
. 'NLIMITED

AD-A237 415

wM600ANdUMb. 446

ROYAL SIGNALSA & ADAR
ESABLISHMENT'

TIhALIfrPLEMtNTATiON OF-A ,SECURE APPLICATON

A40hei ER ilsby

(00

to ~ P ROCUREMENT EXECUTIVE,
d MINISThRY&OFhFNCE,
z ASREMALVERN,

WORCS.

0

K* e Xpoipu1k *=q

UNLIMAITED 91-02933

COND-TIONS OF RELEASE
0098093 301184

COPYRIGHIT (C)
1988
CONTROLLER
HMSO LONDON

..................... ORIC Y

Reports quoted a1e not necessarily available to members of the public or to comtmercial
organisatrons

ROYAL SIGNALS AND RADAR ESTABLISMENT

Memorandum 4465

Title Trial Implementation of a Secure Application Using Tenl5

Author: Elizabeth R. Bilsby

Date March 19'1

ABSTRACT

This report describes how a subset of SERCUS has been implemented using Ten l5 SERCUS is a
research implementation of a mult level secure workstation based on the SMITE approach and
running a classified document handling application SMITE is an approach to the construction

of secure systems which uses strong typing Ten15 is an algebraically defined, strongly typed
abstract machine running on a VAX station

This work was performed while the author was a Vacation Student at RSRE and used the TenI5
Cross Compilation System as it existed in Summer 1990

Copyright © Controller 1IMSO London 1991

INTENTIONALLY BLANK

(

CONTENTS

1. Introduction 1
2 Overview of SERCUS 2

2.1 General Overview of SERCUS on the Perq 2
2.2 The Ten15 Implementation of SERCUS 2

3. The Cross Compilation System 4
3 1. Compihng and Type Checking a Module 4
32. PERQ to VAX Transfers 5
3 3. Executing a Procedure on the VAX............ 6
3.4 Overview of the Tenl5 Filestore 7

4. SERCUS Modes and Ops 8.........
5. Overview of the Ten15 Notation 9
6 Exception Handling Strategy 1. 1
7 Classifications Module 13

7.1 Modes for Classifications Module . 13
7 2 Procedures in the Classifications Module ..13
7.3 Testing the Classifications Module . 16
74 General Comments 16

8 Context Module. , 17
8 1 Modes for Context Module 17
8 2 Procedures in the Context Module 17
8 3 Testing the Context Module. 19

9 Journalling Module 21
9 1. Modes for the Journalling Module 21
9 2 Procedures in the Journalling Module 21
9 3 Testing the Jeurnalling Module 24

10 Login and Related Procedures. 25
10 1 Modes Required for the Login related Procedures 25
10.2 Ions and Procedures Related to Login . 26

11 Regst/ Module 34
11 1 Modes for Registry Module 3I
11 2 Procedures in the Registry Module 34

12 References 41

Aeession For
NTIS CRA&I
DTIC TAB 0
Uuannouncod 0
J ,s5t i '2 at 1oR_.._..

-Lstqrbut ion/

Avatlibltty Codes

a..o.

L1tSpca

INTENTIONALLY BLANK

2. OVERVIEW OF MERCUT

2.1. GENERAL OVERVIEW OF SERCUS ON THE PERQ

SERCUS is a research implementation of a multi-level secure workstation running a classified
document handling system. The overall security requirement of SERCUS is that classified
information cannot be discovered by a user with insufficient clearance, eg a secret document
cannot be read by a user only cleared to restricted

SERCUS is essentially an electronic registry system controlling the creation of, and access to

classified documents and mail messages. Users are assigned clearances which limit their
ability to view and modify information in the system. All users have a personal cupboard where
they may store obiects such as the documents they are drafting. Whilst in the cupboard these
objects may be referred to by an unclassified name. A unclassified list is maintained of all the
finished classified documents in the system, and this is called the Classified Document Registry
(CDR) Users n ay view the CDR and ask to read any of the documents it holds. An additional
requirement of documents is that their classification may be altered However to ensure that the
new classification is appropriate, this requres the agreement of the security officer in addition to

the ordinary user

SERCUS also maintains a journal for each document is which interesting events that have

occurred in it's life are recorded For example which users have accessed it's contents, and those
who have agreed to a re.classificat.on of the document Additionally a journal is maintained for

each user registered on the system in which security relevant actions are rccorded such as when

the user logs on to and off SERCUS, documents they were prevented from seeing because their
clearance was insufficient and any users to which the) have sent mail messages The users

journal aims to make users accountable for their actions

When a user logs on to SERCUS they are presested with a dsplay consisting of a number of non
overlapping windows All the window software is completely trustworthy ie a Trusted path (A
trusted path is a "alidated link between the human user and a system's trusted software which
mutually authenticates both parties) The trusted path may be used to invoke untrusted software
such as a commercial word processing package While untrusted software is active in a window,

the classification of toe information is displayed prominently SERCUS monitors the movement
of information between windows and uses a high water mark mechanism to correctly maintain

the classification levels

For more information about the SERCUS Secure Registrv see RSRE report, 'An Example Secure
System Specified Using the Terry-Wiseman Approach", Harrold Ill

2.2 THE TENIS IMPLEMENTATION OF SERCUS

The present implementation ' rRCUS is TenlS is a demonstrable subset of the above The

Tent5 SERCUS incorporates users, classifirations and clearances, journals and documents
Documents can be created, opened and read, and document and user journals can be revwewed In
addition, the classificaton of a docunrent can found, as can the clearance of a user The system

2

I.NTRODUCTON

This report eescribes the implementation of a subset of the SERCUS demonstration in the abstract
algebraically defined, strongly typed language TenlS. Ten15 contains constructs that implement

all of the features of a modem high level programming language, as well as facilities for
manipulating system level aspects of a computer such as filestore.

