention was to run a new
generation of algebraically based analysis
tools on the Ten15 algebra, and to compile
programs written in different languages into
the Ten15 algebra prior to analysis.

The second major influence on the Ten15
project came from the FLEX project. FLEX is a
computer architecture with the design aims of
integrity, flexibility and support for highly
interactive systems. FLEX is a tagged
capability architecture with an instruction
set orientated to high-level language
compilers. It provides common,
garbage-collected address spaces for programs
and backing store. The FLEX view is that
interactive programming is essentially the
unanticipated combination of programs, and
that a common address space is needed to
allow data to be Dassed freelv between
programs while the capabi1iti;s provide
control of access in order to maintain
integrity. The garbage-collected common
address space also allows FLEX to support
dynamically creatable procedure values, which
can be used to implement user-defined,
high-level capabilities. Four hardware
versions of FLEX have been implemented, in
each case by microcoding; most recently on an
ICL PerqZ.

On top of this architecture a sophisticated
Programming Support Environment has been
implemented, with editors, extensible
graphics, compilers and other tools.
Unfortunately the need to implement the FLEX
architecture in microcode has cut this
advanced PSE off from the mainstream of
software enqineers who are equipped with
'conventional' computer hardware:

307

During the period 1985-87 the experience and
results of the FLEX work and the formal
methods work began to come together in a way
which showed the way forward towards a
portable software system with the
characteristics of the FLEX PSE. The FLEX PSE
has a system of datatypes which is used as a
guide to help users, rather than as a
mandatory checker, although the type
mechanism in the FLEX PSE was more extensive
than in the Ten15 algebra, as it then was,
because of the need to handle operating
system values as well as just programming
language values. As the FLEX type system
developed further, it was realised that the
capability checks in the microcode were being
used only as a safety-net when type-checking
had been abused in the system programming
language, Algol 68. It was then obvious that
if the type system could be made all
embracing, and was rigidly enforced, then the
microcode checks would become completely
redundant. In this way an abstract machine
could be designed which would serve for
compilers, operating systems, editors,
databases, networks and users' programs
alike. This machine was based oh the compiler
target Ten15 algebra and perhaps
unfortunately not renamed.

The concept of Ten15 is now a high-level
abstraction of the machine (or more
accurately an abstraction of the languages
that are used to Droaram the machine) with a
comprehensive set'of-types and operators,
extensive enough to describe the complete
programming world. With the realisation that
cbmpleteness, integrity and efficiency were
simultaneously possible, came the idea that
Ten15 could be the common intermediate
language for all compilers, and the Ten15
translator which compiled Ten15 into
machine-code could be the sole machine-code
generator in a complete system. The universal
type system would provide a more refined
access control than that of capabilities,
with the checking done during compilation
rather than being interpreted at run-time. A
Ten15 translator can, like FLEX, offer a
single, garbage-collected address space so
that data can be communicated in
unanticipated ways. It thus provides all the
advantages of FLEX, but without needing a
non-standard architecture to support it;
porting an implementation of a Ten15 system
to a different machine is now a matter of
rewriting the Ten15 translator to generate
instructions for the new machine's
order-code, together with the
reimplementation of a small Ten15 kernel that
handles those aspects of the machine not
accessible through the order-code (network,
backing-store etc.).

It can be seen that a Ten15 system not only
solves the major problem with FLEX (the need
for special-purpose hardware support): it
also extends its virtues. In summary, these
improvements are:

- A full type system providing better checks
than the single word checks provided by
capabilities.

- A Ten15 system can coexist with existing
(conventional) systems, and can share data
with them.

- New compilers are not needed for new
machines.

- The Ten15 system types are those of the
system programming language, called
Tenl5-notatio11, which is based directly on
the Ten15 algebra.

- The Ten15 algebra provides a well defined
interface for mixed language working.

OVERVIEW OF TEN15

This section concentrates simply on what
Ten15 is and what it can do.

Ten15 is a kernel layer of software that sits
between all programs built on top of Ten15
and the host computer system. This kernel
hides the host machine completely in the
sense that all user code obeyed by the
computer system is generated by the Ten15
software. The definition of Ten15 contains
constructs that can efficiently implement all
the features of the common programming
languages, which allows compilers for
languages such as Ada, Pascal, C , ML etc. to
compile through Tenl5. Ten15 contains
features for controlling all aspects of the
computer system including those not normally
reachable from conventional programming
languages e.g. backing store, databases,
Local Area Networks, and the loading and
execution of programs.

