
2/5/93 04:23 pm peeling%hermes.mod.uk@relay.mod.uk 1 of 23

Commonly Asked Questions (andAnswers)
about ANDF

Dr. R. R. Rowlingson
Dr. N. E. Peeling

DRA Malvern UK

 British Crown Copyright 1992

Questions and Answers 2 of 23

Index of Questions

1. Background to ANDF, TDF and DRA

2. Commercial Aspects

3. ANDF and ISVs

4. ANDF and System Vendors

5. ANDF and end-users

6. Technical Questions

Questions and Answers 3 of 23

Questions

1 Background to ANDF, TDF and DRA

1.1 What is ANDF?

1.2 What is TDF?

1.3 Who are DRA?

1.4 Which organizations support ANDF?

1.5 Why are DRA developing TDF?

1.6 What is the history of TDF?

1.7 How much is being invested in TDF?

1.8 Is TDF an open specification?

1.9 Who controls TDF?

1.10 Has ANDF been oversold?

2 Commercial Aspects

2.1 How can I get hold of TDF?

2.2 What software is available?

2.3 What real-life experience is there in using ANDF?

3 ANDF and ISVs

3.1 Does ANDF protect proprietary information as well as a binary does?

3.2 Does ANDF make it much easier to pirate software?

3.3 How will ANDF affect an ISV’s ability to do differential pricing?

3.4 How does an ISV ensure quality if a customer can run a ANDF program
on a machine on which the ISV has not tested it?

Questions and Answers 4 of 23

3.5 Will ANDF reduce testing costs?

3.6 If a shrink-wrapped application fails who does the customer blame?

3.7 How long does installation take?

3.8 How large is the distributed TDF compared to binary?

3.9 What are the performance costs of using TDF?

3.10 How long does it take to shrink-wrap an existing application?

4 ANDF and System Vendors

4.1 How much effort does it take to implement a new installer?

4.2 How have DRA matched the performance of compilers which have
taken many tens of staff-years to develop with installers that have only taken
one or two staff-years to develop?

4.3 Do you have to use DRA technology to create a new TDF installer?

5 ANDF and End Users

5.1 How much will it cost?

5.2 Does ANDF help me with the problem of legacy systems?

6 Technical Questions

6.1 is ANDF is tied to UNIX?

6.2 How does ANDF relate to APIs?

6.3 How does ANDF relate to ABIs?

6.4 How does ANDF relate to distribution of multiple binaries on CD-ROM?

6.5 How does ANDF relate to using shrouded C for distribution?

6.6 Is TDF a C oriented technology?

6.7 Will ANDF collapse as more languages and targets are considered
(remember UNCOL)?

Questions and Answers 5 of 23

6.8 Will operating systems be compiled using ANDF?

6.9 Is TDF suitable for parallel computers?

Questions and Answers

Background to ANDF, TDF and DRA

6 of 23

Questions (and Answers)

1. Background to ANDF, TDF and DRA

1.1 What is ANDF?

ANDF stands for Architecture Neutral Distribution Format. The concept of
an ANDF was pioneered by the Open Software Foundation (OSF). The OSF
issued a Request For Technology (RFT) in May 1989 to solicit proposals for
technologies that might form the basis of their ANDF; OSF received 23
such proposals.

The objective of ANDF is to encourage the development of a large body of
‘shrink-wrapped’ applications capable of running on any Open Systems
platform which implements the necessary libraries (APIs).

 1.2 What is TDF?

TDF is an ANDF technology, designed and implemented at DRA Malvern.
In June 1991 DRA’s TDF technology was selected to be the basis of the
OSF’s ANDF.

TDF represents an evolution of multi-language, multi-target compiler
intermediate languages. If there aren programming languages andm
machines then instead of needing the product ofn andm compilers one only
needs the sum (n+m) “half compilers”. OSF refer to then front-ends which
compile the programming languages into ANDF asproducers, and them
back-ends, which translate ANDF into the machine code of the different
machines, asinstallers.