A general overview of SERCUS as implemented on the Perq is provided, along with a summary of
the Ten1S implementation of SERCUS using the TentS Cross Compilation System The use of the

Cross Compilation System is then described, along with an overview of the Ten15 notation.

The report then describes in detml the implementation of the individual modules making up the
Tenl5 SERCUS demonstration. These include the classifications, context, journalling, login
and related procedures, and the registry modules. Each section describes the modes and operators

defined in the module SercusModesandOps for use in the module, followed by descriptions of the
procedures contained in the module. The exception/failure strategy employed in the Ten!5

SERCUS is also described.

The convention used throughout the report is that Tent5 operators are bolded in the text, as are the
names of the modules used in the SERCUS demonstration

can also tell the user whether they are on the trusted path, and move users on and off the trusted
path as desired It should be noted that the trusted path and invocation of untrusted software is at
present only a simulation

The Ten15 demonstration, unlike the Perq version, has only one window at present It also lacks

High Water Marks, thus the creation of documents does not perform high water mark related
checks before a document is created. Cupboards and mail between users has not yet been
incorporated either, and nor has the regrading of documents.

3

THE CROSS COMPILATIONYST M

The subset of the SERCUS demonstration desenbed in this report is implemented using the Ten15

Cross Compilation System on the Perq and the VAX machines The VAX has only one dictionary
so there are no separate users and only one process running. As yet there)s no Ten15 notation
compiler on the VAX, thus the cross compilation system is vital in the establishment and

development of software on the VAX while completion of the editor and notation compiler are
awaited

This document assumes the reader has a reasonoble working knowledge of te FLEX system

3.1. COMPILING AND TYPE OIECK G A MODULE

VAX modules for use in the demonstration are written in Tent5 notation contained in edfiles,

and compiled on the Perq Edfiles and compilpd modules, etc, appear on the Perq in the form of

cartouches (boxes). An edfile c itaining notation is first compiled by applying the procedure
maketent5 This procedure does the syntax checking 4f the Ten15 notation se it checks such

things as declarations and seeping, and produces intermediate Tenfifteen code If a syntax error
is found, then make-ten5 calls up the Perq editor which will indicate the nature and position of
the error(s) When the notation has been successfully checked syntactically ie the editor does not

get called, or only gives warnings drawing the users attention to possible oversights in the
notation eg an object which is declared and not used (possible error in the scope of the object), then

the procedure va is applied

The vax procedure does the type checking and generates the VAX code The type checking detects
illegal mode coercion attempts, displaying the offending modes as cartouches These can be

duplicated and examined using the Show Tcni5 Mode option on the Ctrl I menu (SMITE Team

systems only) If the type checking is unsuccessful, the vax procedure calls the Perq editor in the
same way

The error messages produced by both the make_tent5 procedure and the vax procedure are very

basic and not always very helpful This is largely due to the fact that we are using the first
embryonic version of the cross compilation system, and the clanty of the error messages is likely

to improve as the system is further developed' The make-teln5 and vax procedures are applied to
an editable file (edfile) as follows

elemake_tenl5' vax1

N B ! represents procedure application on the Perq

t.nce the notation has been successfully compiled and traio-atcd, it can either be amended into ar
existing module or made into a new one as follows

I A useful tick that can be used to check types is to define uhat you ilnk the type should be, and then to let the
system icl you % lsht i dunks it should be if it is unable to coerce the oe type to the other

4

Creotinga Module:

(ediemakejlen15l vaxi, emodole.name) stew .vaxl

Amenoding a Module:

ediemake lenis' saul module-name Mudule-RoPle. medye

If the specification of the module has chooged then it must be changespeced as follows:

ediemakejenl~ilvaxl module-name ModulRPr changeopecvaxl

N,B All ether modules which use the chauge-speced module must alo be recompiled. (See later)

3.2. PERQTO VAX TRANSPERS

Having created and compiled a module en the Perq, the VAX code con be transferred across to the
VAX for running is the TeolS Evaluation System

N BI The VAX should already be running the TendS Evaluatsn system. novoked by typing

> @rus.LtenlS simplejoad 115 eRETURN>
> oRETURN,

This sequence of commands con be defined is the users logincom se thot a shorter command
such as tealS ca:: housed to invoke the Tent5 system

she kernel :eouule for the TenI system must then be loaded by pressing return (since
kernel mod is the default module)