Because Ten15 completely hides the underlying
machine, it can be thought of as a machine in
its own right. It is however an abstract
machine in the sense that it is not tied to a
particular hardware implementation. Any
program, including compilers and other
hitherto machine dependent tools, written on
top of the Ten15 machine will run unchanged
on any hardwaCe.cn which the Ten15 system is
implemented. The only limitation to the
compatibility provided by Ten15 stems from
the availability of special hardware on some
systems e.g. signal processing chips and
array processors.

It is important to be clear about the
relationship between Ten15 and an operating
system kernel, such as UNIX (UNIX is a
trademark of ATCT). Ten15 could be installed
as the native operating system kernel on a
computer system (referred to as a "bare
machine" implementation). A less radical
approach is to implement Ten15 on top of an
existing operating system. The advantage of
this approach is that Ten15 can be used on an
existing computer configuration; Ten15 will
be able to communicate with tools running on
the host operating system, and the Ten15
implementation will be able to use the
existing device drivers provided by the host.
The performance degradation compared with the
bare machine implementation is likely to be
small and the trustworthiness of the system
should be acceptable for all but the more
stringent security and integrity
requirements. The ability to implement Ten15
on top of an existing operating system and
hence access tools running on the host,
together with the provision of compilers for
existing programming languages, greatly
enhances the migration route to Ten15.

As previous efforts to define a "universal"
abstract machine have foundered on the
grounds of unacceptable run-time performance,
Tenl5's claim to provide acceptable
efficiency has to be justified. The early
abstract machines were attempts to abstract
machine architectures and as a result were
low-level and machine-like. The mapping of
the abstract machine to concrete
architectures was simple, and hence cheap,
but allowed little scope for optimal use of
the features of a oarticular machine. and
hence performance ;as very inefficient
comoared with direct use of the underlyins
computer architectures. Ten15, on the other
hand, is an abstraction of high-level

http://hardwaCe.cn

308

programming languages and consequently is at
a much higher level than the early abstract
machines. Ten15 Dreserves most of the
high-level structure of the programs that
compile into it. This information can be used
to drive all conventional code optimisation
strategies in the implementation of a
compiler/translator from Ten15 to a
computer's order-Code. This means that the
run-time performance of a program compiled
through Ten15 can be as good as that achieved
with a native compiler.

The attitude to performance is perhaps best
summed up by a target the designers of Ten15
set themselves: that no program running on a
Ten15 system should take more than 203 longer
to run than an equivalent program running on
the same machine under a conventional
operating system. Curcent tests indicate that
this target is easily achievable and research
is concentrating on removing the overhead
altogether. Ten15 has the added advantage
that many programs which take advantage of
Tenl5's more advanced features will run very
much faster when implemented on a Ten15
system.

Another potential problem for a abstract
machine that tries to be complete is that it
might grow like Topsy, ending up both large
and complex. There are a number of obvious
advantages in keeping Ten15 as compact and
simple as possible. It not only keeps the
overhead of the system code size small; it
also reduces the cost of rehosting a Ten15
implementation; and given the possibility
(discussed later) of Ten15 being a suitable
basis for satisfying the most stringent
security and/or safety requirements, it helps
to bring the Ten15 implementation within
reach of the current capabilities for formal
software proof. The code size of a typical
Ten15 implementation gives some idea of the
success that the designers of Ten15 have had
in containing the size of Tenl5. The Ten15
implementation consists of two main
components - a translator which compiles
Ten15 constructs to the machine-code of the
host computer, and a run-time kernel that
looks after peripherals, storage allocation
and the like. The translator on VAX/vMS (VAX
and VIS are trademarks of digital equipment
corporation) occupies less than 100 Kbytes
and the kernel is less than 200 Kbytes.

One of the principles used to keep Ten15
small was to include only general purpose
primitives.' New primitives were only
considered for inclusion if they could not be
built out of existing Ten15 features, or if
they could be implemented much more
efficiently by building them into the
definition of TenlS.

