
UNLIMITED

Report No. 89024

IN 1

ROYAL SIGNALS AND RADAR ESTABLISHMENTI

MALVERN

I BASICMECAISMFO

O COMPUTER SECURITY I

Author: S Wisemanl

DL"-1-BTJTIONj STTYEEnT A

AP'DcVcd E!' plibh: mee.e

PROCUREMENT EXECUTW E, MINISTRY OF DEFENCE

Malvern, Worcstershlr.
Jnay19

UNLIMITED

CONDITIONS OF RELEASE

0066658 BR-A 13305

*.. a..........DRIC U

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

".* A** ** DRICY

Reports quoted are not necessarily available to members of the public or to commercial
organisations.

r

ROYAL SIGNALS AND RADAR ESTABLISHMENT

REPORT 89024

Title: Basic Mechanisms for Computer Security

Author. Simon Wiseman

Date: January 1990

Abstract

The protections facilities required for computer security are expressed as four basic
mechanisms. It is shown how a security model maps to these mechanisn.s and how
they can be implemented on conventional architectures, capability architectures and
in high level languages.

IA
by

Copyright
©

Controller HMSO London
1990 ,

N

: I,'

Introduction

Computer architectures provide various kinds of protection mechanism and these can
be used in numerous ways to implement secure systems. Rather than attempt to
categorise these possibilities, this paper describes four basic mechanisms which it
claims are their essential essence and are sufficient for implementing secure
systems.

It is proposed that these four basic mechanisms are used as an intermediate step in the
refinement of design to implementation. Consequently, the designers of a secure
application do not need to concern themselves with the minute detail of the protection
facilities of the target machine while working at the higher levels of abstraction. The
realisation of the four basic mechanisms on any particular computer hardware is of
course concerned with fine details, but this need only be considered cnce for each target
computer.

Splitting the implementation process inte t-w'o ct-ps in this way, not only simplifies it
bu . ;uld also make secure applications more portable. This is because conventional
techniques lead a design to depend on the detail of the target hardware's protection
facilities, which locks a design to a particular configuration.

The presentation is in terms of the security policy model of [Terry&Wiseman89]. This
not only considers the confidentiality aspect of security, but covers integrity as well.
The model is general purpose and can be applied to a wide variety of secure systems, as
described by [Harrold90].

This paper shows how the elements of the Terry-Wiseman model can be mapped onto
the proposed mechanisms, thus showing that the mechanisms are sufficient to
implement any secure computer system. The proof obligations that arise from the
refinement of model to mechanisms are considered. Implementation techniques are
then explored for each of the mechanisms in turn, covering the use of conventional,
capability and high level language architectures.

Overview of the Model

The Terry-Wiseman security model considers that systems comprise a number of
entities, each with some control attributes and some functionality attributes. The
control attributes of entities can be observed at any time with no constraint, but
functionality attributes can only be observed via an entity, and such observations are
subject to the entity's control attributes. One control attribute is the classification which
controls confidentiality, others control the integrity of the controls.

A potential covert channel exists through the control attributes of entities. However the
model acknowledges this and requires that requests which create or destroy entities, or
which modify an existing entity's controls, can only be made by entities which are
trusted not to exploit the signalling channel.

Both entities and attributes will be implemented as machine level objects, but it is vital
to preserve the abstraction that functionality attributes can only be observed via
entities. This is because if changes to an entity's functionality attributes can be
detected without observing an entity, a covert channel is introduced, as the
implementation has effectively introduced a new means of communication which has
not been considered by the security analysis.

A system is modelled as a state machine, with axioms ensuring that all transitions
preserve confidentiality and integrity. Transitions occur at the request of a set of

2

entities, called the requestors, thus allowing separation of duty1 [Clark&Wilson87l to

be specified for the modification of important information.

Essential Mechanisms

The four essential mechanisms are called: 1.unforgeable opaque addressing, 2.data
hiding, 3.pedigree and 4.context sensitive addressing. This section introduces the
mechanisms in turn and briefly justifies why each is necessary. Discussion about how
they may be implemented is deferred until later.

Unforsegble. Opaaue Addresin

The abstract view of an entity and its attributes will inevitably be implemented at a
lower level of abstraction as one or more machine level objects, for example memory
segments. If these objects are created and destroyed as the aLtributes of the entity change
this must have no effect on any other entity, otherwise the implementation has
introduced a covert channel. There are a variety of ways in which this rule could be
broken and these must be avoided.

1. by guessing an address and trying to access an object, its existence is detected if it is
possible to distinguish between "object does not exist" and either "access denied" or
"success".

2. if the addresses are specified by the caller, the creation of an object will be detected by
an attempt to create another object with the same address.

3. if addresses are automatically generated and if the address of an object can be
examined, it may be possible 'to determine whether some other entity was created
between two other consecutive creates. For example, if addresses are simply
increasing integers, examining them reveals if other objects have been created.

4. it may be possible to detect the usage of the shared resource which is consumed when
the object is created. For example a command may allow the amount of free space to be
determined. Alternatively, since the resource is inevitably finite it may be exhausted.
Unfortunately exhaustion of a shared resource can never be hidden and so creation of
an object can always be detected in this way. However, it can be argued that this
channel is small and, since exhaustion does not happen in normal usage, action can be
taken to prevent it being exploited. The alternative, that is not sharing resources,
perhaps by imposing a strict quota system, has a serious impact on resource utilisation
and so should only be used in cases of extreme need.