The TDF technology provides software developers with an environment to
create portable applications. It provides mechanisms for defining the
portability interface which an application will use so that the application can
run unchanged on any computer that implements that interface. This

Questions and Answers

Background to ANDF, TDF and DRA

7 of 23

mechanism can also be used to define architecture neutral header files for
common APIs such as POSIX, XPG3, SVID and the AES

The document “ANDF Features and Benefits” gives a more detailed answer
to this question.

 1.3 Who are DRA?

The UK Defence Research Agency (DRA) was established as an Executive
Agency of the UK Ministry of Defence on 1st April 1991. It is wholly
owned by the UK government but is a distinct organization headed by a
Chief Executive who derives his authority from, and is directly accountable
to, the Secretary of State for Defence.

The aim of the DRA is to provide the expert scientific and technical services
required of it, primarily by the Ministry of Defence and Other Government
Departments in a way which is cost-effective and impartial; in support of
this, the DRA is also encouraged to provide services to non-government
customers. The DRA is expected to continue to be the MoD’s principal
source of scientific advice, technical support and research.

DRA’s “turnover” is approximately a billion dollars per annum.

DRA Malvern, formerly known as RSRE, is the Agency’s main centre for
work on information technology and electronic systems and devices and on
their defence applications. It is staffed by approximately 800 high calibre
scientists and engineers from many disciplines working at the frontiers of
scientific knowledge.

 1.4 Which organizations support ANDF?

The OSF has an advanced technology program in their Research Institute
covering ANDF. UNIX System Labs (USL) have signed a letter of
understanding with DRA to license the TDF technology. The European
Commission is supporting the Esprit GLUE project. Many other
organizations from market leaders to standards bodies and industry
groupings have shown interest and have offered support to the ANDF
project.

Questions and Answers

Background to ANDF, TDF and DRA

8 of 23

 1.5 Why are DRA developing TDF?

The Ministry of Defence is a large end-user of computer systems. Through
the widespread uptake of ANDF DRA aims to reduce the costs for software
development and software and hardware procurement for the MoD. Related
goals include the potential for early availability of compilers (e.g. for Ada)
on new architectures, separating software and hardware purchasing, easier
mid-life hardware updates, and improving software longevity and scalability.

By providing TDF as the de-facto standard ANDF technology DRA ensures
that MoD has access to a civil standard which can also handle defence
requirements such as support for Ada.

 1.6 What is the history of TDF?

TDF is derived from the Ten15 project at DRA Malvern. The Ten15 project
was a 50 staff year project which involved the definition and
implementation of a high-level abstract machine. Like TDF it was an
architecture neutral representation of programming languages but it was
strongly typed and also had the capability to describe operating system
features, such as the network and filestore, explicitly. TDF was conceived as
a portable code-generator for Ten15 and was purpose-built to the
requirements for creating and distributing shrink-wrapped software.

 1.7 How much is being invested in TDF?

DRA has a team of 15 people plus 7 contractors currently working on TDF.
OSF and USL also have technical staff working to develop the technology.
DRA are one of seven participants in a 3 year, $15 million, ESPRIT project
known as OMI/GLUE which also includes work on developing producers
(compilers to ANDF) for Ada, Fortran, C++ and a functional language as
well as work on validation, TDF tools and extending TDF for parallelism.

OSF and USL are working with ISVs to demonstrate the viability of the
ANDF approach to shrink wrapping existing applications.

Questions and Answers

Background to ANDF, TDF and DRA

9 of 23

 1.8 Is TDF an open specification?

The specification of TDF is freely available from DRA. All the Intellectual
Property contained in the TDF specification is in the Public Domain. DRA
takes no royalties for any use of the specification. The TDF encoding as a
bitstream is also in the public domain as is software for encoding and
decoding TDF. The other TDF tools (which are proprietary) work from a
central database that specifies TDF - this database is also in the public
domain.

 1.9 Who controls TDF?

TDF is a technology owned and controlled by the DRA. It forms the basis
of the OSF’s ANDF technology. USL and OSF have publicly announced
that they will support the same specification. The latest versions of TDF and
ANDF are identical.

