
-IL ~E NWJIE £F110738

AD-A212 077 Repoy No. OWN

Iri

TOOL SUPPORT FOR THE PRODUCTION
OF HIGH INTTEGRflY SOFTWARE

Au~hr.CT Sum~

DTIC
ELECTE

* ~SEP 07 198'sD

0-5 f i'
-J --- - ------------- --

CONDITIONS OF RELEASE
0045474 BRAi 10738

........ U

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

.... V

Reports quoted are not necessarily available t0 members of the public or to commercial
organisations.

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report 89005

Title: Tool support for the production of high integrity sof'ware

Author: C T Sennett

Date: April 1989

Summary

This report was commissioned by the UK computer security policy authority. It
discusses the software tools required for the production of trusted software,
following the guidelines given by the UK systems security confidence levels.
Recommendations are given for the development of new tools and techniques where
appropriate.

Copyright

©Controlier HMSO London

1989

{N

Contents

I Introduction

2 Specification of security requirements 3

3 Architectural definition 6

4 Implementation 9

5 Evaluation 12

5.1 Proof 12

5.2 Analysis and test 14

6 Documentation 15

7 Configuration control 16

8 Conclusions 18

References 21

A etno For

DTLC TAB0

ZU:a-tougnced 0

BY
Distribution/
Availability Cods
BtavAi a&/I

DMet Special

1 Introduction

High integrity software is that software which has been produced to a given level of
assurance: that is, the confidence that the trustworthiness of the software is, if not
exactly quantifiable, at least known to the extent that one can make reasonable
judgements about the expectation of error. These judgements are based on assurance
criteria which tpecify such things as means of production and documentation. An
evaluation assesses an implementation to see whether the criteria are satisfied. If so
the software may be certified as meeting a given assurance level, where the level is
determined by the set of criteria satisfied. The assurance levels are arranged in an
order giving progressively increasing confidence in the trustworthiness of the
product, but also requiring increasing effort in implementation. Assurance levels are
essential for secure systems which must be certified and accredited before they are
allowed to be used. They are also of interest to all producers of software who are
concerned about the quality of the product. The lower assurance levels are
applicable to high quality software in general and can be justified on cost grounds if
the whole life-cycle is taken into consideration. The higher assurance levels are
applicable to safety critical software.

Assurance criteria are concerned with all aspects of the production of a system and
many of them may be supported by suitable tools. This report is concerned with the
various ways in which tool use can support the satisfaction of assurance criteria and
gives both long and short term recommendations for the development of tools which
would meet this need. As security critical software is the immediate concern we
shall be starting with the existing position within the security community where
there is some emphasis on the use of the Z specification language [Spivey 1989] and
software analysis tools such as MALPAS [Rex, Thompson & Partners, 1987]. Other
techniques and languages are necessary and these will also be discussed. Two
factors affect the context. The first is that high integrity software is produced to
contract. It is important that the techniques and tools recommended should be such
that they may be specified in a contractually binding procurement specification and
that one can gain a reasonable understanding of the costs of their use. The other
factor is that high integrity software requires evaluation. This means that assurance
tools are directed towards the timely production of evaluation evidence, rather than
towards the development of the software making up the operational system. The
evaluation process is an impediment to the production of software and so the
usability of the tool must be assessed from the point of view of the cost to the
implementors as well as from the point of view of the usefulness to the evaluators.

To give a shape to this discussion it will be related to the six aspects of assurance
given in the UK confidence levels [CESG 1989]. These are as follows:

1. Specification of security requirements
2. Architectural definition
3. Implementation

4. Evaluation
5. Documentation
6. Configuration control

A few words on each of these aspects is in order. The Specification of security
requirements is concerned with the degree of precision with which the trusted
functionality and trusted requirements have been specified. This can range from
loose specifications in natural language, through precise definition to fully precise
mathematical descriptions.

P The Architectural definition is concerned with the way in which the requirements are
satisfied by the high level design. It deals with the specification of the trusted
components, software or major system components such as one-way regulators, and
the way in which they depend on each other to meet the requirements.

Implementation is concerned with the methods of production of module
specifications and the actual software which meets these specifications. This is an
area which has been given most attention in the academic community and there are
several techniques which will add to the assurance of this process.

Evaluation is concerned with two aspects: establishing the quality of the
implementor's methods of production and with direct assessment of the evaluation
evidence within the context of the operational system. Tools may usefully be used to
support assessment.

Documentation is an essential element in any trusted system. Apart from the usual
design documentation, trusted software requires additional evidence in the form of a
rationale for trusted and untrusted components, trusted paths and covert channel
analysis. Documentation is the most important deliverable for evaluation and its
production may be assisted by a range of tools. For the most part these correspond to
standard office automation techniques, but the problem is to integrate them into the
software development process.