5. in some cases the effect of an address may be modified in a way which can be
detected by other users of the address. A well known example of this is forcing
segments in a paged memory system to be in either primary or secondary memory.
The difference in access time to the page may then be detected. Similarly, if the free list
of a shared pool can be ordered by selectively deleting other objects, observation of
addresses used to allocate new objects can detects the activity of others. Other examples
arise when objects may be explicitly deleted or access rights can be revoked.

Note that these problems only arise if resources are dynamically allocated when
attributes are modified. However this will be the case for most complex secure systems
so it is necessary to have a mechanism for creating objects which avoids these
problems. This will be called the unforgeable, onagu addressing requirement. This is
because, while addresses can be freely copied, it must not be possible either to construct

IThis is not a new idea, automation of segregation of duties to control fraud was
proposed by [Linden76].

3

them from scalar data, that is they cannot be guessed or forged, or to detect anything

about their inner workings.

Data Hidine

The abstract notion of observing or modifying an entity's attributes corresponds at the
lower level of abstraction to accessing the contents of the machine level objects which
implement the entity and its attributes. Obviously, in order to enforce security this
access must be controlled.

One possibility is to limit the ability to address an object to those who are authorised to
access the contents. However, this is very limiting because the access control check
would have to be made when the ability to access was granted. This would prevent
access control checks from being based upon dynamic parameters, for example it may
be desirable to allow access only at certain times of the day. A more fundamental
problem is that if access is controlled by the propagation of access permissions, it is
generally not possible to decide whether an undesirable state can be reached
[Harrisonet.al. 76].

Thus the implementation of entities and their attributes requires a mechanism that
allows a machine level object to be referenced without necessarily giving access to its
contents. The requircments for the control of access, however, are very varied and the
mechanism must be general purpose. Its main function is to hide the data in the object
from direct manipulation, thus a lata biding facility is called for. This allows an
object to be freely referenced, but only permits access to its data by code which is written
by the object's creator. This code is responsible for ensuring that the data in the object is
only manipulated in an approved way.

Another use of data hiding is, where several entities have the same attribute, space and
time can be saved by using the same machine level object for each. However, if such an
optimisation is made, it is necessary to control access to the object to ensure that it can
never be modified once it is created. If this were not done, the abstraction that attributes
can only be observed or modified via an entity would be broken, effectively introducing
covert channels.

Also for flexible operation it is often desirable to divorce the ability to address an object
and the ability to access its contents. This allows entities to be referenced by those who
are not cleared to access their contents. For example an electronic mail service needs
to reference the text of messages so it can deliver them, but it does not require access to
the text, only the header information.

So for entities, and their unshared attributes, the data in the objects which implement
them must be hidden by code which ensures that confidentiality and integrity are
upheld. For shared attribute objects the code must ensure they can never be modified.

Separation of duty can be employed to ensure that any modifications to important
information leaves it in an appropriate state. For example, changing the classification
of an entity may only be possible when two people, with sufficiently conflicting roles,
agree that the change is reasonable. The software acting on behalf of these people must,
of course, faithfully represent their views.

If some people agree to make an important modification to an entity, they must be
assured that the change which occurs is the one they sanctioned. For example, if they
agree to downgrade document x, the system must not downgrade document y, which
could occur if some malicious software creates an entity which it claims is a document.

4

To do this, the malicious software would construct a low level object whose contents are
protected by data hiding, so it is not possible to look inside it and discover that it is a
forgery. The interface offered would appear to be that of document x, except that the
downgrade operation would be that of document y. Thus the reviewer of the fake
document would see the text of x, and having agreed that the downgrade is reasonable,
would authorise the downgrade, with the unfortunate effect that downgrade of document
y would be approved instead.

The problem is avoided by using a mechanism that establishes the origin, or Vidigr,
of an object. The ability to attach a pedigree mark to an object is limited to the authority
responsible for creating a particular kind of entity. By inspecting the pedigree, before
deciding to authorise modification of important information, the authenticity of the
entity can be established and such spoofs are avoided.

The pedigree mechanism could simply determine whether or not a machine object
,epresents an entity. Alternatively it may distinguish between different types of entity,
for example documents and messages. This depends on whether the decision to modify
an entity is dependent on its type.

Context Sensitive Addressing

In an abstract specification of a transition, a set of requestors will access other entities.
The specification will call for some access control decisions and will probably ensure
that a journal of accesses is maintained. These actions are based upon details of the
requesting entities, such as their classification and identity. Thus in practice the
requestors will be observed.

At the concrete implementation level, requestors will be implemented as processes and
entities as machine level objects protected by data hiding. The operations which hide
the data are responsible for making the access control checks and updating journals.
Therefore they must have access to information about the requestors.

However, the code which invokes the access control code may not attempt to voilate the
system's security constraints and so cannot be relied upon to give correct information.
Therefore a mechanism is required which allows the access control code to gain the
information without recourse to the invoking code. The mechanism must allow the
access control code to ask for this information without relying on the invoker in any
way. That is context sensitive addressing is needed.

A context sensitive address is one which references a different object depending upon
the context in which the address is used. For example, "tt", "ttl", etc. may be
addresses of terminal ports in an operating system. Programs, however, use the
context sensitive address "tty" to access the current terminal port of the user who runs
them. The context which maps "tty" to the appropriate terminal port is set up when the
user logs on.

The objects which can be accessed through the context may use data hiding to protect
themselves from unauthorised modification. However, the ability to set up a context
sensitive address, or replace which object is referenced by one, must be controlled. This
can be done by using data hiding to protect the addresses. For example, software is
allowed to call an operation which returns the "current clearance". This hides the
context sensitive address for the "current clearance" and so untrusted software cannot
directly ask for, or alter, the current clearance.

