
RD-A163 880 EXTENDING DATA TYPING BEYOND THE BOUNDS OF PROORAMING 1/1
LANGURGES(U) ROYAL SIGNALS AND RRDRR ESTRBLISHMENT
HRLVERN (ENGLRND) N STRNLEY SEP 85 RSRE-MENO-387B

UNCLRSSIFIED DRIC-BR-97889
F/G 9/2 NL

Eu||||||

I,_____

L!7,

11111-2 .4 1.

MICROCOP REOU 32 ET HR

NAONtR(RFUOfqTNA196 1

-~~~ - --

UNLIMITED 61 7 8 8 *

RSRE~
MEMORANDUM No. 3878W

*ROYAL SIGNALS & RADAR
00 ESTABLISHMENT

00

EXTENDING DATA TYPING BEYOND THE BOUNDS
OF PROGRAMMING LANGUAGES

Author: M Stanley

cc"

d PROCUREMENT EXECUTIVE,4
z MINISTRY OF DEFENCE,

RSRE MALVERN, D l
0 WORCS. D I

$tEECTE0
zE

1IED

* -, -. :, .,.I7 ," 'rb --"--"-" WLW-:,:-,.---

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3878

TITLE: EXTENDING DATA TYPING BEYOND THE BOUNDS OF PROGRAMMING

LANGUAGES -

AUTHOR: M Stanley 'e '..

DATE: September 1985

SUMMARY 1) A"

This paper discusses the use of strongly typed values at the

operating system and command language level in a Programming

Support Environment (PSE). It describes the use of flexible

data structures on filestore, with support for data typing

from the operating system and the command language interpreter4 A Lr

as implemented in the Flex PSE developed at RSRE, Malvern.

AcceP,;Ion For

A * --. .'.'

-.-

Copyright .

Controller HMSO London

1985
.*II II I II

'
-

'
--'

TITLE sExtending date. typing beyond the bounds of programii ing
languages.

CONTENTS.

1. Introduction
2. The need for data structures
3. What is Flex?
It. Modes on Flex

It. I Modes and values
it.2 Capability modes
4t.3 Procedure modes w_

10.t Using a Flex mode as a value At -

It.5 Choosing the Flex mode of an object
4t.6 Exceptions

* 5. Summary
6. Conclusions

* 7. References

TITLE, Extending data typing beyond the bounds of programming
languages.

1. Introduction ,..
.. E

-),Strong data typing is now accepted as a feature of high level
programming languages. Programmers have the ability to define a
variety of data types for use within a program, to suit a particular
problem and appropriate use of values of each type is enforced.
Similar facilities for defining and using typed values at the operating.--.
system and filestore level would be useful. One of the limitations of
conventional operating systems is the inability of such systems to
support flexible data typing when the data is to be passed between
programs, stored on filestore or processed by the command ".
interpreter. The Flex programming support environment (PSE) developed
at RSPRE t Malvern, supports the definition of and use of data types
(modes) for filestore objects and appropriate use of modes is ZJ.
supported by the Flex command interpreter. _Jhe variety of data
structures that can be explicitly defined is unbounded. ;This paper
discusses the Flex mode system and indicates how it supports the
programmer in his task. -,'

2. The need for data structures

In order to pass data safely from one program to another, each program
must correctly understand the structure of the interface data. If this
structure is hidden within an unstructured data file it is impossible to
be certain that the received structure is as expected. Most operating
systems, unable explicitly to define or to handle a wide variety of
structures, cannot check the validity of interfacing data structures. A
user who mistakenly gives a parameter of unexpected form to a tool or
program may find that the program misinterprets the data with
unanticipated or undefined results.

We need a user interface that protects a user (as far as possible) from
the consequences of his own mistakes. A PSE therefore needs facilities
for creating data structures and for passing structured data easily from
one program or tool to another. It should be possible to use structured
data with any tool or program in the PSE including in the user interface.
The operating system and user interface should check that values are
used in accordance with their defined data type.

Data structures on most filestores are limited to a small number of
predefined file types (for example source, binary, loadable program-
and data file). Files (i.e. objects in filestore) may have their own

1- ,

internal structure, but the structure is invisible to the command
interpreter and to the user. It is checked only within individual tools
or user programs. Similarly, most command interpreters can handle only
system-defined data structures. Few operating systems support the
introduction of user-defined data types.

Most operating systems organise the filestore in fixed size blocks
(e.g. 512 byte blocks). The mapping of small data structures onto fixed
size blocks can lead to very inefficient use of space. This inhibits the
introduction of a wide variety of small data structures.