Conqfguration control is necessary for the maintenance of the status of the evaluated
software after hand over of the system. It is an essential requirement during
development if the system is to be capable of being evaluated. During development
the evaluators must be certain that what they are evaluating is up to date and cannot
be corrupted after it has been assessed.

2

iN

2 Specification of security requirements

Security requirements must be stated in natural language but extra assurance is
gained by the use of a formal specification language. The extra precision gained by
the formality is simply not available in natural language. Precise, legalistic English
enables the precision of natural language to be improved, but for anything other than
trivial concepts the improvement is gained at the expense of understandability. A
formal specification language, well supported by tools, encourages the use of
concise definitions with mathematical precision. Indeed, it can be argued that
formal specifications are cost-effective for all software in that they allow
implementations to proceed more rapidly and the act of specifying enables the
requirement to '-. made more precise.

The archetypal security model, namely that of Bell and LaPadula [1976], is a formal
model, but written in a notation which is informal in the sense of not having a formal
syntax or semantics. The notation used is that of standard mathematics, following
conventions adhered to by most mathematicians. This means there is no way of
checking the model except by reading it. Currently, many specification languages
are defined including Z, VDM, CSP, LOTOS and the various languages associated
with the US verification tools such as Gypsy and EHDM. It seems reasonable
therefore to require that high integrity software should be specified using a language
with a well-defined syntax and semantics and the specifications produced should be
checked mechanically.

Given a security requirement expressed, say, in 10 or 20 pages of Z, how is it
possible to assess the quality of what has been written? The first technical
consideration is that the specification should be consistent. This will ensure that it
contains no contradictions and represents the specification of something which
could actually be implemented. Tools to support this aspect of processing a
specification language are at a rather primitive state of development. What is
required is a specification of the proof obligations incurred by using the various
structures within the specification language and a tool to compute them and possibly
prove them. Consistency checking has little tool support at the moment. In default of
automatic checking a carefully presented specification should be required to address
these issues and present the various theorems which need to be proved in order to
establish consistency.

Technical consistency is not the most important aspect of quality, certainly as far as
security is concerned. An inconsistent specification cannot be satisfied so no
implementation is possible. Conversely, if the specification is implementable, it is
consistent, so it could be argued that this will b. checked anyway. An evaluation of
a security model will be more concerned with the validity of the model and with the
absence of vulnerabilities. Validity is concerned with the question of whether the
specification actually captures the user's requirements. In the case of security, the
specification should accurately model the security properties required.
Vulnerabilities can arise from at the specification stage when the user's requirements
conflict with the desired security properties. A typical example is a covert channel

L3

in a security model which may allow information flows using error codes and file
names defined for the user functionality.

Validity is a difficult issue to address with a tool as it will almost certainly involve
some human interaction. Bearing this in mind, one of the prime requirements for a
security model is that it should be understandable. Z supports this issue very well
provided the narrative between the Z text is always supplied and is of reasonable
quality. Industrially, one would expect to see documentation standards reflecting
this. Other aspects of understandability are more elusive. Generally, a model based
specification, such as is the usual style with Z, will be more understandable than an
algebraic specification, such as is obtained with OBJ [Goguen and Tardo 1979] for
example, although the algebraic approach has advantages in the formal verification
of the specification. The model must be in terms the user can understand and yet be
reasonably realistic in terms of how the model may be mapped on to a computer.
There is some conflict in these requirements although they are not entirely opposed:
the user will usually have cast the requirements with machine oriented aspects in
mind.

Vulnerability is more susceptible to analytical techniques than validity. A typical
security model would specify access control policies. Fundamentally, the security
properties required concern the control of information transfer, so it is useful to be
able to reason about the information flow properties of the model. This reinforces
the need to have a realistic model of execution which can be used, say, to specify
non-interference properties between inputs and outputs and hence to highlight covert
channels. This example indicates that quality in a security model can only be
assessed within the context of a risk assessment. The quality criteria for a security
model for a CCIS will be different from that of a key distribution centre because the
perceived threats and vulnerabilities will differ. A covert channel analysis may be
necessary in one case, but not in another. A good security model allows the property
required to be expressed within the framework provided by the model. Consequently,
it will be possible to demonstrate the absence of vulnerabilities, or to indicate their
nature, by means of theorems requiring the properties to be present. Thus
requirements for vulnerability analysis will often reduce to the requirement to be
able to reason about the model.

Given this groundwork, one can make the following specific, tool-based,
recommendations for development.

* Standards for specification languages should be supported. This will make
tools more widely available and encourage the widespread adoption of formal
specification.

" Proof obligations to establish the consistency of specifications should be
established and tools developed to generate and prove them.

" Documentation standards for use with specification languages (and Z in
particular) should be developed.

4

Specification languages should provide the ability to write down theorems and
tools should be provided to support their proof. Specifically a proof theory for Z
needs to be developed.