5

Mapping the Model to the Mechanisms

The previous section developed the four mechanisms and partly justified them by
showing how they were necessary to implement the model. In this section the mapping
between abstract model and implementation mechanisms is made more explicit.

Entities must be implemented so that observation and modification of their data
attributes and modification of their control attributes are controlled, though their
control attributes may be freely observed. To protect an entity in this way requires its
underlying representation to be hidden behind operations which preserve its abstract
specification. However, access to these operations need not be controlled, because
determining the state of an entity's access controls, including its existence, can never
yield classified information.

So data hiding is used to implement an entity and its attributes, with the operations
protecting the entity's attributes from arbitrary observation or modification. If the
operations dynamically allocate machine level objects for any reason, unforgeable
opaque addressing must be used to reference them, because otherwise their existence
could be determined leading to a covert channel. Further, if any machine level object
is shared between entities, to save resources used for common attributes, data hiding
must be employed to guarantee that the attribute's representation can never be altered.

Note that the model ensures that an entity's controls, including knowledge of its
existence, are always unclassified. This is achieved by insisting that controls are only
modified by software which is trusted to not encode classified information in them.
Therefore it is not necessary to use unforgeable, opaque addressing to reference an
entity.

The integrity of an entity's controls is preserved by imposing n-man rules on their
modification. In general this will be implemented as two phases. First, the
representation of the entity is examined to enable a decision to be made about whether to
agree to the modification. Second, the modification is authorised. Once sufficient
authorisations have been collected to satisfy the separation of duty constraints, the
modification is made.

It is necessary to assure the person authorising the change that the data they examined
and authorise operation they invoked are both part of the implementation of the same
entity. To this end it must be possible to determine the pedigree of the object which
allegedly implements the entity.

The pedigree can be determined either statically or dynamically depending on
circumstances. For example, if files are addressed using a separate address space,
such as names in a directory, pedigree is established statically by virtue of their
location. However, if file objects are referenced as part of a uniform address space, a
dynamic pedigree mechanism must be employed.

Entities that request transitions are implemented as processes, whose data attributes
are protected using data hiding. The control attributes of such active entities are placed
in the process context, which allows their classification and other control attributes to be
determined by the access control code of entities they access.

When transitions require more than one requestor, to preserve integrity, the processes
are made to cooperate in some application specific way. For example, extra variables
may be introduced to record the wishes of each requestor individually. Only when .
enough agreement has been reached is the abstract state of the entity altered. For
example, a two-man rule to downgrade a document would be implemented by a request
to downgrade followed by an authorise dowrairde request. Auxilliary variables would
record the downgrade request as pending until the authorisation was given.

6

Thus it has been shown informally that an application whose security specification is
i-xpressed in terms of the Terry-Wiseman model can be mapped to the four basic
mechanisms, independently of how these are to be implemented. It remains to be shown
that these mechanisms are sufficient and it is as yet unclear whether a better set of
mechanisms exists, however these questions can only be answered by trying to use the
approach.

Refinement

A security policy model is a specification of all possible systems that are secure. It is a
very general statement which says very little about what a system should do, as it is
really concerned with what it should not do. A subset of these possible secure systems
will have the properties required for a particular application. This subset is specified by
the application's functionality specification. Using the Terry-Wiseman approach both
the security model and functionality specification are expressed in the same way, so an
application is simply specified as functionality AND security.

A system specified in this way is always, by definition, secure. However it may not
have the expected functionality, because some operations may not satisfy the
constraints imposed by security. Whether this lost functionality is important to the
customer can only be determined by validating the specification [Sennett89].

For example, the system's functionality specification may define an update transition
on entities a and b that will cause a's attributes to be moved to b, without reference to
their classification. However, the security policy model only allows this if b's
classification dominates a's. So some transitions specified by the functionality cannot
occur. It may well be that the customers are happy with this, but more obscure examples
might cause problems and mean the specification has to be reworked.

It can be argued that it is undesirable for an application's requirements to be specified
using the Terry -Wiseian uvach at this gives the specification an implneentation
oriented bias. So the requirements may well be specified at an abstract level, followed
by a refinement to a more concrete specification in terms of entities and attributes. The
validity of this refinement does not affect the security of the system, but it does of course
impact upon its correct operation.

The previous section showed that having specified the security and functianaiity
requirements in terms of entities and attributes, this could be mapped to the four
implementation mechanisms. This is an example of a refinement from a
specification involving abstract operations applied to abstract objects to an equivalent
one involving more concrete operations and objects.

In general a refinement preserves the properties of the more abstract level, but
introduces more detail. In safety critical systems this extra detail is unimportant, but
in secure systems it could be used for illegal information flow. It is therefore necessary
to either apply the security model again at the lower level to confirm that no security
flaws are introduced or to ensure that the refinement preserves the abstraction
completely.

For example, a specification of a fly by wire system would state that when the stick is
pushed left, the aircraft must bank left, and when it is pushed right it banks right. The
refinement would introduce extra detail about the movement of flaps and state of
cockpit indicators. However, a valid and safe refinement could also affect the status of
the cabin signs, illuminating the no smoking lights when banking left and the fasten
seat belt lights when banking right. Such a refinement would be unacceptable in a

7

secure system, because information now flows from the cockpit to the cabin in the
implementation whereas it did not in the abstract specification.

Refinement takes a specification of abstract operations acting upon abstract objects and
produces an equivalent specification of concrete operations acting upon concrete
objects. If each abstract object is implemented using data hiding to hide the concrete
objects which represent it, effectively no extra detail is introduced. Of course, this is a
property that needs to be proven about the data hiding mechanism, but this only has to be
done once for each target machine. The implementation of the abstract object's
specification can then use the relatively well understood techniques for safety
preserving refinement [Morganet.al.881.