To transfer a module from the Perq to the VAX, the following commands must be obeyed on the two
mschines with the Perq eod being obeyed first

3.2.1. On~erq:

Apply seud..eo-vax to the module as follows

m-odule-name msduie-(RoPt, send-jo vax

N B The transfer routine always fails en the Perq with the errer message 'No Capability for
Creating Uniques -see PDII., but should be ignored'

32.2 On VAX.

M odules can be transferred to the VAX by issuing the relevant commands from either the truc
(command line interpreter) or frem the editor itself

From Tos:

Apply the procedure Transfermodule to the name of the Perq holding the required module le
Tronsfer.module."perq name. Note that procedure application is indicated by a "." on the VAX,

and that the notation is forward polish rather than reverse polish as on the Perq

True only has a basic teletype interface so values created are given names of the form @0, 1 etc

To use the module it must be loaded using Load which delivers the ro-pointer to the keep list of the
VAX module, then opened using open, and finally named either temporanly using '-', or

permanently in the dictionary using %.', as follows

Input Transfer-module "tigger'

@0
Input Load @0

@I
input open@1
PRrTo @2

Input @2 . procl

From the editor:

The editor must first be called from true by obeying the command Load.edit, or login. if
SEfCUS is to be run as follows

Input Load et
or

Input Iogn i0

Once in the editor the command Transfermodule."pcrq name" can be evaluated within an

evaluation box The commands used to load a module from the editor are similar to those issued
from true, except cartouches are used instead of the 0 numbers The module is loaded using Load,

then the pointer to the keep list is de.pointered using deptr

Transfermodule "tigger. - m

deptr (Load m) .. proc2

N B The command line interpreter in the editor and truc use the same dictionary

3.3 EXECUTING A PROCEDURE ON THE VAX

Having transferred a module from the Perq to the VAX, loaded it into the TenlS Evaluation

System and depointered its keep list, the procedure can be applied to its parameters

The syntax for procedure calls on the VAX is procedure.parameter For example proci takes void
ie no parameters and proc2 takes two parameters, thus to execute a procedure whose name is
stored either temporarily or permanently, type

6

From Thic

Input: prol.0

From the editor

proc2 (parami. param2)

3.4. OVERVIEW OF THE TEN1S FILESTORE

The Tenl5 filestore is simply one large VAX file. The implementation of the SERCUS
demonstration will involve some manipulation of the Ten15 filestore, so a brief overview of
terminology is provided here.

Filestore values in Tenl5 are accessed via filestore capabilities, and these are of two types:

1. Persistent Values (persistents)
2. Persistent Variables (pvurs)

3.4.1. Persistent Values

These are mainstore values written to filestore (persisted). They can be read (unpersisted) via
their disc capability, but they cannot be assigned to. The operator Persist is used to store a
representation efa mainstore valie on datastore, returning a persistent value.

N.B. Persist takes the datastore as a parameter as well.

While the operator UnPersist uses this persistent to retrieve a copy of the value originally stored
on the dtastore.

3.4.2. Persistent Varlables

These are essentially updateable references on disc containing a persistent which can be
assigned to. (Persistents may .ontain other persistents or pvars). The operator AssPvar assigns a
persistent value to a pvar. and returns void. DePvar is used to retrieve and deliver the persistent
value most recently assigned to a pvar.

3.4.3. Pointer

A pointer points to som'ething in main memory. The operator Pack generates and delivers a
pointer to an area of memory of appropriate size which has been initialised to contain the value.
Conversely the operattr D de..ptrs the pointer, returning the value most recently assigned to it.

3.4.4. PSet

A Pset is a set of Pvars

7

4- ';ERCIT MODES AND OPS

Sercus]WodeandOps is a MoModule. It contains all the mode, operator and assertion definitions
required far any part of the Ten15 notation used in the SERCUS demonstration. The mode and
operator names available to a module are all those declared in the MoModule, plus all those that
occur in the use-lists defined in the MoMadule.

SereasModesandOps

jBasic kernel ror~ss Mu du

Use Del, DoNlec. Dol~wvplae. Line
Opeors ToEis!DelS.1n1 ln,. ToEsisls~el~ec
Freer d i['oeM. M

Modes:

---Descebed in Fotuwing Sections

operators:
OUIput . 402;
Inpul . 403,
Getllnne . 407:

VduMessage .528(5)

Fresh

Definitions can be used from previously defined Ma2.lodules by specifying a use-list of the mode
and operator names that need to be made available from it eg. EditLinelfo above. If no use-list is
specified then all the definitions in the module will be passed through, eg. lBasice..rnel.modes
above. All other modes, operators and assertions are thes defined.

The Mo~fodule is compiled by applying the procedure modesandops to the edfile containing the
definitions, and then created by applying the procedure new-mo'

edit modesnrdopal. modenmodula') newjoool

If new definitions are added to an existing MoMadule then it can simply be amended using
amend-ino:

edl modeoandopsl moe odl merter~nol

However if definitions are changed or removed thein the Moloadule will have to be change-spzced
using Clsange..apec..MO:

edit modesandopsl moe ousclicgeospocjno'l

N B. All Modules using this particular Nioadodule will have ta be recompiled This is best iOne by
applying recompile~vax to a top module.