5

3 Architectural definition

The architectural definition is concerned with identifying the trusted functionality
and the major breakdown of the system into hardware and software components. The
traditional view of this process is that the system will be centralised with the main
security aspects controlled from a large central ADP component with essentially
subservient workstations and networks. However, modem computer systems are
nearly always distributed. Modern secure systems will often involve trusted network
components and in this case one needs a description of the system which can be used
to give a breakdown into components, with a clear definition of the trust
requirements of each component. These two points of view require rather different
approaches and so they will be treated separately.

The traditional view stems from the "Orange Book", the US DoD's Trusted Computer
System Evaluation Criteria [DoD 1985]. Here, the architectural definition is called a
"Descriptive Top-Level Specification" (DTLS) and for increased assurance this
must be supplemented by a "Formal Top-Level Specification" (FTLS) which is
related to the formal security model. Typically, a security model will be concerned
with abstract entities called subjects and objects while the architectural design will
be concerned with implementation entities such as processes and files. The key
issue as far as security is concerned is maintaining traceability of the security
requirements in the security model through the design and on to the implementation.
In making the transition from security model to architectural design, many different
entities in the design will correspond to objects and subjects, so the transition is
akin to instantiation in this respect. However, certain minimum features of subjects
and objects such as security labels must be present in the design, so in this respect
the transition is rather like refinement (see section 4). For these reasons, the
transition is usually done by a combination of formal and informal techniques,
although there seems to be no reason why it should not be treated completely
formally as a data refinement with the security model being repeatedly instantiated
for each class of subject and object.

Tool requirements for this approach are no more than are needed for
implementation, which will be described later. However, what is really required to
be practically useful is a number of worked examples. In the open literature, there is
only the Bell and LaPadula paper [1976] and the rather less available paper by Rushby
[1985] on the basis of the MLS tool for Enhanced HDM. Both are valuable but they

are unsatisfactory for practical use. The topic of writing a security model is covered
in a general way in [Sennett 1989] but the development of security models into a
FTLS tends only to be covered in project-specific documents.

A distributed system view of an architectural definition is more in keeping with the
current approach to computing systems. The problem here is that a state machine
description of the world becomes inappropriate. As many security models are
expressed in these terms they provide an inadequate basis for expressing the
architecture. It seems likely that process and trace oriented security models would

more accurately portray distributed architectures, but apart from non-interference

6

assertions [Goguen and Meseguer 1982] and work at Oxford using CSP [Jacob 19881
little experience has been gained in their use.

From the tool point of view, the question is one of languages. Because of its rich
structure in support of sequences it is possible to manipulate trace specifications in
Z. Our report on separability [Sennett and Macdonald 1987] is one such use in which a
security model, separability, is refined into an architectural definition suitable for
use with SCP2 [Bottomley 1986]. While this approach was successful, nevertheless
the feeling remained that a specifically process oriented language such as CSP
would be more suitable for capturing the security requirements and for
demonstrating conformity with a subsequent architectural definition. A particular
problem in this area is concerned with the decomposition of a system into its
components. The architectural design should provide a specification for the
individual components and make visible the dependencies between them. Work by
Neely and Freeman on trust domains [1985] is very relevant here and it is interesting
that Jones 11987] was able to capture most of the formalisation of dependencies
within the Z framework, but slightly extended.

A further comment on architectural definitions applies to both points of view.
Security requirements are not concerned only with functional aspects. Associated
with each function is the requirement that it should introduce no side-effects and
that the controls provided should not be capable of being by-passed. At each stage in
the transformation from security model, through architectural definition through to
implementation, the non-functional security requirements change, because they now
need to be expressed within the context of the refined definition. In the traditional
approach, the FTLS should allow an estimate, for example, of the covert channel
bandwidth which is now provided as a result of introducing error messages and return
codes. If this is to be done formally, it is necessary to maintain the execution model
at the architectural level, which may be cumbersome. For the moment, it seems to
be the case that coven channel analysis at this level is best done informally.

A trust domain approach should, in theory, allow the non-functional aspects of
security to be captured and hence should suffer less from these problems. However,
this must remain a conjecture until the approach has been tried in practice.

The recommendations for architectural definition are thus more for the development
of technique rather than for specific tools. They are as follows:

" Examples of the relation of access control security models to the formal
design specifications need to be available.

" More experience is needed in the expression of security properties in process
oriented languages.

* As a useful interim measure, it would be helpful to implement the work of
Jones on trust domain operators for Z.

7

*

Techniques for integrating process based specification in, for example, CSPwith sequential specifications in, for example, Z need to be developed.

8

I

4 Implementation

Tools for implementation are normally concerned with assisting the implementation
process: however, for high integrity software, tools are also required to demonstrate
the trustworthiness of the implementation. For the most part these will be concerned
with demonstrating compliance, namely that the implemented software satisfies its
specification. Note that security requirements are different from the standard
requirements for correctness and transformations preserving correctness will not
necessarily preserve security properties. Indeed there are some theoretical reasons
for believing that the security properties must be stated anew for each step in the
transformation of the specification into an implementation. The maintenance of the
link between specification and implementation is a most important aspect of
assurance. Errors actually manifest themselves at the implementation stage. Unless
the specification has actually been traced through to the implementation, it has
served little purpose except as a mind clearing exercise.