The security model specifies how the flow of attributes between entities should be
controlled. In order to do this accurately it is necessary to show which entities are
'observed' and which are 'modified'. These are properties given in the abstract
specification which must be upheld by the refinement.

Showing that an operation does not modify an entity is relatively straightforward, it is
simply the property that the entity's state after equals the state before.

Showing that an entity is not observed is more difficult. In the first instance those
entities which are not addressed are obviously not observed, though this is of course a
property of unforgeable, opaque addressing and data hiding that must be proven for the
target hardware.

Cases where an entity is addressed but not observed, effectively pure modification
without observation, are rare. The most obvious example is updating an entity
containing audit information. This has to be classified top to allow any user to modify
it and so it is necessary to show that nothing about the original state of the audit trail is
observed. This entaiib proving that the result of the operation does not depend upon the
original contents of the entity, which is particularly easy if a nil result is always
returned. Note that the exhaustion of shared resources would constitute observation of
the entity's contents, though a special case might be made for this as it should not
happen in the normal course of events.

Thus the refinement from security specification to implementation is greatly
simplified by directly mapping the entities of the security model to the protection
mecharisms of the machine. Proof that the mechanisms are implemented correctly
are required, but this need only be performed once per machine, rather than for each
application.

Implementing the Mechanisms

Previous sections have described the four mechanisms and shown how they can be used
to implement applications modelled using the Terry-Wiseman approach. Clearly for
this to be of practical use it must be possible to implement the mechanisms. The
following four sections discuss in turn how each could be implemented using
conventional architectures, capability computers and high level languages.

Conventional architectures are those which control access to memory segments using
either a two-state memory mapping unit, with supervisor calls switching from user to
kernel state, or a ring protection scheme [Frosini&Lazzerini85], with gates allowing
transfer to inner rings.

Capability computers are those where access to an object is permitted if and only if the
right capability is possessed. A capability is a protected value comprising the address of
an object and some information about the kinds of access which are permitted using
that capability. They were first described by (Dennis&vanHorn66], but as indicated by

8

[Fabry74] they need t- oe first class data values for maximum benefit. Various
capability compute- ,,ave been built each providing capabilities in different ways
[Wiseman82].

High l.;vel languages control access to data using strong typing
[CardlJli&Wegner85]. Usually the inner workings of a programming language, eg.
the stack and heap, can be accessed by writing programs in another language, in
particular an assembler language. However, if an entire application is written in one
language this amounts to using an abstract machine which provides strong typing.
Two such abstract machines are considered, Ada and Ten15 [Foster89]. This approach
is not new, and has been used successfully in some Burroughs systems for a number of
years.

Implementing - !C rgeable, Opaque Addressing

Conventional Architectures

In a conventional architecture, access to volatile memory is controlled by a memory
protection unit which is used to provide a number of virtual address spaces. The unit
may perform a translation from virtual to physical address and addresses may refer to
memory segments residing in primary or secondary memory.

If no mapping of addresses is performed and memory resources are allocated
dynamically, allocating a segment in one address space has an effect on others. This
is because the addresses can always be examined, leading to the problems described
earlier. Thus simple memory protection does not offer unforgeable, opaque addressing
and cannot be used to implement dynamic high assurance secure systems.

In systems that map virtual to physical addresses, the virtual addresses hide the
existence of the physical addresses. The memory management sub-system is
responsible for choosing the physical addresses of new segments, even though the
virtual address may be chosen by the caller. It is therefore not possible for the caller to
use physical addresses directly. Thus the physical addresses are opaque and, because
access to the mapping tables is limited, they are unforgeable.

If it were possible to make an object appear in another user's virtual address space, this
could be detected, leading to a covert channel. However, this problem is not due to the
sharing of physical addresses, because they still remain hidden. It arises because in
this case the virtual addresses are themselves being shared to a limited extent.

Therefor., with careful use, it is possible to provide unforgeable, opaque addresses for
volatile memory objects using conventional memory mapping techniques. However,
the physical segment addresses are the unforgeable, opaque address, not the virtual
addresses used by programs.

If the underlying memory is a paged system, where pages of virtual memory are
automatically moved between main RAM and secondary disc store, the difference in
access time to an object can be detected. If separate virtual address spaces contend for
the same physical resources, their opaqueness is lost because pages brought into main
store for one address space may displace pages belonging to another. This covert
channel can be avoided by ensuring that the total working set of all programs does not
exceed physical memory. A residual channel through the usage of disc bandwidth does
remain, but it is unlikely to be of any consequence.

Non-volatile memory is usually organised into files which are objects whose
addresses are. textual names. These names form a single address space, though it is
often structured hierarchically into directories. When a new object is created its name,
unlike the physical addresses for volatile objects, is specified by the caller. Therefore

9
9

the names are neither opaque nor unforgeable and introduce covert channels. The only
way to make the use of file names secure is to operate them in disjoint address spaces.
Effectively this means having separate file stores for each classification, which means
that software with different clearances cannot communicate easily because of
confusion over duplicate names.

A file is opened by specifying its file name, however once open it is referred to by some
kind of channel number.. These numbers are effectively addresses of open file objects,
but since they are forgeable the address space cannot be shared securely. The same
applies to other kinds of object, such as offspring processes.

Canabilitv Architectures

In a capability computer, operations which create new objects generate and return a
capability as a result. This is a data value and can be freely copied. However scalar
values cannot be treated as capabilities, because this would allow unauthorised access
to be obtained by guessing addresses.