DRA intends to submit TDF’s definition to an internationally recognized
standards process once TDF has proven its viability in the market place. At
such time DRA will cede control of the TDF specification to the appropriate
standards body/bodies.

 1.10 Has ANDF been oversold?

Many of the properties of ANDF (the concept) are now inextricably linked
to the properties of TDF (an ANDF technology). Until OSF had selected
TDF it was difficult to say exactly what were the expected properties of
ANDF and this did lead to some confusion. It is now clear that ANDF as
implemented by TDF is much more than just a distribution format - it is also
an aid in recasting applications in shrink-wrapped form, and it is also an
architecture-neutral medium for creating header files for APIs.

Some complex issues may have been oversimplified, such as the issue of
reverse-engineering ANDF. The latest documentation from DRA and OSF
avoids such oversimplifications.

Questions and Answers

Commercial Aspects

10 of 23

2. Commercial Aspects

2.1 How can I get hold of TDF?

Software availability is currently through the OSF snapshot program, for
further details contact Andy Johnson at the OSF Research Institute at 1
Cambridge Center, Cambridge MA, USA. email: andyj@osf.org

DRA are also looking into possible mechanisms for distributing a
developers kit.

 2.2 What TDF software is available?

DRA are maintaining installers for MIPS, 680X0, 80X86 and SPARC. OSF
has had an RS 6000 installer developed under contract. A TDF producer
from ANSI C and other dialects has also been written. A TDF linker
program, TDF pretty-printer, TDF installation manager and a compiler
interface to UNIX, known as tcc, are also implemented. There are
architecture neutral C header files for POSIX, XPG3 and SVID3. This
software has been sufficient to allow the shrink-wrapping of “real-life”
applications such as Informix’s Wingz product.

 2.3 What real-life experience is there in using ANDF?

DRA has successfully transferred the installer technology out of the lab -
the Sun SPARC installer was written under contract to DRA and achieved
better performance targets than the installers written in-house. OSF have
ported and demonstrated Informix’s’ Wingz (TM) on ANDF. USL and OSF
are collaborating on an ISV program to encourage ports of major
commercial applications to ANDF on SVR4.2, starting with Oracle, and
DRA supports and assists in this important area. In addition DRA and OSF
are working to shrink wrap a number of public domain applications such as
the Postgres database.

The TDF software has been successfully tested on a large body of software,
which includes:

Questions and Answers

ANDF and ISVs

11 of 23

• bootstrapping the TDF software

• the Plum-Hall test suite

• the Perennial test suite

• SPEC C Benchmarks

• Motif Window Manager

• Gnu Emacs

• Wingz

• Perl

• gcc 2.2.2

• TeX and Metafont

• Xfig

• X11R5

• Modula 3 to C compiler

• Postgres

• GhostScript

• Bison

3. ANDF and ISVs

3.1 Does ANDF protect proprietary information as well as binary does?

There are two separate issues that should be distinguished when discussing
the reverse engineering of ANDF:

(1) how easy is the process of reverse engineering?

(2) how understandable an output can be produced from a reverse
engineering process or tool?

Questions and Answers

ANDF and ISVs

12 of 23

ANDF is such an attractive target to reverse engineer that we would expect
reverse engineering tools to become available, regardless of how difficult it
is to produce such tools. This makes point (1) above irrelevant (in fact TDF
is somewhat easier to reverse engineer than a binary). The important fact is
that the quality of information recoverable from TDF is very similar to that
recoverable from binary - rearranged source text without identifiers (what
others have sometimes referred to as “uglified” or “shrouded” source). It
would certainly be possible to scramble the ANDF to make it even uglier. If
an ISV does not regard this as adequate protection we would suggest that
the shrink-wrapped ANDF be converted to binaries for final distribution.

 3.2 Does ANDF make it much easier to pirate software?

A shrink-wrapped application in ANDF can obviously be pirated to many
platforms. We would expect that many ISVs will use licensing control
software to protect against such theft. This is an issue that the industry is
already grappling with - ANDF just makes it more urgent that workable
solutions be widely implemented.