The relation of a specification to an implementation may be established either
formally or informally, depending on the degree of assurance required. The
demonstration should follow the mathematical principles involved, and for a formal
implementation the term refinement is used. In other words, an implementation is
correct if it can be shown that it is a refinement of the specification. Note that it is
important to distinguish this assurance aspect of demonstrating correctness from the
process of producing the implementation in the first instance. Refinement may or
may not be of use in the production of software, but it is essential for demonstrating
correctness.

The refinement techniques depend upon the formalism used for both the
specification and the implementation. For example the state based specifications
typified by normal Z or VDM usage follow the simulation notions proposed by
Milner [1971] and developed by Jones [1980]. Algebraic specifications use the
concept of homomorphisms while trace based specifications must be unwound. All
are probably equivalent at some deep level, but most experience has been gained
with the state based approach, which is well suited to sequential software.
Algebraic methods are particularly suited to relatively low-level properties, so they
will be discussed under analysis and test in the section on evaluation. Process based
refinement is likely to become important with the emphasis on trusted networks and
components and as this technique is not well understood, it is important that it
should be properly researched.

State based refinement on the other hand is a well understood technique. The
barriers to its use in practice are largely questions of lack of tools and notations. It is
usually divided into two categories: operation refinement and data refinement.
Operation refinement is relatively easily understood as it is related to the
approaches of the traditional verification systems such as Gypsy and VDM. Briefly,
it is concerned with relating the target language's control structure to the logical
structure of the specification. For example if the specification requires the

I9

establishment of a state satsifying the predicate G A P v-,G A Q then operation
refinement tells us that this may be achieved by the program

IF G
THEN establish P
ELSE establish Q
Fl

Data refinement on the other hand is concerned with changes of representation. The
abstract variables of the specification, which may be expressed in terms of sets,
must be represented by the concrete variables of the program, such as lists or arrays.
To carry out refinement it is simply necessary to provide an abstraction invariant which
relates the concrete values to the abstract ones. Using this, the operations necessary
in the implementation can be derived from the abstract operations specified.

So much for the theory. The practical problem is concerned with notation and tool
support. The fundamental reason for doing refinement is to demonstrate that a given
specification has been satisfied. Essentially, the requirement is to reason about
fragments of program with respect to fragments of specification and neither
specification languages nor implementation languages cater for this fragmentary
approach. It is for this reason that the work of Morgan at Oxford [1987] is important. In
a series of papers this author has developed a formalism which allows a Z-like
specification language to be merged with an implementation language. The
formalism allows an incremental style of presentation ideally suited to evaluation.
This formalism provides the basis for a refinement language, or rather for a series of
languages, one for each implementation language chosen.

Tool support for this methodology presents a series of problems, none particularly
insuperable. First of all the notation has to be defined and the target languages
chosen. The first among these would be Z itself as the development of a formal
design at a high level can be carried out entirely within the Z notation. This can

4 probably be achieved with a few minor additions to the Z syntax although the result
would be a different language containing some meta-notions which are statements
about specifications rather than rvecifications themselves. Other target languages
may be chosen pragmatically, probably on the basis of the formality of their
semantics. This is because the work involved in developing a target specific
refinement notation is mainly concerned with developing the logical foundations.
The actual tools to process the languages are fairly straightforward as there is no
need to compile the refinement notation directly: instead, the implementation
language may be filtered out of the refinement notation and compiled independently.

Given a notation, tools for syntax and type checking and programs to filter out theimplementation are relatively easily provided. However, three problem areas

remain. The first is that refinement steps incur proof obligations so one needs a tool
to compute these and a tool to carry out the proofs. The requirements for this will be
discussed under the heading of evaluation. The second problem area is that the
refinement technique will only be of value if refinements may be modularised.

10

Suitable refinements for use with common functions and data structures need to be
stored in libraries and a large part of the effort in making a refinement system will
be incurred in defining useful refinements from more primitive elements, so that the
reasoning process may be carried out at a reasonably high level. Finally, some
refinements, notably from the mathematical integers to computer arithmetic, are
probably best done semi-automatically by special purpose tools. Again the problem
is to decide what form these tools should take and how they fit into the development
process.

Clearly, there is a large amount of work to do in the production of a suitable toolset.
In the meantime it is possible to follow the spirit of the refinement process without
this being checked by machine. The minimum requirements here would be a
document describing the refinement in an incremental style. The informality in the
process arises from the fact that the notation is not checked by machine and the
refinement steps are assessed informally. A high assurance would be gained by
having many small refinement steps which could be checked manually, whereas for
a normal level of assurance quite large steps could be made, which would at least
give some guide as to what the correctness criteria were. A reasonable target level,
giving a high level of assurance for a relatively modest cost, would be a requirement
to exhibit all abstraction invariants and pre- and post-conditions for all procedures.
This could then be used to derive compliancy conditions for program analysis. A
case study of refinement carried out with a high level of formality is contained in
[Macdonald et al, 1989].