However, to provide the unforgeable, opaque address property required for secure
systems, it must be impossible to "examine" the capability itself, since this would
introduce a covert channel. Effectively this means that software must be prevented
from treating a capability as a scalar value. Such a feature is however usefully
provided by many capability computers, in particular in Flex [Fosteret.al.82] it can be
used to display object addresses when debugging.

Some architectures provide weak capabilities [Lieberman&Hewitt83], which behave in
the same way as the ordinary strong capabilities except that they do not protect the object
they reference from garbage collection. Thus an object is recovered if it is only
accessible via weak capabilities and all capabilities referring to it are replaced by nil.
This is useful for aliasing different representations of the same object [Currieet.al.81],
but it does mean that weak capabilities do not satisfy the requirement for unforgeable,
opaque addresses, because they may change detectably.

High Level Languages

In high level programming languages objects are addressed either statically, with
identifiers referring to variables on the stack, or dynamically using values which
refer to variables in the heap. The most important abstraction presented by high level
languages is that which hides details of the addressing mechanism used. This is
achieved by preventing scalar values being interpreted as addresses and vice versa.

So it can be seen that high level languages potentially provide unforgeable, opaque
addresses. However, Ada provides a means of discovering the physical address of a
variable in order to allow hardware interfaces to be driven. This allows the abstraction
to be penetrated and thus admits covert channels.

In contrast to Ada, Ten15 provides a perfect abstraction of addressing using pointers
and references 1 . However pointers can exist in a weak form, so, because they may
change detectably, they do not satisfy the requirement for unforgeable opaque
addresses. However, Ten15 references do not have this property and so satisfy the
needs of security.

1 Pointers refer to entire variables while references can refer to individual parts of a
variable.

10

Implementing Data Hiding

Conventional Architectures

Open files are an example of an object which can be addressed, using a channel
number, but not accessed directly. Read and write access is made by invoking the
operating system code, using some form of supervisor call. The code which
implements the access ensures that the object remains hidden from the caller and that
any necessary access control and auditing takes place.

The data hiding mechanism is therefore provided by the supervisor state of a two state
machine or by inner rings of a ring protection system. The disadvantage of this
method of data hiding is that the access control code of all objects resides in the same
place. Giving access to the underlying representation o one object gives access to all
other objects, including those of other types.

Using memory mapping units to give a finer degree of protection is very costly in
terms of context switching time. However, it is sometimes done with larger objects such
as files. For example a file control process may be used to manage the backing store,
with access requests being made by message passing. This puts all the access control
code for files in one place, but without giving access to other kinds of object. However,
protecting small objects individually in this way in not practical because of the
excessive overhead in the storage and switching of page tables.

Canability Architectures

When an object is accessed, the access rights of the capability used to address it limits
the operations that may be carried out. However this mechanism does not provide data
hiding. This is provided by entry objects [Dennis&vanHorn66] and the enter
operation, which is all that can be applied to them.

An entry object consists of some data and some code which has well defined entry
points. The enter operation is effectively a protected procedure call. It passes control to
one of the entry points and supplies capabilities for accessing the data, along with any
user parameters. Another operation allows a return to be made.

In order to control access to data, code which performs permitted operations is bound
with the data it protects into an entry object. It is however necessary to ensure that the
data is properly hidden. In particular after creation of an object, capabilities for its
internal data structures must be found only within the entry object. Also, each interface
routine must preserve this requirement. This ensures the access control checks made
by the interface cannot be bypassed.

Some capability computers implement entry objects by having an enter access right,
rather than a separate class of object, which indicates that the object referred to is to be
treated as an entry object. When the object is entered, the code is given a copy of the
capability with full access rights, allowing it to manipulate the data. Apart from this,
however, it is important to note that access rights have little role in providing access
control in capability systems.

It is well known that the use of a read only access right does not mean that an object
cannot be modified (Boebert84]. This is because the object may be tree structured, with
internal links made of capabilities having write access. It is then possible to modify
the structured object by reading one of the capabilities with write access and performing
some modification using that.

The only role for read only access rights in a secure system is in allowing simple
objects, especially code, to be shared without copying. An object can be safely shared in

this way if it is a simple storage object containing only scalar data or read only
capabilities for like objects.

The use of capabilities can be extended to reference persistent objects in backing store
[Currie&Foster87]. In these cases the contents of an object need to be accessible to the
disc manager so that they may be copied to disc. This is achieved by the type manager
providing a 'flatten' operation which provides the contents of an object in a flattened
form, suitable for writing to disc. Unfortunately mutual authentication between the
type manager and the disc manager is required. This is to ensure that the type
manager does not divulge the contents of an object to software other than the trusted disc
manager, and to ensure that the disc manager is not fooled into creating a spoof
persistent object by untrusted software.

Mutual authentication can be achieved by establishing the pedigree of the flatten
operation, which the disc manager first checks before handing over the operation which
puts data to disc. The type manager must check the pedigree of this operation before
giving it the flattened data.

High Level Languages

Modular compilation systems for high level languages generally allow for a subset of
the variables declared in a module to be exported. Variables not exported are only in
scope within their module and so cannot be accessed directly by other software.
Procedures which are exported from the module can give access to these hidden
variables, and so the requirement for data hiding can be met. This simple scheme can,
however, only hide variables that are declared statically when the hiding mechanism
is written.

A more flexible scheme which allows new hidden variables to be introduced as and
when required is provided by abstract types. Here a module can introduce a new type,
providing a concrete representation and operations for creating and manipulating
objects of the type. Outside of the module only the abstract operations can be used. This
allows any number of new objects to be declared or generated without any need to alter
the defining module.