 3.3 How will ANDF affect an ISV’s ability to do differential pricing?

This is already an issue that the industry faces. In machine ranges which are
binary compatible it is already common for licenses fees to vary for the
same binary distribution (license fees being tied to processor power,
numbers of concurrent users etc.).

 3.4 How does an ISV ensure quality if a customer can run an ANDF
program on a machine on which the ISV has not tested it?

It is likely that as applications start to be shipped in ANDF that they will
have been tested by the ISV on many targets. The machines that the
application has been tested on can be listed on the packaging and the

Questions and Answers

ANDF and ISVs

13 of 23

product need not be warranted for use on any others. As new architectures
come onto the market, the system vendor will wish to provide an installer,
so that ANDF applications are available to customers. The onus will then be
on the installer writer to ensure that it is a robust and validated product. The
situation is analogous to the PC world where software developers cannot
test on every PC clone that exists but are confident, through testing on the
most important in the market, that the product is likely to work on most
clones.

 3.5 Will ANDF reduce testing costs?

Even if specific platform testing by ISVs continues the ISVs’ testing costs
could still be significantly reduced. Testing costs are related to the number
of problems encountered during testing and are often due to compiler bugs
or different interpretations of the high-level programming language being
compiled. ANDF can reduce these costs through the use of a single
compiler front-end - the producer - for a particular language. The installer,
which translates ANDF to code, has much simpler syntax and semantics to
contend with than for C, so the validation of installer semantics should be
easier and more reliable than relying on the consistency and robustness of
different C compilers. Also a large body of shrink-wrapped applications will
make it easy to test new installers.

 3.6 If a shrink-wrapped application fails who does the customer blame?

This question was addressed by question 3.4. The issue with ANDF is
exactly analogous to that faced by suppliers of PC software, and that has not
stopped ISVs from marketing PC software - indeed the possibility of
shipping shrink-wrapped applications is often quoted as the reason for the
strength of the PC market.

 3.7 How long does installation take?

Installation time, for an application, is generally somewhat less than the
compile time for a native compiler. On gcc, from the SPEC tests,
installation time varies between 32% and 83% of native compile time on

Questions and Answers

ANDF and ISVs

14 of 23

DRA’s installers for 386, HP-PA, MIPS, SPARC and VAX architectures. An
example from the Wingz application is that a complete build from source on
a DecStation 3100 using the native compiler took about one hour and thirty
minutes. An ANDF install on the same platform took approximately twenty
one minutes.

For many users / applications the install time will not be a problem. If it is
there are a number of possible solutions:

• installation may be run as a background task (on an operating system that
permits multi-tasking).

• installation may be done overnight.

• binary distribution may be available (possibly at extra cost from a software
distributor). CD-ROMs may provide a convenient mechanism for marketing
binary versions of applications, as might ISDNs.

• if a user is part of a network, there may be a node that has responsibility for
turning ANDF applications into binaries for other users on the network.

 3.8 How large is the distributed TDF compared to binary?

This depends on the nature of the machine. On CISC machines the
distributed TDF is around twice the size of the binary. On RISC machines
the distributed TDF (same size as on CISC machines!) is around 1.4 times
the size of the corresponding binary produced by the native compiler. This
figure assumes that architecture neutral headers are being used - if existing
header files are used the size of distributed ANDF can increase by up to
50% for some applications.

 3.9 What are the performance costs of using TDF?

DRA has demonstrated that the run-time performance of applications
compiled from C through TDF can be made comparable and in some cases
faster than for applications compiled through native compilers. The
information in the source language required to do code optimization is
preserved in TDF allowing the fullest range of code optimization algorithms
to be used. The performance of existing implementations is given in the

Questions and Answers

ANDF and System Vendors

15 of 23

document ‘TDF Facts and Figures’. All installer implementations are
currently within 5% of the performance of native compilers as measured on
the SPEC tests.

ANDF has significant economic advantages which may lead to performance
improvements - the cost of tuning an installer potentially benefits all the
programming languages that compile to ANDF; also the effort in tuning an
installer for one machine may benefit other installers (many optimizations
can be expressed portably as TDF-to-TDF transformations).