The provision of integrity and security is
built on this same principle. The definition
of integrity which Ten15 implements is very
low-level; integrity is taken to mean the
ability of the system to limit the access
that a program has to the resources of the
computing system: in particular, to limit the
amount of damage that program can do, no
matter how maliciously it behaves. This kind
of integrity is Unarguably a property that
all systems will want to share. However, it
does not preclude the design of a system that
allows users to access data that offends Som.
higher level notions of privacy, such as
those needed in a military secure system. The
Ten15 viewpoint is that there is no universal
higher level definition of privacy/integrity
that will satisfy all the requirements of
different user communities, and so the job of
Ten15 is to provide a soundly based toolkit
which can be used to implement easily any

particular notion of privacy/integrity.
certainly the low-level definition of
integrity enforced by Ten15 is essential for
the user to be able to assure himself that
any program he writes to police access to an
item of data cannot be circumvented by
another potentially malicious program. For
the implementor of a secure system, Ten15
provides a mechanism for hiding a resource
behind a procedural interface. The procedures
in the interface can then implement a policy
for limiting access to that resource. Ten15
guarantees that the only route to that
resource is through the procedural interface.

Just as Ten15 provides general purpose
primitives to synthesise larger
constructions, so programmers are encouraged
to create general purpose components within
their field of interest. This implies that
the composition of general purpose components
must be verv efficient. To achieve this the
Ten15 systei provides very fast data
communication between the parts of a system.
The mechanism chosen is to-run all urourams
in the same mainstore address space; atid to
provide sophisticated control of access, and
storage allocation/deallocation. This
mechanism looks potentially risky from the
Doint of view of inteqritv, because a mistake
in storage access in one program might give
access to another program's data. Ten15
actually provides very good mainstore
integrity and it can do this as a consequence
of the fact that it is a complete abstract
machine. By denying the user any access to
the native machine instructions it keeps
total control over memory allocation and
deallocation. It backs this up with an
unbreakable type checking system that ensures
that no Ten15 operation can be applied to
inappropriate data.

The use of mathematics has played a
fundamental part in the design of Ten15 -
particularly Goguen et a1 (7) and Martin-Lof
(8) . First, mathematics has been used to help
understand the structure and semantics of
Ten15, and has proved invaluable in exposing
which were the most general purpose
primitives to include. As a result it should
be possible to produce a comprehensible
formal definition of Tenl5. Secondly, Ten15
is itself a mathematical entity, having an
algebraic structure. An algebraic structure
was chosen because it produces a
representation of programs that is easy for
programs to create, analyse and manipulate.
The Ten15 representation of programs output
by compilers is a language independent form
on which automatic analysis and
transformation can be performed. The role of
Ten15 as a syntax independent representation
of program is likely to become increasingly
important. One of the earliest benefits will
be the ease with which systems can be created
from Ten15 components that were compiled from
a number of different languages.

Potential Benefits of Ten15

Ten15 has an important part to play in
improving the software engineering process
"in the large". Admittedly, this view
somewhat contradicts the perceived wisdom
that the basic techniques of programming are
now a mature technology and there is little
prospect of any radical improvement, such as
occurred in the move from assemblers to
high-level programming languages. In terms of
the writing of free standing programs this
may be true. There is however great scope for
improvement in the production of larger
systems comprising many cooperating programs,
possibly running on many machines in a
distributed environment, with one or more

309

significant sized, complex databases. To
achieve inter-process communication, database
manipulation and distribution one requires
separate programs to communicate using the
features provided by the operating system.
Many of the system programming facilities
offered by the widely available commercial
operating systems are, by programming
language standards, still at the assembler
stage of development. A good example of this
is provided by the extensive use of byte
streams in UNIX for the contents of files and
pipes. Those system programming facilities
that have advanced from this stage (e.g.
4GLs) have unfortunately developed notions of
data structuring that are incompatible with
accepted standards in programming languages.
The consequence is that the effort of
implementing larger systems is now dominated
by overcoming the restrictions imposed by the
operating system and by the mismatch between
the ways the operating system and programming
languages structure, communicate and store
data. Ten15 provides a framework that
unifies the notions of program and data
between programming languages and operating
systems. As a result, the effort of
designing large integrated systems can be
siqnificantlv reduced. This effect has
already been demonstrated in single language
soecial DurDose environments such as LISP and SEIALLTAL~ sjrstems.
Ten15 not only increases productivity by
providing a uniform programming environment
free from the petty restrictions, reliance on
low level data types, and black magic of
current system programming practice, but also
makes it much easier to design reusable tools
and tool fragments. The ability to pass typed
data between tools via mainstore or
filestore, instead of having to flatten the
data into a byte stream for passing down a
pipe OK storing in a file, makes input and
output to tools as good as for high-level
language procedures. Experience with systems
such as FLEX, LISP and SMALLTALK have shown
that this encourages the development of
reusable tools.