Data hiding can also be achieved with first class procedures [Currie82], if they are
provided by the high level language. Here the procedure provides an interface to the
data contained in its environment and, since several procedures can share parts of an
environment, it is possible to arrange for the data to be hidden by the operations which
act upon it. This method of data hiding is sometimes more convenient than abstract
data types, especially when the object is transient, such as an open file.

Both Ada and Ten15 provide simple modules for hiding statically created data and
abstract types for hiding data created more dynamically. Procedures in Ada are only
treated as control structures, but in Ten15 they are treated as values and elevated to first
class status, providing an alternative technique for data hiding.

An architecture based on strong typing could provide persistent storage without the
problems found in capability computers. The compiler knows the type of values being
made persistent and therefore knows how to flatten them. Thus there is no explicit
'flatten' operation which must be carefully protected. This approach is taken in Ten 15,
which has type constructors that describe persistent objects on backing store and remote
objects on other machines.

The disadvantage of this approach is that objects will be flattened in a standard way,
while it might be more appropriate to have different representations on disc and in
store. If this functionality is required, a mutual authentication mechanism must still
be provided.

12

Implementing Pedigree

Conventional Architectures

In conventional systems, processes have different name spaces for different kinds of
object. For example, volatile memory would be addressed using virtual addresses,
persistent files by file name and open files by channel number. In such cases the
pedigree of an object is evident from which name space is used to address it. This is
because the only software able to include a new object in a particular name space is that
which is responsible for hiding the object behind access control checks.

A sophisticated system could use a ring protection scheme to control access to a number
of different types of object, all referenced using the same name space of virtual
addresses. In this case the calling software may need to distinguish one type of object
from another, but unfortunately one gate looks exactly the same as another. In such
cases the pedigree of an object cannot be determined from its interface.

This means that even if references to objects can be freely passed around, faithful
software cannot agree to modify an object using a reference obtained dynamically.
This is because the object may be of the wrong type and calling its interface may cause
an inappropriate modification to occur.

The interface of all objects could be extended to include a standard means of
determining their pedigree. For example the first gate of any object could be a routine
that returned the type of the object. It would of course be necessary for the caller to
determine that the address is that of a real gate and the system must ensure that
ordinary users cannot create new gates.

Capability Architectures

The pedigree of an entry object cannot be determined by software because the only
operation that can be applied to it is enter, which immediately gives control to the object.
An extra mechanism is required to allow pedigree to be ascertained. Sealed objects,
first described by [Redel174], provide this mechanism, but it should be noted that not all
capability computers provide them.

A sealed object is created by attaching a seal to an existing object using the seal
operation. The only operation which can be applied to a sealed object is unseal. This
requires that a copy of the seal be presented and returns a capability for the original
object as a result, but only if the seals are equal.

For each kind of object, for which pedigree needs to be determined dynamically, a
unique seal must be created. This is simple to arrange in a capability computer because
the capability for a new object is always guaranteed to be unique. The objects must be
sealed with the appropriate seal before being distributed.

To establish the pedigree of an object it is simply unsealed using the appropriate seal.
This operation will fail if the object is not a sealed object or it was made using a
different seal to the one supplied. Obviously to prevent forgery the seals must be
protected from disclosure. Thus the data hiding mechanism is used to hide the seal with
code that performs the unseal operation.

The pedigree of the entry object which is entered to establish an object's pedigree is
itself established statically.

In order that a class of objects can be made persistent with pedigree, the unique seal
must itself be persistent. Furthermore, when the type manager for that class executes it

13

must be able to obtain the seal, but it must be hidden from all other software. This can be
achieved using persistent data hiding mechanisms to bind the seal to the type manager
code. The seal would be generated and bound to the code at installation time, but
provision must be made for maintenance of the code without revealing or changing the
seal [Harrold89].

High Level Language Architectures

Dynamically establishing the pedigree of a hidden object is achieved with a high level
language's abstract data type mechanism. The type of an object cannot be forged and so
provides the pedigree mark necessary for security. Note that abstract data types provide
pedigree in addition to providing data hiding and so are convenient to use. First class
procedures, however, only provide data hiding.

Implementing Context Sensitive Addressing

Conventional Architectures

Context information is invariably attached to processes. It is observed by making
supervisor calls which either return a copy or map read only access into the process'
address space. This ensures the context cannot be modified, except by suitable software
executing in some privileged state.

Canability Architectures

Context information is invariably attached to processes, just like in conventional
systems. The minimum requirement is for the hardware to enable a process to be able
to establish a unique identifier for itself. This allows a general purpose context to be
constructed in software, protected by the data hiding mechanisms.

A powerful extensible context mechanism would use unique identifiers to 'name'
elements of the context. New elements can be introduced simply by inventing new
element identifiers. Unique identifiers are easily generated in a capability computer
because capabilities for new objects are guaranteed to be unique.

The operation to add something to the current process' context would take two
parameters: the element identifier, which dictates which element of the context is being
added or replaced, and a capability for an arbitrary data structure which is the new
value of that element. A process can find out the current value of an element in its
context by calling an operation which takes an element identifier as a parameter. The
result is a capability for the arbitrary data structure currently associated with the
element name.

High Level Lanmuage Architectures

Context is usually provided by operating systems and not by programming languages.
This is the case for Ada, where it is unfortunately not even possible to uniquely identify
the current task. Ten15, however, is intended to be a complete description of an abstract
machine, rather than just another programming language, and so does provide this
facility. As explained earlier this is all that is necessary to build an extensible context
mechanism in software.

Summary and Conclusions

The Mechanism.