Finally, it is necessary to return to the point made at the beginning of this section
that the formal methods must be integrated into the tools and techniques used
normally for the production of software. This will have an impact on the derivation
of the specification in the first instance and on the relation of the refinement to the
design methodology chosen.

In summary, the recommendations for tool development are as follows:

* A notation needs to be developed to express refinement. This notation should
incorporate a module system and a number of case studies need to be
undertaken to prove its worth.

* A tool structure needs to be developed which will allow proof obligations to be
computed and verified and target languages to be produced.

* Implementation languages need to be assessed with a view to their use with
refinement.

* The formal methods and tools need to be integrated within normal structured
programming development methods.

I- 11

S Evaluation

The activity of evaluation consists of the assessment of the developer's methods, system
documentation and proofs, and the analysis and test of the delivered system. Tool
aspects of documentation are considered later under a separate heading; this section
will be concerned with proof, analysis and test tools.

5.1 Proof

The purpose of a proof is to convince an evaluator that the implementation is
correct. Although a skilled professional programmer might like to convince himselfthat
his software is correct by outlining a proof, for high integrity software the evaluator
will normally be a third party. Given this, the presentation of the proof, which will
be called the proof document here, is all-important. On general grounds, a proof
ought to lead to a greater understanding of the problem. A proof document should
contain formal and informal, natural language, statements and the proof should have
a structure which can be grasped as a whole. These requirements also apply to
mechanically checked proofs. The view taken here is that the proof document is the
main deliverable required for evaluation of a proof. An informal proof, required for
rigorous levels of assurance, would simply consist of this document. The evaluator
has to assess whether the proof steps are clear enough to form an acceptable proof.
For higher levels of assurance the proof steps may be checked mechanically. The
details of the mechanical proof need to be available to the evaluator, rather as the
compiled code needs to be available when assessing the implementation. But
generally, evaluators will be working with the high level description, that is, the
proof document, just as with the implementation they will normally be using the
source text.

The proof document needs to be in the same terms as the proof statement. Proof
obligations may arise from the specification itself, to express consistency or
security properties, and from the refinement, to express the correctness of the
refinement. Given the use of Z for specification, both of these may be expressed as Z
theorems. In writing a proof down, the natural way to do it is backwards. You write
down that which is to be proved as the first step and then break this goal down into
smaller goals, the proof of which would entail the overall goal. The process is
repeated until the goals are axioms or previously proved theorems. This style of
proof calls for a notation rather like the refinement notation, in which parts of a
greater whole are named and then treated in turn within a context implied by the
position of the part within the whole. Note that the production of the proof document
is a rather different process from the production of the proof itself. The latter will
normally be done by some interactive process, possibly a proof editor or some such
tool. The proof document is a record of the proof when it is in its final acceptable
state.

For informal proofs therefore, one needs a notation developed from the Z notation, to
express the proof. For mechanically checked proofs one needs in addition a formal
basis for manipulating Z theorems. This is a much wider topic than any which has

12

been touched upon so far. This is not the place to give a survey of formal methods for
proof, but a way forward based on UK technology is as follows.

First of all, higher order logic seems to be the best foundation logic to express the
proof theory. This logic provides a foundational system in which one may hope to
express other logics, for example, those associated with CSP. It further provides a
"meta-logic" approach in which one can express meta-level statements such as the
induction principle for the natural numbers. This allows proof statements which
would otherwise have to be expressed in the proof theoretic meta language to be
expressed within the logic itself, which is a more consistent approach. Note that the
variety based approach adopted by Spivey [1988] in his semantics for Z cannot be used
for a proof theory directly, because theorems consist of statements about Z and
semantics is concerned with what a Z specification actually means. It is not
possible to give a semantics for a Z theorem, because the theorem is a statement
about a Z specification. However, a Z proof theory has to be validated against the Z
semantics, to ensure for example that A and v have the same properties in the
specification and the proof theory.

Given the use of higher order logic, the natural tool to use is Gordon's HOL [1987] and
indeed this seems to be the best approach in the short term. Blackburn and Jones [1987]
give a suitable translation scheme for a subset of Z which seems to be a viable
approach to the immediate problem of attacking Z proofs with a mechanical tool.
However there are a number of drawbacks, for example the incompatibility of the
type systems, which make one want to adopt a different theorem proving basis.
Given this, one can question the basic theorem proving approach which has been
adopted in HOL, which is closely based on that of LCF. In both of these systems
inference rules are represented by functions in the meta-language. This means that
derived rules correspond to composition of functions and leads to some awkwardness
in the handling of backwards proof. In fact the way of doing a backwards proof in
these systems is to accumulate the forwards proof, which must surely lead to
inefficiencies. Both Isabelle [Paulson 1986, 1988] and Genesis [Harwood 1987] provide
alternative approaches in which the rule has a representation and derived rules are,
in effect, data. Both of these approaches would seem to have advantages over HOL,
particularly for Z where derived rules are certain to play an important part.