Although Ten15 can reduce software production
costs across the board - and in the long term
this may be seen as its most important
property - initial uses of Ten15 are liable
to be concentrated in application areas Where
it provides more specialised benefits. This
section concludes with an analysis of the
niche markets where Ten15 will be most
attractive.

CASE tools. The Support offered for the
software engineering process will make Ten15
an ideal base for many CASE tools. In
particular, any new operating system or
Integrated Project support Environment could
benefit enormously from the use of Ten15 as
its machine independent kernel.

H e t e r o q . The compatibility
between different computers that the Ten15
abstract machine provides not only serves as
a portability interface f o r systems built on
Tenl5, it also allows dissimilar computers to
cooperate with one another in a distributed
environment. As well as providing a common
level for communication between different
computers, Ten15 includes advanced features
for interworking within a loosely coupled
(over a L A N) distributed system, such as
dynamically creatable remote procedure calls.
The problems of communication within a
tightly coupled, massively parallel computer
system (e.g. an array of transputers) is the
subject of an ongoing research project.

-€ . The features
Ten15 offers to the builders of high
integrity and/or high security systems will
make Ten15 a very good kernel for the design
of systems whose failure cannot be tolerated
on safetv. securitv OK commercial grounds.
This is :'fast gro;ing market: for-example,
the recent publicity surrounding fly-by-wire
avionics systems, hackers, viruses and
computer crime has done a lot to increase the
market awareness of the value of safe and
secure systems. One of the attractions Of
Ten15 is that it can be used to build a
portable system that can then be sold with
varying levels of cost/security: from the
most expensive/most secure system implemented
on a special purpose computer with hardware
support for security (in military terms,
capable of offering beyond A1 levels of
assurance) through a bare machine
implementaiion of Ten15 (possibly capable Of
A1 assurance), to cheaper and still quite
safe implementations based on secure
commercial operating systems, ending up with
the cheapest system built on top of a
standard operating system which offers
significant improvements to integrity while
still being susceptible to a determined
attack from the untrusted host operating
system.

SuDDOKt for moder DKOaK&&Qa StVl- . Ten15
-hat support modern
Droqramminq Daradiqms. These features include - -
a common ga;bage-collected address space,
support ;or first class procedure values,
dynamically creatable remote pKOCedUKe calls,
an intelligent demand loading system for the
code of procedures, a persistent heap
filestore, and a polymorphic type system.
This means that Ten15 will support object
oriented programming languages,
object-oriented databases, persistent
programing languages such as PS-Algol
Atkinson et a1 (9) , polymorphic programming
languages such as ML and functional
programming languages. Ten15 may be a means
of integrating a number of the good ideas in
these different styles. Ten15 also provides
automatic garbage collection for conventional
languages such as Ada, Pascal and C . Many of
the more advanced systems written in these
languages expend a great deal of effort doing
manual storage deallocation, a process which
is very difficult to get right, very
difficult to de-bug when it is incorrect and,
even when correct, often incurs significant
run-time overheads.

Databases. The concept of filestore in Ten15
extends programming language data structuring
in an obvious way onto the backing store.
The approach adopted is to provide general
purpose primitives which separate the idea of
mainstore pointers from disc pointers.
Bringing a data structure from disc into
mainstore, i.e. turning a disc pointer into a
mainstore pointer, has to be done explicitly.
The mechanisms underlying the Ten15
filestore are capable of supporting Complex
databases where individual items can, ifn
necessary, be very small (the so-called fine
grain" database). The Ten15 filestore is a
potentially more flexible and efficient
implementation mechanism for building
databases than are existing technologies such
as relational and entity/relationship/
attribute databases, and will be much easier
to integrate with the programming languages
used to implement the system.

There is a lot of interest at the moment in
hypertext interfaces to databases, in which
the hierarchical nature of a database is
explicitly visible on the computer screen.

310

The RSRE FLEX computer system (which has a Planned enhancements to the evaluation system
filestore similar to Tenl5's) supports an include compilers for Ada and Standard ML.
advanced hypertext user interface. The ease and retargetting to RISC aKChiteCtUKeS. These
with which this interface was implemented enhancements should start becoming available
suqgests that the Ten15 filestore will be in 1991.
idsal for supporting such interfaces.