 3.10 How long does it take to shrink-wrap an existing application?

There is as yet limited experience as to how much effort a software
developer should expect to have to expend in such a recasting. OSF’s
experience shrink wrapping Informix’s Wingz (TM) product and DRA’s
experience shrink wrapping public domain applications suggests that the
creation of a shrink wrapped version of an application takes roughly the
same amount of time as doing a port to a new platform. Once an application
has been shrink-wrapped, its ability to run on a given platform is
constrained only by the availability on that platform of implementations of
all the portability interfaces which the application requires.

4. ANDF and System Vendors

4.1 How much effort does it take to implement a new installer?

The TDF technology is designed to allow new high-performance installers
to be implemented economically. To achieve this as many optimizations as
possible - both universally applicable optimizations and machine specific
ones - are carried out as TDF-to-TDF transformations. As a measure of the
effort to produce a new installer: the existing SPARC installer was
implemented by a DRA contractor to a level where it equals the
performance of the best C compilers on a SUN SparcStation in one staff-
year. The implementation was performed by an experienced compiler writer
who was familiar with SPARC but who had not worked with TDF before.

Questions and Answers

ANDF and System Vendors

16 of 23

The implementation was produced at a site remote from DRA with less than
a week’s consultancy from DRA.

4.2 How has DRA matched the performance of compilers which have
taken many tens of staff-years to develop (for example the MIPS
compiler on the DecStation and the native compiler on the 80x86
running SVR4.2) with installers that have only taken one or two staff-
years to develop?

We cannot know for sure but the following factors may be relevant:

• the approach adopted by DRA is a conventional engineering approach (it is
not an automated code generator technology) which reuses large amounts of
code between installers. This means that:

• as much of 70% of a new installer is re-used code

• the installer being hand-crafted is easy to tune

• the installer implementation is small enough be done by one person (a very
efficient method of working).

• the staff used to implement the installers were very experienced and shared
experiences within a close-knit community.

• DRA implementors had access to existing high-performance compilers which
showed a large number of the optimizations which had to be implemented.

 4.3 Do you have to use DRA technology to create a new TDF installer?

No. As far as existing code-generator technologies are concerned TDF is
just another language - hence existing techniques can be used to implement
a TDF installer. The only reason to use DRA’s technology is economic - is it
cheaper to use our technology than some other?

Questions and Answers

ANDF and End Users

17 of 23

5. ANDF and End Users

5.1 How much will it cost?

The pricing of TDF is a matter for the commercial organizations which
license the technology from DRA.

 5.2 Does ANDF help me with the problem of legacy systems?

ANDF is not a “magic bullet”. It does not mandate portability. This means
that ANDF is not a magical solution to the problems of legacy software.
You cannot just run a non-portable application through the ANDF
technology and expect to produce a portable ANDF version. The advantages
of using ANDF are obtained by re-casting the software into shrink-wrapped
form.

Much legacy software is written in legacy programming languages
(languages that are no longer popular and hence difficult to obtain compilers
for). ANDF provides a means of implementing a portable compiler for a
legacy language which will generate code to run on all the computers that
have ANDF installers (within the limits of the portability of the application
being compiled). For some legacy languages it may be an economic
proposition to produce an ANDF producer. This may lead to increased
longevity for some legacy languages.

6. Technical questions

6.1 Is ANDF tied to UNIX?

ANDF itself is independent of operating system and will help create and
distribute shrink-wrapped software for any well defined API. OSF’s
motivation in creating the ANDF concept was to turn the UNIX software
market which is currently heterogeneous with respect to processor
architecture into a homogeneous ANDF market. USL’s interest is to create a

Questions and Answers

Technical questions

18 of 23

homogeneous software market for UNIX SVR4.2. As a result the majority
of DRA’s implementations of TDF software are for UNIX based machines.
The TDF software has also been ported to MSDOS (with DOS extender)
which supports the ANSI C library, and a port to OpenVMS has also been
started.