A*$

SOV'R VEW OF HF TENI1 NOTATIO N

The edfile containing the Tenl5 notation must have a single MoModule at the top. MoModules are
the only place where modes and operators can be declared, and all the modes and operators in the
notation report, 'A Notation for Ten15" Goodenough and Rees 12], are automatically defined in the
MoModule.

The MoModule is followed by Ten15: and the end of the notation is indicated by Finish. All

terminal symbols in the notation start with a capital letter and then continue in lower case. The
end of a clause is indicated by the key word reversed or Endkeyword (where the keyword is

generally in lower case) eg.

t v T"-n w Eli x Then y tElse z F

In NI

Proc...Endproc

Since a full modular compilation system does not as yet exist, keep lists have to be constructed by
hand, The operators Ro and Pack are used in the last statement in the module to pack whatever it

is you wish to keep into a read only block, returning a pointer to this block. eg.

Ru Pack (prodl, proc2. pro3)

Objects kept in one module may be used in another by extracting them from their defining module
using a Let statement eg.

Lot (poct, proc2. prod.3) .lanymodule -ModutIRoPti I

Commas can be used if the kept values are to be ignored eg.

Lei (,,) - lanymodule: ModuleiRoPt)I

N.B. The Module is automatically loaded when it is encountered in the text, and the keeps

extracted.

Identifiers and variables defined within declarative statements (ie. Let and Vat statements), are

only in scope between the following In..Nil, Declarative statements can also be used to declare the

type of an identifier or variable. The translator compares the user defined type with the actual type

the object should have. The editor is called on the Perq allowing the user to examine the modes
and discover the error if the types fail to matcheg.

Let identder3 : Model . procl(iden idati. idenitder2)

N.B. Individual Let statements require no list separators, while statements within the scope ofa

Let statement need to be separated by semi.colons.

Geing scopes wrong can tead t cotadictory error mocsg such as "aming- x deciatrd and not used" and "x

not decbcd".

I

The Ten 15 notation for procedures allows them to be named using a Let statement, and their non.
locals to be explicitly identified using a Use..Iss statement as follows:

Lot penal - Use (non-locail. son-oc&12) In
Proc(identiteri. identdier2 : hlod92),Model:

.procedure body.

Endpro

N.E. There is no closing Ni for the In which identifies the non-locals to the procedure.

10

6 EXCEPM'O HIANDYLql qTRATrV

Exceptions occur when for example the user-details or trusted path flag cannot be extracted from
the context or the cdr number supplied is out of the range of the registry. In such cases the
procedure where the exception occurred should fail.

The following modes are defined for use in handling exceptions in the code. Failure is a structure
of an integer iepresenting the failure number, and a string representing the corresponding

failure message. FailVec is a vector of entries of type Failure,

Palor. - siruct(Int Number, Stng FaLMss)

F3IVOc. vec(Fair. Poslnt)

A module, FailureNumbers, is provided for use by all the other modules in the SERCUS
demonstration. It contains a vector of Failure entries consisting of a failure number and a
failure message relating to the various exceptions that could possibly arise while running the
demonstration, These failure messages will be used in the diagnosis of exceptions throughout the
code. eg.

Let base: Int . 80914

Let class al lt - base + I
Lot class n'ss . StrNg - "lnvald Classdifaons!
Let cassletais : Faire - (daiissjal, cltssMess) etc,

Lot favaeo : FaVo - Vec(7 01 claisdetes)
In

fa'i2vec 2 : .. etc.

N.B. The base number is a random large number.

When an error is detected in a module, the operator Failure is used. This causes the procedure in

which it was called to fail, and an exception is formed from the trap value. The trap value is
generated by applying the operator IntToTrap to the appropriate integer failure number taken
from the module FailureNumbers.

Let (cassJwt.) - 1Fa7eNambers ModaleloP,.

In
Fator InlToTapcassJal

This exception can either be caught in the enclosing procedure, which is usually the case, or
propagated on further to be caught at a later date.

The operator Trapply takes a procedure and it's parameters and returns a union This union
contaiis the result of the procedure if it completed normally, the trap value if an exception was

caused during the execution of the procedure, or if the procedure was jumped out of, a procedure
with which to complete the long jump. (This third option will not apply in the SERCUS
demonstration code).

11f

A procedure is defined in the module FailureNumbers which takes the trap value generated using
the operators IntToTrap, and Failure from the failure number defined in FailureNumbers
corresponding to the nature of the error. It returns the string which diagnoses the error, also
defined in FailureNumbers.

Lot tagiproc -Use (far -vac. base) In
Proc tailtOap -trap) .o String:

Lot trapno: :st . TrapTeoItfaijoap)
Los faile ;o lot - trap no -buss
Lot dotials .@ torL ;9c Voolod fl no)
Lot message. Striog - F&LMosO do;Ws
In

message
MS

Endproo

The operator TriepTolnt ie used to retrieve the failure reason from the trap value ie. the value used
by IntToTralp to create the trap. The base number is then extracted from this number to give the
index into fail-vec. The appropriate diagnostic message con then be extracted from the vector
using field extraction.