Secure systems place certain demands on the protection facilities offered by computer
architectures. The four basic mechanisms proposed in this paper are mechanistic, yet

14

are still independent of the target architecture. This contrasts with an earlier attempt to
assess -hardware requirements by [Landwehr&Carrol84], which concludes that
support for domains is essential. These domains are at the same level of abstraction as
the entities of the Terry-Wiseman security model and no framework for assessing
different hardware architectures is given. The basic mechanisms proposed here
provide that framework as they are at an intermediate level of abstraction between the
hardware and entities or domains of the model.

Unforgeable opaque addressing provides a perfect abstraction of the addressing
mechanism used to reference objects in the computer. In the abstract specification,
transitions change the attributes of entity's, and for this to be implemented using
dynamically created machine level objects, without introducing any covert channels,
unforgeable opaque addressing is required.

Data hiding prevents data from being accessed in an arbitrary way by restricting
access to code that is bound to it by its creator. This code can perform any access control
checks that are required, so can be made responsible for preserving confidentiality
and integrity.

Pedigree allows the authenticity of an object to be established, even when they are
obtained dynamically. This is required to prevent users being fooled into applying
operations which affect integrity to the wrong objects.

Context sensitive addressing is necessary to allow access control code to obtain the
security critical parameters it needs. Control attributes, such as clearance, will be
stored in the context of a requester and can be freely observed, but their modification is
subject to the usual integrity controls.

Conventional Architectures

A conventional architecture can only provide unforgeable, opaque addressing by
mapping virtual to physical addresses, however this results in many separate address
spaces. This means modern software engineering techniques, which require a
uniform address space [Stanley85], cannot be utilised.

From an assurance point of view, the correct implementation of unforgeable, opaque
addressing on a conventional architecture relies on the memory mapping tables being
managed properly. However, these are accessible to all kernel software, so it is not a
straightforward task to show this.

Data hiding can be provided by utilising the privileged state or inner rings of a
conventional architecture. However this gives access to all the data stored there, thus it
is effectively one object hidden behind supervisor calls or gates, and this goes against
the principle of least privilege. It is possible to use separate processes for different
objects or classes of object, but the lengthy context switching time makes this
impractical except for collections of large objects, such as files.

So, for performance reasons, more than one entity has to be mapped to a machine level
object. Thus, entities which are observed will inevitably be stored in the same machine
level object as entities which are not observed and this makes the proof of secure
refinement much more difficult. It is necessary to prove, for each abstract operation,
that the data representing those entities which are not observed does not affect the
modified entities. Hence it is difficult, though obviously not impossible, to achieve high
assurance systems on conventional architectures.

Conventional architectures generally have separate address spaces for different
classes of object. Thus an object's pedigree is established statically by virtue of which
address space is used, and so a dynamic mechanism is normally unnecessary.

; ' 15

The problem with a context mechanism provided by an operating system kernel is that
it is not user extensible. Incorporating some application specific information to the
context involves modifying the kernel's code. For example, adding an electronic mail
package to an existing system may require the addition of "mailbox name" to the
process context, in order that the send function can guarantee this is placed in the
'from' field correctly. Having to modify the kernel, however, will require its
assurance to be assessed again.

Canability Architectures

Capabilities are essentially unforgeable, opaque addresses which do provide a uniform
address space. However, some implementations offer facilities, such as weak
capabilities or revocation [Redell&Fabry74], which destroy this property.

Most capability computers have been implemented so that memory management is
performed by kernel software, however capabilities allow 'least privilege' to be applied
so that the kernel is not monolithic, making the assurance task easier. Memory
management can, however, be implemented in microcode [Currieet.al.81] or even
hardware [Wiseman89], which is the extreme of 'least privilege'.

In capability computers it is the entry objects that provide a means for data hiding, not
capability access rights. They allow small amounts of data to be hidden and so can be
efficiently used to individually protect each entity, satisfying the principle of least
privilege.

Entry objects were included in the very first definition of capabilities
[Dennis&vanHorn663, unfortunately they have been ignored by many. In particular
the definition in [Boebert84] explicitly excludes entry objects. This has lead to several
proposals, for example (Karger&Herbert84] and [Gong89], which are complex yet are
not as general purpose as the original concept.

An object's pedigree can be established dynamically if the capability computer supports
sealed objects. These allow an object's creator to mark it in a way which uniquely
identifies the creator and cannot be forged by anyone else.

The context mechanism in capability computers is very similar to that in conventional
computers, but it is generally extensible, allowing application specific elements to be
added to the context without requiring modification of any other software.

Many proposals have been made for using capability computers in secure systems, but
none have as yet come to fruition. However, the main problem is not technological, but
is "the inertia which makes it easier to continue doing things as as they have been done
in the past" [Linden76].

High Level Languages

High level languages should in theory provide unforgeable, opaque addresses as part of
their addressing abstraction, however this is often compromised for practical reasons,
as has happened in Ada. Ten15 is an example of a language which does not need to
compromise the abstraction, because it includes a view of the operating system world in
its type system.

Simple data hiding comes from a modular compilation system, though dynamically
created objects require the sophistication of first class procedures or abstract data types
to hide their contents. Abstract data types also provide the means for establishing an
object's pedigree.

16

Programming languages do not generally supply a context mechanism as standard,
because they usually rely on services provided by underlying operating systems.
Ten15, however, offers a context mechanism as standard without operating system
support.

Cnclusion

This paper has shown how the architectural requirements for secure systems can be
expressed as four basic mechanisms and that these can be provided in a number of
ways. Conventional two-state machines and ring protection architectures can be used,
but gaining high assurance is quite difficult because they are too inefficient when
mapped directly to the security model. Capability architectures offer fine grain
protection and so can directly implement the abstraction given by the security model.
This greatly simplifies the assurance task, as well as offering a better software
engineering environment. Even more precise protection is available in the abstract
machine provided by a high level language. However assurance is lower here because
of the relative complexity of the compiler which is relied upon to maintain the strong
typing that underpins security.