 6.2 How does ANDF relate to APIs?

APIs are extremely relevant to the ANDF scenario for application
development, porting and distribution. To distribute an application to many
machines using ANDF requires the use of suitable portability guidelines.
ANDF has features designed to allow the representation of the interfaces
required for portability. These might be established APIs such as Posix,
XPG3, SVID3, the AES etc. or they might be interfaces created by an ISV.

TDF contains a notion called “tokenisation”. This is the ability of TDF to
represent program as a TDF tree any part of which can be represented by a
symbol called a “token”. The token can represent any part of the program
detail (e.g. a type, a part of a type, a procedure, a macro, an expression or
part of an expression, etc.) which is architecture specific. After distribution
the token can have an appropriate architecture specific piece of TDF tree
supplied as its definition. This provides a natural mechanism whereby the
architecture neutral information inherent in the API is abstracted and forms
the portability interface to the application.

Once an application has been shrink wrapped in ANDF it can run
unchanged on any computer that correctly implements the portability
interface that the application is designed to use. This means that API
conformance is of critical importance. Shrink wrapped applications will
provide practical tests of API conformance. The applications that have been
shrink-wrapped have already shown up a number of subtle errors in some
existing implementations of APIs.

 6.3 How does ANDF relate to ABIs?

ABIs define a machine level target for compilers to ensure software
compatibility for a single processor family. ANDF defines a machine-

Questions and Answers

Technical questions

19 of 23

independent target for compilers to ensure software portability across all
systems that implement ANDF and have the interfaces (e.g. GUI) assumed
by the program. An ABI is a binary compatibility interface, whereas ANDF
provides compatibility at the functional API level - this means that an ABI
specification must remain unchanged if existing ABI applications are still to
work, whereas in ANDF if the API functionality is maintained then ANDF
applications will still install properly.

ANDF installers can use ABIs so that only one installer is needed for all
processors that implement that ABI - hence efforts to develop ABIs will
continue even after the use of ANDF becomes widespread. In the future
ANDF could remove the need for ISVs to be aware of the details different
ABIs. This would allow much easier introduction of new processor features,
such as superscaling, because the need to preserve upwards compatibility in
the ABI would no longer exist.

 6.4 How does ANDF relate to distribution of multiple binaries on CD-
ROM?

ANDF is an advanced porting tool as well as a distribution format. The use
of multiple binaries on a CD-ROM may reduce the packaging and
distribution costs for ISVs but has no impact on portability or testing
problems. For each new architecture supported, a new CD-ROM needs to be
issued - an application distributed in ANDF can be installed on any machine
with an installer.

We expect that ANDF will co-exist with binary distribution and that CD-
ROMs may be used to distribute binaries of the most popular shrink-
wrapped applications to avoid the overhead of longer installation times.

 6.5 How does ANDF relate to using shrouded C for distribution?

Shrouded C is just a distribution mechanism - it has none of the other
properties of ANDF to aid in the creation of shrink-wrapped software, or
the description of portability interfaces.

Comparing Shrouded C and ANDF purely on the basis of distribution
formats:

Questions and Answers

Technical questions

20 of 23

• Shrouded C gives only limited support to users of other programming
languages (compilers to C from other languages are often far from optimal).
TDF was designed as a multi-lingual ANDF so should be much better.

• Shrouded C requires a user site to have a full Software Developers Kit, whilst
the ANDF installation environment is likely to be bundled at no extra charge.

• installer availability for Shrouded C is no problem

• protection of proprietary information is similar

• size of distributed applications is similar

• installation times favor ANDF

• run-time performance is similar

• tools to support the installation process tend to be primitive in conventional C
compilers

• ANDF users get the benefit of using the same producer for all targets
(reduced exposure to compiler incompatibilities and bugs)

 6.6 Is ANDF a C oriented technology?

At the present, the only compiler front-end for TDF is for C (ANSI and
other dialects). A great deal of effort has gone into ensuring that ANDF can
be used as an intermediate language in “conventional” compilers for
languages other than C. Implementing the C front-end for TDF exposed a
number of issues that related to the production of architecture-neutral
ANDF. There are parts of the semantic definition of C, such as the precise
definition of some integer promotions, which depend on the target. In
addition, ANSI C was extended with a new pragma (called “#pragma
token”) which allows software developers access to ANDF’s features for
describing portability interfaces. These issues have been satisfactorily
resolved for C, but a similar exercise would have to undertaken for other
languages if they are intended for use in producing shrink-wrapped
applications. Work is underway to write producers from several important
high-level languages.