This procedure is used within Trapply as followa:

Lot byeby . b ob a : Mouat(Ro71r..

T'aPPWy soaddoo. cdrpeum
I Op text: toext
IlOP trap:
ILot1moss - IaLproc(trap)
In

"ressag"olmes):
Failure loToTtap byebya

N.B. The exception is propagated b) calling Failure IatToTrap, on the integer byebye, a large
number used to signify' fatal errors,

Error diagnostics are written to the bar at the top of the currently active window using the
procedure message which uses the system operator Vdu~lessagc with the appropriate parameters
ie. the display and window dimensions and the error message string.

12

7. ClASqUItCATIONS MONThF

This module is used to provide a representation of document and user classifications for the
SERCUS demonstration.

7.1. MODES FOR CLASSIFICATIONS MODULE

The classifications mode is defined as the range of integers 1..5 as follows:

Class - range(4. I.5)

The 4 indicates that it is an integer range, rather than a character or long integer range.

The classifications represented by the hierarchy of integers are

1 unclassified

2 restricted
3 confidential
4 secret

5 / top secret

String mode (used throughout the code) defines a string as a read only vector ofcharacters with a
positive Integer as it's upper bound.

Strin g rsvec(Char. Post)

7.2. PROCEDURES IN THE CLASSIFICATIONS MODULE

The classifications module contains the procedures required to implement classifications is
TealS notation for the SERCUS demonstration. They are as follows:

7.2.1. Dominates

Dominates is a procedure which takes two parameters of type Class and returns True if a is

greater than or equal to b, and False otherwise ie. Unclassified (1) is dominated by Restricted (2)
since 2 >x 1, but Restricted is not dominated by Unclassified since 1 >- 2 is false. This procedure

is implemented using the basic integer greater than or equal operator. >-.

Lot dom;natos = Us* l In
Poo (a. b : class) Bool.

as-b
Endproc

7.2.2. Least

Least is a procedure whici, takes two Class integers and returns the lowest dominating
classification in the pair, ie. given the pair of classifications Confidential 13) and Unclassified
(1), the lowest dominating classification is Confidential. This procedure is implemented using

13

the'basic operator Max, which delivers the maximum of two integers. Max is equivalent to the
construct 'If a> b Then a Else b F'.

Let least. Use 0 In
Proc (a. b: Class)-> Class:

a Max b
Endpros

7.2.3. Greatest

Greatest is a procedure which takes two Class integers and returns the greatest non dominating
classification in the pair, is. given the pair Secret (4) and Restricted (2), then the greatest non
dominating classification is Restricted. This procedure is implemented using the basic operator
Min, which delivers the minimum of two integers. Min is essentially equivalent to 'Ifa < b Then
a Else b Fi.

Let greatest. Use (In
Proc (a. b : Class)-> Class:

Endproo

7.2.4. Class.to_str

Class.tostr takes a Class integer and returns the classification string which the integer
represents. For example the integer 1 represents the classification string Unclassified

The following shows how the vector of valid classifications, valid.class, is constructed. Firstly
five lower case strings corresponding to the five classificatin classes are declared.
eg.

Let unclasstfed : String - "unclassl~d"
tee festrcted: Strig - "rrstrcso etc,

Validclass is defined as a vector of five elements of type unclassified, and then the remaining
four elements in the ector are set to the other four classifications strings defined above. The
Tent5 compilation system is able to work out automatically the replacement of strings in the

vector by strings of different lengths.

Lot eaid.class . V c(5 01o uasssd)
In nvaid..class2 :. restrlctod: 0tc

The procedure classtostr is Implemented using vector indexing into the valid-class vector as
follows:.

Let classlt sr. Use (valid clas) In
Proc (class: Class) -> Srng

Lot class_sl : Strng = @ (vaWdclass Vecind class)
In

class_slr

Endpros

14

N.B. The operator 0 is used to dej.ef a reference or vector, returning the value most recently
assigned to it'.

7.2.5. Str..toclass

This procedure returns the Class integer corresponding to a classifications strsng. Initially its
primary use will be in the testing of the classifications module, although it will also be used to
assign clearances to users. It will eventually be used in the creation and regrading of documents
which require the user to be prompted to enter a classification.

'The first implementotion of otr..ts.class used an If..Tlien..Ellf..Fi statement to recognise the
classification string as a whole eg. Unclassified, or the first letter of the string eg. U, to facilitate
the return ef the correct class. This implementation was by no means ideal. A better
implementation of str..to.class was found which involved converting the gives string to upper
case characters, so that it is not case sensitive, and then matching it against the classifications
strings held in the valid..class vector, which are also coverted to upper case.

Los ts..oppor -I-pr : ModuletSoP7..)
Let (classjai.,,, -~iueubi Moue oPr.)