Apart from this, the LCF paradigm of theorem proving seems to offer the best way
forward. In other words, the development of a proof should be seen as the
development of a program in the meta language to carry out the proof. This carries
with it the idea that commonly required proof tactics may be kept in modules which
would have the effect of raising the level of automatic proof checking.

To summarise, recommendations for proof tools are as follows:

* A notation for Z proof documents needs to be defined.

* A suitable proof theory for Z needs to be developed.

13 , "

Tools to support the interactive development of proofs for Z need to be
implemented.

5.2 Analysis and test

Analysis and test may be carried out both at the specification and implementation
levels. For specifications, most forms of analysis will be carred out during the
course of generating proof obligations, in other words, analysing for consistency. It is
possible that simplified forms of analysis, such as computing dependencies, may be
of use as an intermediate step on the way to proving full consistency. Testing of
specifications is linked with the idea of animation. At its simplest, this might
involve checking that a theorem is in fact true given some values for the variables or
checking the effects of an operation in a given state. Both of these. involve execution
of the specification which implies some restriction on the type of specification to
which this would be applicable.

At the implementation level, analysis and test may be carried out for simple
programs using techniques which are currently available. The immediate problem,
therefore, is the integration of the existing tools with the new formal verification
ones proposed. In particular, it may well be useful to use the refinement notation to
provide assertion annotations for compliance analysis. In the longer term,
sophisticated programs will call for a more advanced computational model than is
provided by the current analysis systems. Work on advanced algebraic techniques
which would support the analysis of the full range of software is being undertaken in
the Ten15 programme [Foster 1989] and this will need to be supported by the
provision of suitable tools.

Thus, for analysis and test:

" A study needs to be made into the benefits of specification testing, over and
above the analysis that may be necessary for computing proof obligations.

c A study also needs to be made into the integration of implementation language
analysis tools into a formal verification environment.

" Work on extending analysis methods to the full range of software will need to
be supported.

14

6 Documentation

Documentation is one of the most important aspects of a high integrity system. It is
also one of the deliverables most likely to be missing as it is always the
documentation which suffers when deadlines grow imminent. While there is no
substitute for actual thought during the production of doumentation, nevertheless
tool support can transform the production process from a tedious chore to a
pleasurable occupation. The tools required are similar to those found with standard
office automation, but the necessity to interact with the formal methods tools and
the software development process in general brings in some extra requirements.
These are listed below:

The need to prepare mathematical texts requires suitable fonts, including the
mathematical symbols and the ability to subscript and superscript.

The formal languages require indexing and layout tools.

The evaluation deliverables will be oriented towards one view of the system.
The implementors tend to need other views of the system which requires the
ability to produce differing documents and cross-refer or quote out of them. The
problem here is to maintain the integrity of the cross-references when the
various documents change, as they will do during the course of development.

The documentation items need to be maintained under configuration control.

The way in which document preparation is carried out is dependent upon the
implementation of the tools and the representations used. Consequently only one
recommendation is made as follows:

* Tools for formal methods should support the necessary features for document
preparation and maintenance.

15

7 Configuration control

Configuration control is frequently considered only in terms of management
structures, configuration control boards and so on. These are clearly necessary, but if
the control aspects are to be taken at all seriously there is a strong impact on the
functionality of the tools and the features of the development environment to support
them. As far as the development environment is concerned the various control
objectives required have been covered elsewhere [Sennett 1987]. To summarise that
report the main controls required are the ability to separate trusted and untrusted
data and to enforce a mandatory control of access over the over-writing of data. This
type of access control gives a high degree of assurance that trusted data has not been
accidentally or deliberately over-written. It is the basis of the integrity policy being
developed for PCTE+ and appears in the NATO requirements document for
development environments. However, apart from the requirement to populate the
trusted development environment with tools, the functionality required should not be
greatly constrained by the integrity considerations.

Configuration control on the other hand gives rise to a strong requirement for
consistency which does require tool support. In order to talk about the requirements
in a concrete fashion, an example of one particular tool structure and view of the
world will be described. Others are possible, but lead to similar requirements. The
first element of the requirement for consistency is the need for modulariLy. Large
systems are built by many programmers and it is important to have the ability to
break down a specification, a proof or an implementation into modules and work on
them independently. It is possible to think of these modules as generalisations of
implementation language modules, built up from a text (the source code), the
compiled object code and a language specification. In the module structure under
consideration three different types of module for specification, refinement and proof
may be envisaged.