See also the answer to question 6.7.

Questions and Answers

Technical questions

21 of 23

 6.7 Will ANDF collapse as more languages and targets are considered
(remember UNCOL)?

The problem with earlier attempts at a ‘universal’ compiler intermediate
languages (IL) were they were defined at the level of the target machine
architectures. If a new architecture needed to be supported that was
radically different from the baseline for the IL, large penalties in
performance were paid in effectively doing the binary to binary conversion.

TDF is not a pseudo-code which represents machine instructions for some
abstract stack or register computer. Its definition is an abstraction of
programming languages not computer architectures. It is a tree-structured
intermediate language containing abstractions for common programming
language concepts such a data structures, procedures, numbers,
conditionals, loops, labels, jumps etc. The intention in TDF is to retain all
the information in the programming language being compiled to TDF which
can then be used by code optimizers in the installers. In this way it is
equally applicable to any new architecture as to any existing ones. If you
can efficiently compile C to an architecture then you can implement a TDF
installer with equal efficiency.

TDF constructs have been carefully designed so as to be able to
accommodate the particular variants found in different programming
languages. However, TDF cannot guarantee coverage of new programming
languages as it can for new architectures. New languages might contain
novel features that are not efficiently implementable using existing features
of TDF.

DRA have undertaken extensive research to try to ensure that TDF is an
efficient target for the conventional compilation of many of today’s most
common languages - C++, Cobol, Fortran, Ada, Lisp, Pascal etc. and
several new producers are now being written. It is likely that the
implementation of producers for programming languages other than C will
expose new features that would enhance the efficiency of the run-time code
for these new languages - it is likely that such extensions can be added in an
upwards compatible manner, but this cannot be guaranteed.

At the current time the only compiler front-end for TDF is for C (ANSI and
other dialects). Implementing the C front-end for TDF exposed a number of
issues that related to the production of architecture-neutral ANDF. There are

Questions and Answers

Technical questions

22 of 23

parts of the semantic definition of C, such as the precise definition of some
integer promotions, which depend on the target. In addition, ANSI C was
extended with the “#pragma token” facility to allow software developers
access to TDF’s features for describing portability interfaces. These issues
have been satisfactorily resolved for C, but a similar exercise would have to
undertaken for other languages if they are intended for use in producing
shrink-wrapped applications.

 6.8 Will operating systems be compiled using ANDF?

TDF is a highly portable, highly optimized compiler technology and is
therefore very well suited to compiling or bootstrapping operating systems.
As TDF need not represent purely architecture neutral information, it is
possible for the operating system vendor to use TDF as a ‘normal’ compiler
and therefore avoid the need to shrink-wrap the operating system. It may
take a while before operating system suppliers have enough confidence in
the TDF technology to throw out their existing bootstrap compilers - until
then TDF will exist alongside existing native compilers.

 6.9 Is TDF suitable for parallel computers?

It depends what programming language is being used to program the
parallel computer. If a conventional programming language is being used
(such a C or Fortran) then TDF preserves enough information to allow a
paralysing installer to generate as efficient code as that produced by a
compiler direct from the language to the parallel computer. TDF does not
contain any explicit parallel constructs so a parallel language (such as high-
performance Fortran) would need to compile to TDF that has been extended
with tokens that represent the parallel constructs in the parallel language. If
a de-facto standard emerges in parallel programming languages then it
should be possible to define a standard extension to TDF to represent a
standard model of parallel processing.

There is an active research program at DRA, OSF and within Esprit that is
studying this topic.

Questions (and Answers) page 2 3 of 2 323 of 23

For further information please contact:

Dr. Nic Peeling
internet: peeling%hermes.mod.uk@relay.mod.uk
janet: peeling@uk.mod.hermes
fax: +44 684 894303