Formal methods . The mathematical definition
of Ten15 makes it a suitable framework in
which to analyse the properties of programs
automatically. Ten15 provides features which
will allow the results of such analysis to be
communicated to the user in terms of the
language in which the program was originally
written. Because the definition of Ten15
covers those features that support system
programming, Ten15 also offers the
possibility of analysing complete systems as
well as free-standing programs.

The MOD will be using the evaluation system
to undertake demonstrator projects in the
area of secure systems. RSRE are however keen
for other organisations outside MOD to use
the evaluation system for demonstrators in
the wider context of the UK software industry
and advanced software engineering research.
This paper should provide enough information
on the most likely areas where Ten15 could
provide considerable extra leverage. Any
organisation, academic OK commercial, wishing
to discuss this opportunity further should
contact the author.

Ten15 was specifically conceived to support ACKNOWLEDGEKWZS
design by transformation. In this approach,
an algorithm is expressed initially in high
level constructs in a clear way that can be and J M Foster.
seen to be correct. It is then transformed by

of equivalent effect into a version that will

Ten15 was designed by P W Core, I F Currie,

methods which are known to produce programs REFERENCES

run with adequate efficiency. 1. Foster, J.M., 1989, "The Algebraic
specification of a target machine:

Formal specification languages such as Z and Tenl5", High-integrity software, ed
VDM are gaining currency. Having completed a Sennett, C.T., Pitman. specification in such a language, the next
step is to produce an implementation that
satisfies the specification. The Coral Definition", HMSO London. implementation may be produced independently

2 . Ministry of Defence, "The Official

or it might be developed by a refinement ~ 3 . ~urrie, I.F., Bond, S.G. and Morison,
process from the specification. Ten15 J.D., 1971, "ALGOL 68-R", Algol 68
provides a formal description of the implementation, ed Peck, J.E.L.,
implementation which can be a basis for a North-Holland, Amsterdam, pp 21-37.
formal comparison with the specification.

CURRENT STATUS AND FUTURE PLANS.

There is already a prototype translator and
kernel for VAXDMS. A kernel for UNIX is
being produced by PRAXIS plc and a translator
for Motoro~a 68000 is being produced at the
University of York. RSRE are developing an
evaluation system f o r Tenl5. This system
would comprise:

- A simple but powerful Human/Computer
Interface which will be based on the
experience gained with the editor from the
RSRE FLEX PSE. This will use an advanced
hypertext format and will be user-extensible.

- Compilers for Pascal, Algol68 and
Tenl5-notation. Tenl5-notation is the main
implementation language of the evaluation
system and serves as both an assembler for
Ten15 (in that it allows text to be written
that will generate exactly any piece of Ten15
required) and as a high-level system
programming language.

- A symbolic Ten15 debugger which the
compilers for the different languages tailor
to their individual syntax.

- A separate compilation system.
- A framework of tools that allows the
algebraic structure of Ten15 programs to be
manipulated by user-written programs.

- A PostScript (Postscript is a registered
trademark of Adobe Systems inc) output for
driving laser printers.

A version of this evaluation system that runs
on a standalone workstation (initially
VAXpMS) could be available in the second
half of 1990. Further releases that run
initially on homogeneous, and later on
heteKOgeneOUS, networks of VAXS and SUNS,
could be available in the following twelve
months.

4. Morison, J.D., Peeling, N.E. and Thorp,
T.L., 1985, "The Design Rationale of
ELLA, A Hardware Design and Description
Language", PKOC CHDL 85, Tokyo, Japan,
pp 303-320.

5. Currie, I.F., Edwards, P.W., and Foster,
J.M., 1982 "Flex: A working computer with
an architecture based on procedure
values", RSRE Memorandum 3 5 0 0 .

6. Stanley, M., 1986, "An evaluation of,,the
Flex Programming Support Environment ,
RSRE Report 86003.

7. Goguen, J.A.,Thatcher, J.W., Wagner, E.G.
and Wright, J . B . , 1976, "An initial
approach to the specification, correctness
and implementation of abstract datatypes",
Current Trends in Programming nethodology.

theory of types: predicative part", Logic
Colloquium, 1973, ed Rose and SheperSon,

8. Martin-Lof, P., 1975, "An intuitionist

North Holland, Amsterdam, pp 73-113.

9. Atkinson, M.P., Chishol!, K.J. and
Cockshott, W.P., 1981, PS-algol: An Algol
with a Persistent Heap", ACM SIGPLAN
Notices Vo1 18, No 7, pp 24-31.

Copyright @ Controller HMSO London 1989