The best means of building high assurance secure systems appears to be to use a high
level language implemented on a simple capability machine. Here compile time type
checking is complemented by orthogonal run time checks. This reduces the trust in the
compiler to acceptable levels, and makes the applications portable by hiding the details
of the underlying capability machine. An important advantage of this approach is that
the system will execute without modification on conventional hardware, though with
lower assurance.

References

W.E.Boebert, "On the Inability of an Unmodified Capability Machine to Enforce the *-
Property", 7th DoD/NBS Computer Security Conference, September 1984, pp291-293.

L.Cardelli & P.Wegner, "On Understanding Types, Data Abstraction and
Polymorphism", Computing Surveys, Vol 17, Num 4, December 1985, pp4 7 1 -5 2 2 .

D.D.Clark & D.R.Wilson, "A Comparison of Commercial and Military Security
Policies", IEEE Symposium on Security and Privacy, April 1987, Oakland, CA., pp184-
194.

I.F.Currie, "In Praise of Procedures", RSRE Memo 3499, July 1982.

I.F.Currie & J.M.Foster, "The Varieties of Capabilities in Flex", RSRE Memo 4042,
April 1987.

I.F.Currie, P.W.Edwards & J.M.Foster, "Flex Firmware", RSRE Report 81009,
September 1981.

J.B.Dennis & E.C.van Horn, "Programming Semantics for Multiprogrammed
Computations", Communications of the ACM, Vol 9, March 1966, pp143-155.

R.S.Fabry, "Capability Based Addressing", Communications of the ACM, Vol 19, July
1974, pp403-412 .

J.M.Foster, "The Algebraic Specification of a Target Machine: Ten15", in "High
Integrity Software", C.T.Sennett (Ed.), Pitman Press 1989.

17

J.M.Foster, I.F.Currie & P.W.Edwards, "Flex: A Working Computer Based on
Procedure Values", Workshop on High Level Language Computer Architecture, Fort
Lauderdale, Florida, December 1982.

G.Frosini & B.Lazzerini, "Ring Protection Mechanisms: General Properties and
Significant Implementations", IEE Proceedings, Vol 132, Part E, Num 4, July 1985,
pp203-210.

L.Gong, "A Secure Identity-Based Capability System", IEEE Symposium on Security
and Privacy, May 1989, Oakland, CA., pp56-63.

C.L.Harrold, "A Security Policy Model and its Use", to appear 1990.

C.L.Harrold, "Secure System Initialization in SMITE", RSRE internal report 1989.

M.A.Harrison & W.L.Ruzzo, "Protection in Operating Systems", Communications of
the ACM, Vol 19, Num 8, August 1976, pp461-471.

C.E.Landwehr & J.M.Carroll, "Hardware Requirements for Secure Computer
Systems: A Framework", IEEE Symp. on Security and Privacy, April 1984, pp34-40.

H.Lieberman & C.Hewitt, "A Real Time Garbage Collector Based on the Lifetimes of
Objects", Communications of the ACM, Vol 26, Num 6, June 1983, pp419-429.

T.A.Linden, "Operating System Structures to Support Security and Reliable Software",
NBS Technical Note 919, August 1976.

C.Morgan, K.Robinson & P.Gardiner, "On the Refinement Calculus", Oxford
University Programming Research Group, Technical Monograph PRG-70, October
1988.

D.D.Redell, "Naming and Protection in Extendible Operating Systems", MIT Report
MAC-TR-140, November 1974.

D.D.Redell & R.S.Fabry, "Selective Revocation of Capabilities", Workshop on
Protection in Operating Systems, Rocquencourt, France, August 1974, ppl97-210.

C.T.Sennett, private communication, October 1989.

M.Stanley, "The Use of Values Without Names in a Programming Support
Environment", RSRE Memo 3901, November 1985.

P.Terry & S.Wiseman, "A 'New' Security Policy Model", IEEE Symposium on
Security and Privacy, Oakland, CA, May 1989, pp2 15-228.

S.R.Wiseman, "Two Advanced Computer Architectures: A Study of their Support for

Languages and Operating Systems", RSRE Report 82013, July 1982.

S.R.Wiseman, "A Capability RISC Processor" RSRE internal report 1989.

18

DOCUMENT CONTROL SHEET

Overall security classification of sheetl a s..i f i e.d

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter classified information, the box
concerned must be marked to indicate the classification, eg (R), (C) or (S))

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. eport Security Classification

Report 89024 Unclassified

5. Originator's Code 6. Originator (Corporate Author) Name and Location
(if known) ROYAL SIGNALS & RADAR ESTABLISHMENT

ST ANDREWS ROAD, GREAT MALVERN
WORCS WR14 3PS

5a. Sponsoring Agency's Code 6a. Sponsoring Agency (Contract Authority) Name and Location
(if known)

7. 1Ile

BASIC MECHANISMS FOR COMPUTER SECURITY

7a. Title in Foreign Language (in the case of Translations)

7b. Presented at (for Conference Papers): Title, Place and Date of Conference

8. Author 1: Surname, Initials 9a. Author 2 9b. Authors 3, 4... 10. Date pp. ref.

WISEMAN S 1990.01 18

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution Statement

Unlimited

Descriptors (or Keywords)

Continue on separate piece of paper

AbetrT

The protections facilities required for computer security are expressed as
four basic mechanisms. It is shown how a security model maps to these
mechanisms and how they can be implemented on conventional architectures,
capability architectures and in high level languages.

8SOI48