Lot sir.to.class - Uso valid class. sojopper. ctas~al (In
Pos (sir: String). oClass:

Let upb : PosInt . Upb air
Let eaori st: Slriog. roouppor)sir)
VV 1: rot Poslu:-O0
In

Fo n To Uptbvidclass WhileQ1. 0

Lot cl~ssstr Siring -@Q (vatdclss Voclnd n)
Lot compare : Stroll . isopporl classsi)
Leitirimmerd : Sireog - cmpete Twol.o upb
In

0 timmrued VocEq nov**st

on

Od;

Then
Fsturs lot~o~rap class fatl

Else
CrClass @1

Eodprso

The idea of the procedure is to tale a classifications string, convert it to upper case characters and
find its length, say uph. Before comparison, each string in the valid-.class vector is trimmed to
upb characters using the vector operation Trimle (Trim when less than or equal to uph). The
strisg is then cmpared with the first uph characters of the upper case conversion of each string in
the valid-class vector, using a For..Tci..Whle..llo..Od loop to index the vector until a match is

@ wnotuaspaiccis used foe Libels cg. @label. When@~ is used tode-ref aiobjoct,carr;mou bo taken toenoube

a space is inserted as thus is a very difficat error to spot.

Is

found, if one exists. The Class represented by the stnng is returned, and this corresponds to the
index into the vector which provided the match. This Class must be changed ranged using the
operator CrClass which takes an operand and converts it into a value with type Class, so that the
value returned will actually be in the range 1.5, eg. 1 is given range 1.1.

If no match is found then the procedure will fail using the Failure operation which forms an
exception from the trap value. The operation IntToTrap is used to create the trap value from the
integer class-fail. Class-fail is defined in the FailureNumbers module along with an
appropriate error message. All other failure numbers and messages are also defined in this
module. The exception can be 'caught' in an enclosing procedure using Trapply.

This implementation of strtoclass is much more versatile since any shortening of the
classification classes, ranging from the initial letter to the whole word will be recognised.

7.3. TESTING THE CLASSIFICATIONS MODULE

Unfortunately in the cross compilation system at present there is no capability to examine
structures in the Ten15 editor in order to extract procedures etc. for test purposes, Thus the
classifications module was not sent directly to the VAX, but instead five test procedures were
written in separate modules to test each of the five classification procedures, and these were sent

separately.

The test procedures for dominates, least, greatest, and classto.str require Class integers a
parameters. The procedure str.to.class must therefore be applied to some classifications strings

so as to produce Class integers for use in the test procedures.

stt..o_;c1ssnc1Assdd" - u etc,

This will give for example, the string 'Unclassified' the classification 1, and name it u. Some
examples of testing the classifications procedures are:

dominsts.($. u)

leasi.(u, c)

greatest (. t)

clsss_to_str.(s)

7.4. GFSEItALCOMMENS

The classifications module as specified above forms an abstract data type (ADT) representing the
classifications system used in the SERCUS demonstration. Thus assuming the required
operations on classes remain unchanged, the implementation of the procedures can be altered or
amended with no affect on the use of classifications in the demonstration

N.B. All modules using the classifications module will need to be recompiled, this can be done
using the procedure recompilevax.

i6

I---- ---- --.

From a security point of view, procedures accessing documents and journals must be able todetermine the clearance of the user initiating the request. The context, which holds this and otherinformation, is implemented as procedures to add, delete and get entries from a list kept non.local to the procedures. The names of the objects will also have to be unique and unforgable, andmust be passed to the procedures as such, ifsecurity is to be maintained

8.1. MODES FOR COINT rTMOD.LE

Entry mode is defined as a polymorphic structure of a unique of type mode, and a pointer tosomething of that mode. Polymorphc types are represented by the form B X. fiX).

Entry (X : struetlot X snilo X) l

Context mode is defined as a vector ofpolymorphic entries as follows:

Corloxt. voc (Enty. Poslnt)

The variable context is a vector of polymorphic entries non.local to the procedures. It is created asa zero length vector, which requires a dummy entry (given moJe integer for simphcity)

Let durnmy key *uoque tt -MtkeUnq#e:Jn1(
0Let dumnny_vruo :r lnt .Pack Ctust sLot dunimy: Entry - ToExiss: suct(Etry. lot) (djm ~ sdummy~ kyVat contaxt:ol Co os et: V&(Otodvur.ny -, yy)

MakeUntiquetype is an operator which generates and delivers a unique value of type Unique type.This value is totally unique since It is different from any other unique of any type and alsoincludes a coding of the machine on which it was generated, If a key is known to have typeUnique Y. then since all uniques are different, Unique X - key implies that X a Y, and this is thebasis behind the assertion Mbatch which is used throughout the context module. Pack generatesand delivers a pointer to an area of memory which has been initialised to contain the integervalue 1, ToExslts takes the operand ie. (dummy.value. dummy-key) and delivers it unchangedbut with its type generalised to the polymorphie type struct(Entry. X).