3. What is Flex? 1_

Flex is a multi-language Programming Support Environment (PSE) with a
large amount of software available to users. It is built on the Flex
capability object oriented architecture developed at RSRE, Malvern. The
main design aim was to simplify the development and maintenance of 6- -

complex software, with a high regard for system integrity and
reliability. The result was a highly interactive PSE that is noticeably
different from other PSEs. The PSE development since the first Flex
architecture came into use in 1978 has been mainly a response to
requests from programmers using the system. The software base
includes all normal operating system facilities and many other
procedures including compilers for Algol68 and Pascal. An Ada(*)
compiler is near completion and an ML compiler is under development. A
Flex PSE is also referred to as a Flex system.

The Flex capability computer architecture [1,21 has (so far) been
implemented in microcode on four hardware configurations, the most
recent being the ICL Perq. The implementation with which I am most
familiar is a multi-user system in which 3 Flex computers share a
common filestore and common peripherals.

In Flex there is no distinction between tools, programs, utilities and
procedures. Consequently this paper will normally refer to utilities and
to other tools as procedures. Most of the operating system procedures,
such as the editor and the command lanquage interpreter (curt) [33 can
be called from user programs as well as from the command language
interpreter. *

A full description of Flex is beyond the scope of this paper, which will
concentrate on those aspects that contribute to data typing at. the
operating system and filestore level, with some discussion of the
effect this has on programmers and on the method of use of the Flex
PSE.

Ada is a registered trademark of the US DoD.

p I4. Modes on Flex

t. 1 Modes and values

Built on top of the Flex architecture, as a normal unprivileged program,
is an object oriented operating system. Every object or value handled on
Flex, whether on f ilestore or in mainstore, has an associated Flex mode
(value type) that is used to indicate how the value is to be interpreted,
and the operations that are valid on it. Values vary in type from simple :' -.

integers to much more complicated structures . Atomic modes are used
to describe values whose structure need not be visible to the user.

In contrast to the limited set of filestore types available in most
computer systems the variety of Flex modes is boundless. Flex -'

architecture supports the use of values of any size whether in
filestore or in mainstore. Values do not need to be fitted into fixed -:
size blocks as in so many operating systems. Most mainstore objects
(including procedures) have direct analogues in Flex filestore. The
ability to hold on filestore values of such a wide variety of Flex modes
gives much greater flexibility than encountered with conventional . .
filestore.

The basic modes provided by Flex include analogues of all the modes and
data types encountered in modern programming languages as well as
some modes peculiar to Flex. The user can also invent additional modes
(that are composed of the basic modes) to suit his problem. The
additional modes may be atomic or they may have explicit visible
structure according to user requirements.

For example, some of the basic modes are:

lnt (the value is an integer);
Char (the value is a character).

There are also mode constructors, to permit more complex modes to be
defined. For example:

(IntReal,Bool) (the value is a structure containing an integer, a real
number and a boolean value);

Vec Int (the value is an ordered set (a vector) of integers);
Vec Vec X (the value is a vector of vectors of values of

some mode X).

In addition there are modes, peculiar to Flex, some of which are
discussed below.

'+.2 Capability modes

There is a special kind of value on Flex called a capability. When a user
wishes to use any other kind of value on Flex he needs a capability for
that value. Capabilities are fundamentally different from all other
values in that they can be created and modified only by the Flex
microcode and are used to control access to Flex values and to prevent
inappropriate use of them. There are mainstore capabilities that
control access to mainstore objects, filestore capabilities that control
access to objects on filestore and remote capabilities that control
access to remote facilities (e.g. objects on other computers).

In a sense a capability is a pointer created on behalf of the user by the
microcode, but the capability also contains information on the type of'
use (read only; read/write, execute) that will be permitted by the
microcode.

The mode of a capability value indicates the mode of the value to
which it gives access. For example

Edfile (the value is a capability to read a file (an edfile) that can
be handled by the editor);

Module (the value is a capability for an object (a module) that
gives access to compiled code and to the source text from
which it was derived); .

Vec Edfile (the value is a vector of capabilities for editable
files);

Ptr X (the value is a mainstore capability for a value of mode X).

The Flex architecture ensures that the only software or user
operations involving a capability are,

1. request a new capability from the microcode (any procedure can
do this; it is not a privileged operation);

2. store a capability for future use;
3. copy the capability to another user,
It. delete a copy of the capability;
5. use the capability as authorised by the microcode.

-.3 Procedure modes ,

Procedures (or programs) on Flex are values and are treated like any
other value. Every procedure on Flex therefore has an associated Flex..
mode. The value of a procedure is a capability to execute the procedure
and the possession of a procedure capability allows the holder only to

9 '.