A specification module is built from a specification document which is, say, a Z text
which refers to other specification modules. The object code depends on the nature
of the processing done on the specification but it will probably be a representation of
the abstract syntax of the specification together with the functions necessary to
carry out the proofs of the proof obligations generated in the specification. The
language specification of the specification module will be mainly concerned with
the Z types of the objects exported, but may also include theorems for use in other
specification modules. "Execution" of this module carries out the proofs; a proof
failure raises an exception.

The text for a refinement module expresses the fact that a given implementation is a
refinement of a given specification. It uses specification and refinement modules
and exports the implementation module. Execution again carries out the proofs
required and the rather complex specification expresses the type constraints for the
specification and implementation language variables.

A proof module is built from the proof document delivers the proof function which

16

will be obeyed when the specification or refinement module calls for it. It will
probably call on meta proof modules (say, programmed in ML if an LCF type of
system were used) to carry out the proof steps and these will be ordinary
implementation language modules.

This is a hypothetical module structure but the intention is to make the point that in
formal verification a number of things such as the proof and refinement documents,
which might be thought of as internal to a verification system, must come under
configuration control and hence be treated as external objects. The consistency of
these objects is crucial to the integrity of the whole verification process and the
programmer must be provided with tools to maintain them. The prime requirement
is to be able to archive and restore the individual modules and to re-build them anew
when specifications change, a process akin to recompilation on change of
specification. Without tools in this area, life becomes unbearable.

Apart from consistency, there are the standard requirements for configuration
control. It is necessary to maintain versions and variants and provide for traceability.
It is necessary to be able to associate other documents, such as test plans and
descriptions, with modules and it is probably necessary to form other associations
between computer generated items and the source of data used to generate them.
Thus the requirement is for configuration control to be applied to objects of various
forms, including structured data and functions. This has an impact on the
development environment. Traditionally, an operating system provides for files of
unstructured data as the means of communication between tools. For advanced
verification systems this is no longer appropriate, or if it is attempted leads to gross
inefficiencies as source text is re-interpreted to form the objects it is actually
required to communicate. The interface between verification tools needs to be much
more flexible than this, requiring, for example, the use of the strongly-typed
algebraic approach adopted by Tenl5 [Foster 1989].

Because of the dependency of this topic on the particular form of tools chosen, it is
not possible to make specific recommendations for a configuration management
tool. Instead

* The tool and module structure for formal specification and implementation
should be studied taking into account the impact on the development
environment.

n i I 17

8 Conclusions

The detailed recommendations for tool development have been highlighted in each
of the previous sections, and are repeated in the table below.

Specification of security requirements

* Standards for specification languages should be supported. This will make
tools more widely available and encourage the widespread adoption of formal
specification.

* Proof obligations to establish the consistency of specifications should be
established and tools developed to generate and prove them.

* Documentation standards for use with specification languages (and Z in
particular) should be developed.

* Specification languages should provide the ability to write down theorems and
tools should be provided to support their proof. Specifically a proof theory for Z
needs to be developed.

Architectural definition

* Examples of the relation of access control security models to the formal
design specifications need to be available.

o More experience is needed in the expression of security properties in process
oriented languages.

" As a useful interim measure, it would be helpful to implement the work of
Jones on trust domain operators for Z.

" Techniques for integrating process based specification in, for example, CSP
with sequential specifications in, for example, Z need to be developed.

18

Implementation

* A notation needs to be developed to express refinement. This notation should
incorporate a module system and a number of case studies need to be
undertaken to prove its worth.

* A tool structure needs to be developed which will allow proof obligations to be
computed and verified and target languages to be produced.

& Implementation languages need to be assessed with a view to their use with
refinement.

* The formal methods and tools need to be integrated within normal structured
programming development methods.

Proof

" A notation for Z proof documents needs to be defined.

" A suitable proof theory for Z needs to be developed.

* Tools to support the interactive development of proofs for Z need to be
implemented.

Analysis and test

" A study needs to be made into the benefits of specification testing, over and
above the analysis that may be necessary for computing proof obligations.

" A study also needs to be made into the integration of implementation language
analysis tools into a formal verification environment.

" Work on extending analysis methods to the full range of software will need to
be supported.

Documentation

• Tools for formal methods should support the necessary features for document
preparation and maintenance.

Configuration control

* The tool and module structure for formal specification and implementation
should be studied taking into account the impact on the development
environment.

It is clear that much work remains to be done before the technology to establish high

19

integrity software is widely available in industry. Two general points are woru
emphasising. The first is that tool development, and particularly the kind of tool
development called for by the use of formal methods, is very dependent on the
software development environment, in particular on the nature of the data which can
be passed between tools. Secondly, tools for high integrity software are very much
concerned with the production of evaluation evidence and the acceptability and
benefit of a tool are determined by the extent to which evaluators can make use of
them. This has important consequences for the human aspects of the tools which,
particularly for formal proof, have tended to be neglected. Both of these problems
need to be recognised and studied.