8.2. PROCEDURES IN THE CONEXTMODULE

The context module contains the procedures required to implement the process context in Tent5notation for the SERCUS demonstration. They are as follows:

8.2.1. Set.,contet

Set-context is a polymorphic procedure taking a key and its corresponding pointer value andadding them to the context Set.context has the context vector as a non-local variable, and the

Iefusing the polymrophic stucture the mooe natural way round with the unique followed by the poiter, willcause the asseesos Ilatch to fad

17

procedure returns void. If the key already exists then the existing value is overwritten with the

new value. A polymorphic proedure can be recognsed by a definition of the form Proc Formals X

etc. as below:

Proc FormaTs X (key: unique X, valuo :ptr X) -> vod:

Le set_.contot - Use (context) In
Pioc Formals X (key: unqve X.vatue :pter X) .> voi:

Let newentry: Entry - ToExuts: struct (Entry. X) (value, key)
In

Forn To Upb @contesxt
Repeat @agan:

Match(@ (@ conteoxt Vectnd n). key
I @ context Vectnd n:. new-entry
lGoo@agasn}

Giving
Let now: Context - Vec(I o 0 newevtry)In

context:. new Concat @ contextto
Endfor

Endproc

The key and value are first converted to the correct mode for insertion into the context vector lie

the polymorphic type Entry), using the polymorphic operator ToExists.

A Repeat ..Giving loop is then used to run through the entries in the context vector looking for a

match with the procedure key. The match is done using the assertion Match which tests the

polymorphic operand to determine whether the unique component of the structure matches the key

If the uniques are equal then their types are also equal and the match is obeyed with the other

component of the structure as argument. In this case the matching entry in the context is

overwritten with the new entry, and the loop is exited. If the key does not match, the loop is

repeated.

If after examination of the whole context vector a match is still not found then the Giving part of

the loop construct is executed. This involves forming a new vector of mode Context with one entry

ie. newentry, and then concatenating this new vector on to the existing context vector to give the

new contoxt.

8.2.2. Zap.context

Zap.context is a polymorphic procedure which takes a unique key as parameter and finds the
corresponding entry in the context, which is then removed. Zap.context has the context vector as a

non.local variable, and the procedure returns void, If there is no entry corresponding to the key,

then the procedure fails,

Proc Formals X (key: unique X) -> oid:

Let zapcontet - Use (context, context Jad) In
Proc Formats x (keyx unique X - vod

For n To Upb @oordext
Repeat @agaun:

Match (@ (@context Veclnd n). key
I Let below: Context . @ context Tim n
Let above .Contet - context Trimg n
In contet.' below Concat above

18

Giving
Fa'+ore IntToTrsp cometsl

Endprso

A ltepeat.Giving loop is used to run through the context vector to find the entry with the paramseter
key. Once this entry has beens identified it is removed by trimming the vector entries below this
particulor entry with the operator Trimi, and trimming those above uising the operator Trlmg.
The new conteot vector is formed by concatenating these two trimmed vectors together, the loop
then terminates.

If tha key does not match, then the lsop is repeated until a match is found. Wfo mstching estsy is
located then the procedure will fail with the exception being created from the isteger csntextfsil
defined in the mod-ile FailureNumbers. This exception can be trapped using Trapply in an
enclosing procedure.

8.2.3. GeLcontext

Gtt.conleot is a polymorphic procedure which takes a unique key, checks that it is in the contest.
and then returns the value corresponding to the key, otherwise it foils.

Pioc Form~als X (key; uque a) x uoen ptr X. vod)

Lot galicoxtert - use (context) in
Proc Forma's X (key: soiue X)i pit X,

Foes n s Upb @covtesl
Repeat @agas.

Match I Q (@ context Vecleed n key
lOpvo'oetUAiel value
los aan)

Gwvsg
Faise lmoTlrp cmatritol

Endlor
Eodpesc

The contest vector is examined one entry at a time using a Repcat..Giving loop, and the assertion
blatch. If an entry is found matching the key, then the pointer to the corresponding value is
returned and the loop terminates. If no maotch is found. ther. the procedure fails with the exception
being generated from the integer context..fail.

8.3. TSTING THE CONTEXT MODULE

Before the content module can be tested some uniques must first be generated.

8.3.1. GerieratingUniques

Unique keys are generated using the following piece of TenI5 notation contained in an edflle

Deto. ga~s key - Matrelrque type()
Keeaptesrkey

MakelUnique (type) generates and delivero a unique value ef type Unique type.

39

To actually generate a unique the procedures oopilej.eni[5 and run..tenl5 must be applied to the
edfile as follows:

ed Comnpae-tonis"Uraol5l

8.3.2. Contest-.testi

Three unique integer keys were gentrated by compiling and running the above edfile with type
defined as integer. An integer value wae then associated with each ef the unique keys generated.
This test procedure takes a void as parameter and returnis void.

Keys are set by calling the procedure set-context with a unique key and a pointer to the integer
value eg.

sell kept. Pack vatueS

Keys are removed by calling the procedure zap-.context from the context module with a unique key
as parameter, from within Trapply eg.

Trapplyl zap, keyS
I OP conlext:1
1 O -op N Match*
lOpl pri MPl

If zap-.context is successful then void is returned, if no match is found for the key then the
message *No Match" is output.

The value associated with a given key is retrieved using the procedure getoconsext within a
Trapply.