= . -

-:.71..

execute the procedure. It does not allow him to dismember the
procedure to find how it works, what other procedures it might use or
the values of its non-locals. This is the basis of much of the security-."
of data in Flex filestore and mainstore. r. -.

The Flex mode of a procedure is a triple written as:
inputparametermode -> result_mode

where the symbol -> is one of the elements of the triple and shows that
the value is a procedure.

There is an empty value on Flex whose mode is Void. A procedure on Flex
that apparently delivers no result actually delivers the empty value.
The Flex mode of such a procedure is written:

input _parameter mode -> Void

For example, a procedure to list an edfile on a printer would be of Flex
mode: Edfile -> Void
and a procedure that takes no input parameters has Flex mode:

Void -> result_mode

A procedure to count the entries in a vector of integers would be of
Flex mode: Vec Int -> Int

Although a procedure cannot itself be a filestore object there is an
analogous filestore object, called a filed procedure, of Flex mode:

Filed(procedure mode)

Before calling a procedure or program, curt checks the Flex mode of
the input parameters. Any attempt to apply a procedure to a value of the
wrong Flex mode fails, so users can have confidence that procedures
will not be applied to unexpected data structures.

4-.1, Using a Flex mode as a value

A mode can also be regarded as a value (of Flex mode Mode) that can be
passed into and out of a procedure.

Sometimes a procedure may need to examine the Flex mode of its input.
Consider a procedure intended to handle correctly a value which may be
of any mode. A special mode, called Moded is available in which any
value, V, of any mode, M can be expressed as a moded value. The
representation of the Moded value contains both V and M. Thus the mode
of a value can be passed into and out of procedures together with the
value. Curt can, when appropriate, convert a value V of mode M into a
Moded and it can untangle a Moded to deliver the value V in mode M.

5

av"wjT 7 ' W 7W.YU-- V -1 J " . r.'- *-- --. - .

For example, consider a procedure "show" that takes any Flex value and
displays it on the screen in a form appropriate to its mode. The Flex
mode of "show" is: Moded -> Void. The procedure "show" untangles the
Moded (V, M) and displays V in appropriate form. If "show" is called
from curt the input may be of any mode, because curt will convert the
value to Moded form.

Consider a procedure "find" which takes a name and searches a
dictionary for a value associated with the name. The value may be of any
mode. The procedure delivers the value together with its mode, as a
Moded value. The Flex mode of "find" is: Vec Char -> Moded. Curt willuntangle the Moded and deliver the value in the correct mode. W R

One result of embedding the mode information with the value in the 4.

Moded mode is that a single procedure can handle a boundless variety of t- -:
data structures instead of needing a different procedure for each
different structure. This reduces the quantity of software needed to
handle different data structures, and also allows existing functions to
handle new modes created since the function was written.

'p.5 Choosing the Flex mode of an object

The Flex mode of an object is information to the command interpreter,
and to other procedures, on how to interpret a value. The utility that
creates a procedure can select a Flex mode for the procedure that
matches the external interface of the procedure as defined by its .
source text. However, since Flex modes are richer in scope than the
modes available in most programming languages, in particular in the
ability to distinguish a capability value from other pointers or

integers, a user may prefer to define the procedure mode for himself.
For example he may wish to use the procedure mode to protect a
procedure that expects a capability from being called with an integer
parameter even if the programming language treats the capability as an
integer.

A Flex mode can legitimately be changed, and facilities are provided to
do this. This enables a user to select modes that accurately reflect the
use to which the value is to be put, such as changing a procedure mode
to deliver a value of mode Edfile instead of mode Integer. The value is O
unchanged by a change of mode. All that is changed is the interpretation
of the value. Since the mode of a value on Flex is advisory, a user can
select any mode whether or not the mode can in fact be used to
interpret the value. If a mode is supplied which cannot match the value
it will be rejected when curt attempts to interpret the value. System

IV

integrity does not rely on correct modes. You cannot dismember a
procedure, for example, by giving it a different Flex mode.

i,..6 Exceptions

Sometimes a procedure will fail, because of an internal error (such as
dividing by zero), an explicit failure or an Ada exception. When this
happens, instead of returning a value of the expected type to the
calling procedure an exception value will be returned. The calling
procedure can handle the exception internally or it can pass the value
out through the calling procedures to the command interpreter. When
this happens, a value of Flex mode Exception will be returned to the
command interpreter.

A procedure diagnose, of mode Exception ->Void can be called from curt
or from a user procedure to present to the user information on the
state of the procedure at the point of failure.

The ability of Flex to handle exceptions as normal values allows them to
be treated in a uniform way by procedures. This reduces the amount of
special software needed in an application that caters explicitly for
exceptions as well as providing necessary information to the diagnostic
procedure.