I

20

References

Bell, D E and LaPadula, L J (1976). Secure computer system: unified exposition and
Multics interpretation. Technical Report ESD-TR-75-306, Mitre Corporation,
Bedford, Massachussetts, USA, March 1976.

Blackburn K and Jones, R B (1987). Translating Z into HOL. ICL report
DBC/RBJ/086, November 1987.

Bottomley P C (1986). Technical overview of SCP2 - a multi-level secure
communications processor. IEE conference on secure communication systems,
London, 1986.

CESG (1989). UK systems security confidence levels. CESG computer security
memorandum number 3.

DoD (1985). Department of Defense trusted computer system evaluation criteria.
DOD 5200.28-STD, December 1985.

Foster J M (1989). The algebraic specification of a target machine. In
High Integrity Software, Sennett C T (ed), Pitmans (to be published).

Goguen, J A and Meseguer, J (1982). Security policies and security models. Proc
1982 Berkeley Conference on Computer Security, IEEE Computer Society Press,
1982.

Goguen, J A and Tardo J (1979). An introduction to OBJ: a language for writing and
testing software specifications. In Specification of reliable software, M Zelkowitz (ed),
IEEE Press. Reprinted in Software specification techniques, N Gehani and A
McGettrick (eds), Addison-Wesley, 1985.

Gordon, M J C (1987). HOL: a proof generating system for higher-order logic. In
VLSI specification, verification and synthesis, Birtwhistle, G and Subrahmanyam, P A
(eds), Kluwer 1987.

Harwood, W T (1987). An overview of Genesis. IST report, August 1987.

Jacob, J (1988). Security theories: the state of the engineering discipline. Proc
Computer Security Foundations Workshop, Franconia, New Hampshire, USA, June
1988.

Jones, C B (1980). Software development, a rigorous approach. Prentice Hall
International, London 1980.

Jones G (1987). Private communication (of work undertaken for CESG).

21

Macdonald R, Randell G P and Sennett C T (1989). Pattern matching in ML - a case
study in refinement. RSRE report 89004.

Milner, R (1971). An algebraic definition of simulation between programs. Second
International Joint Conference on Artificial Intelligence, London 1971.

Morgan C C, Robinson K A (1987). Specification statements and refinement. IBM
Journal of Research and Development, 31, 5.

Neely, R B and Freeman, J W (1985). Structuring systems for formal verification.
Proc 1985 IEEE Symposium on Security and Privacy.

Paulson, L C (1986). Natural deduction as higher-order resolution. J Logic
Programming, 3, pp 237 - 258.

Paulson, L C (1988). The foundation of a generic theorem prover. Technical report
130, University of Cambridge Computer Laboratory.

Rex, Thompson and Partners (1987). Malpas intermediate language manual. R, T &
P, Newhams, West Street, Farnham, Surrey.

Rushby, J M (1985). Mathematical foundations of the MLS tool for Revised Special.
SRI International.

Sennett, C T (1987). The development environment for secure software. RSRE
Report 87015.

Sennett, C T and Macdonald, R (1987). Separability and security models. RSRE
Report 87020.

Sennett, C T (1989). The contractual specification of reliable software. In
High Integrity Software Sennett (ed), Pitmans (to be published).

Spivey, J M (1988). Understanding Z: a specification language and its formal
semantics. Cambridge University Press.

Spivey, J M (1989). The Z notation: a reference manual. Prentice Hall International
series in Computer Science.

I

22 " A

DMURENT COmTROL SHEET

One'alI necuty c ass ificaton of shet . LASS FI.ED ..

(is foa as possible this sheet should contain only unclassified information. If it Is necessary to tnce-

classified informaiion. the bo- concerned must be marked to Indicate the classification eg (F) (C) or (S)

1. PIC Reference (if known) 2. Originator's Reference 3. Agency R hference 4. Report Secu,,*y
Report 89005 1 U/C Class f,ca' :

5. Originator's Code (if 6. Originator (Corporate Author) Use and Location
known) ROYAL SIGNALS & RADAR ESTABLISHMENT

7784000 ST ANDREWS ROAD, GREAT MALVERN

WORCESTERSHIRE WR14 3PS

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Kane and Location

Code (if known)

7. Title

Tool support for the production of high integrity software

?. Title in Foreign Language (in the case of translations)

7t. Presented at (for conference nyaers) Title, place and date of conference

. Author 1 Surname. initials g(a) Aut or 2 g() Authors 3,4... 10. Date c. re .

Sennett C T 1989.04 22

11. Contract Number 1?. Period 13. Project 14. Other Reference

15. Distribution statement

UNLIMITED

Descriptors (or keywords)

ontIftue on separate piece of pacer

Abstract

This report was commissioned by the UK computer security pol- y -rity. It

discusses the software tools required for the production of trusted software,

following the guidelines given by the UK systems security confidence levels.

Recommendations are given for the development of new tools and techniques where

appropriate.

1180/48