S. Summary

The concept of Flex modes and the procedures for creating them and
handling them give excellent facilities for creating and using data
structures to suit the problem. The variety of modes of both filestore
values and mainstore values is unbounded. The flexible blocking of
filestore means that the use of small structures will not result in an
intolerable waste of filestore space. The command interpreter provides
checking of the Flex modes similar to the type checking provided by a
high level programming language.

New types of data structure are just new Flex modes. Augmenting an
environment with new Flex modes has no unwanted side-effects. It does
not impose changes on existing procedures and modes. Any data
structure can be constructed as a Flex mode. The user can declare a new
atomic mode if he wishes to hide the internal structure of values of -

that mode. The Moded mode, which binds together a value and its mode,
so that the user program can interpret the value in accordance with the
mode to which it is bound, is a very powerful facility. It allows general
purpose procedures to be written, to handle objects of any mode, thus ..

reducing the amount of software needed in total.

7

The command language (curt) encourages users to pass structured data
from one procedure to the next. The compatibility of the Flex mode of
the procedure and the Flex moJe of the input data are checked by the
command language interpreter, reducing the risk of passing an incorrect
data structure between procedures. This is a useful protection for
careless users. It also reduces the amount of software needed in user
programs, which no longer need to check the data structure of the input
data.

6. Conclusions

The Flex mode system provides at the operating system and filestore
level the data structuring and associated data type checking normally .
associated with a high level programming language. The ability to
create new Flex modes and to handle objects of such a wide variety of
modes both from the command language and as filestore objects gives
great flexibility. The user can handle data structures not anticipated
when the system was developed without losing the benefit of having
Flex modes defined for procedures and checked by the command language
interpreter. The amount of software needed for data checking in user
programs is reduced because the command interpreter will not pass
values of incorrect mode to a user program. This gives confidence that
programs will not give unexpected results as a consequence of.
misinterpreting the interface data.

The Flex mode system is sufficient not only to describe all data types
in most modern programming languages but also to accomplish the more
challenging task of describing values used in the command language. The
use of modes for capabilities and of mode constructors for a value
contribute to the power of the Flex mode system to cater for the needs
of the command language. Moded values that allow any value to be bound
to its mode is a particularly powerful extension to the usual concept of
data types. The use of Moded values as procedure parameters removes
the need to provide several different procedures to perform
essentially the same function with values of different mode. It enables
a single procedure to use the embedded mode information to interpret
the value of an input parameter and it permits a procedure to deliver a
values of different modes as Moded values.

The improvement in software productivity resulting from use of a PSE
such as Flex, with the power of the mode system to assist the
programmer, has not been measured, but the absence of many of the
problems that beset programmers on conventional systems must result
in saving of effort and improved productivity.

. ' ".",r

The mode system just described is but one of several unusual and useful
features of the Flex PSE. Future work on Flex is aimed at making the PSE
and the ideas it demonstrates more widely available, and at improving
the facilities. The underlying architecture is not expected to change,
but additional facilities are being worked on to enable Flex to be
networked and to support host/target software development. The . -.
possibility of implementing Flex with its powerful mode system on
existing computer systems (without re-microcoding) is being
considered as a topic for future research.

7. References

1. "Flex Firmware" by l.F.Currie, P.W.Edwards and J.M Foster. RSRE
Report 81889. Sept 81.

2. "Flexs A working computer with an architecture based on procedure
values." by l.F.Currie, P.W.Edwards and J.M Foster. RSRE Memorandum
3588. 1982. .. "

3. "Curt: The command interpreter for Flex" by l.F.Currie and .""-

J.M.Foster. RSRE Memorandum 3522. 1983.

9 -

* U.-. -

9% , °

DOCUMENT CONTROL SHEET . "

Overall security classification of sheet.. J. ..SF .

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S) -,'.

1. ORIC Reference (if known) 2. Originator's Reference 3. Agency Reference . Report Security
Memorandum 3878 U/C Classification .

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location
known) ROYAL SIGNALS AND RADAR ESTABLISHMENT

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location
Code (if known)

•7.
Title

Extending data typing beyond the bounds of programming languages.

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference napers) Title, place and date of conference

8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3,4... 10. Date pp. ref.

Stanley, M 9.1985

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

UNLIMITED

Descriptors (or keywords)

continue on separate piece of paper

Abstract

This paper discusses the use of strongly typed values at the operating
system and command language level in a Programming Support Environment (PSE).
It describes the use of flexible data structures on filestore, with
support for data typing from the operating system and the command language
interpreter, as implemented in the Flex PSE developed at RSRE, Malvern.

S80/48

- v

4 I

FILMED

D C4