Trappl,/(got, keyl
iOp contest: puX

If geLcontext is successful the a ptr to the value corresponding to the key is returned. If the
procedure fails then the message 'Not Found' is output

20

9. lImWAtTIOOMOO)i1TT!

Document journals are used to record the events that happen in the life of a document. User
journals are used to record the actions carned out by a particular user eg, login and logout etc. A
document Journal is protected from arbitrary access by making it non.local to the read and

review procedures and not exporting it from the module. The users journal is protected from

arbitrary access by setting it in the context so allowing only a trusted procedure holding the key to

recover it.

9.1. MODES FOR THE JOURNALWNG MODULE

Both document and user journals are implemented as persistent variables (pvars) containing a
linked list of events. Modes required for the implementation of journals are defined in
SercusModosandOps and are as follows:

cycle (Event . struct(Strmg Who What DOta, choce ptr pets Event Last))

Journal - pvar Event

Event is a structure of three strings, Who, What, Date, and a choice ptr per$ Event. The names of

the three strings are used as operators to select the fields from the structure eg

Let nane : Stnng - Who event

The choice ptr pers Event is effectively a pointer to the previous entry in the linked list. It is

defined as a choice ptr so as to allow the previous event to be null if the end of the list has been

reached.

9.2. PROCEDURES IN THE JOURNALLING MODULE

The journalling module contains the procedures required to implement the user and document

journals in TenIS notation for the SERCUS demonstration. They are as follows.

9.2.1. AddJounal

Add.journal takes as parameters three strings, who, what and date and adds them to the journal

talso supplied as a parameter), the procedure returns void. Datostore is supplied to the procedure
as a non.local.

Let add.jounal t Use (datastore) I
Proc (ooul : Journal, ho. %het, date :Stiog S -" void

Let j: pets Event - DOPvar)ounal
Let € : choce perpars Event - ToChooce Packj
Let n..evnt: Event - (wvho. what, date. c)
Let new. pars Event - Persist [newesve, . datastore)
In

purval AssPvar now
NI

Endproc

20

Addjournal retrieves and delivers the pers Event most recently assigned to the pvar ie. the last
event in thejournal. This pers Event is turned into a choice ptr pers Event' by first applying Pack
which generates and delivers a pointer, followed by ToChoice which converts the operand into the
corresponding non-null choice. A new event is defined as being a struct ef the three parameter
strings and the newly formed choice ptr pers Event. This new event is then stored on the datastere

4 using the operation Persist, and returning a persistent value which is assigned to the pvar journal
using AssPvar.

9.2.2. Review-jsurnal

Review-journal takes a journal and displays its contents as an editable vertical (vector of
strings). Review-jsursal uses the procedure display-event defined as follows:

Lot blonk.- ToExssDaiSorpol~teoPsck AsLije ', deLsimnplelineol_

Let 6splsy~evet - Us. (blarir. del simple tko u I In
P(vent Event i's Del : erI
Lot whatsts : Stirng - vr oe:What eovent
Lot schos.

4~ Io whonsl.
L: t ao - ToExistsOeSenplotans(Pack Ast.ioo whatstr, doLsirriptejati..,a)
Lot wrolur,.
Let vertical As~olVe Voc(4 40M As~ot whaitune

In voncal2:. niholineo

Endproc

Disploy..event takes an event, extracts the strings using the nurses as field extraction operators,
and turns them into simple line uniques using ToEnis. gDellimpleline. A vertical vector is then
formed from the linen using AsDolVec, and returned.

Rteview-journal taken a journal as parameter sod returns a Del. It takes as non-locals the
precedire displny..event and delvyert..u, a procedure for creating uniques for verticals. It in

defined as followis:

Proipe w.joorssJ. (1sUrnAt :Jouroat -. 001e:

Let isovwjumsil - Use (display e.vent. deltvanlu) Ins
Pipe (jsooul: Jooroat) ->Dot

Lot po : pars Evont - DePvar journal
Let lost: Event - UnPersist pa
Vat vertical : al DaiVec :. dotsylay-event(fast
Vat soxt : rot choic, pit parn Event :. Last fast
Inf
Loop @label:

NoNoed(@net
lopp
Let event Event . UnPorsist o p

A choice prs Eveni was really what was requcrd here. boi suaosin,!y the system would sot allow tis Thusa
Ptu pes Event was sed instead which cold he choicedl When the systen, is improved. Lie pointer aspret will he
removed.

22

fn
Vertical '. disptay..event(event) Concat @vertical:
next . Last event:
Gote, @taol

Endloop:
TbEeostaVac(Pack @verticat. deLvart .e

Endproc

First the pern Event most recently assigned to the journal is extracted using the operator De~lvar,
and unpersisted. This unperniated event is passed to the displayevent procedure, and the next
event in the linked list is referenced. The procedure then enters a locp to extract and display the
remaining events in the linked list. The loop is constructed using the NotVoid assertion which
tests the choice ptr Pere Event ie the next Event in the list If this is not null then the operater
nonvoid in ebeyed with the next Event as argument. The operator takes the ptr Perri Event and
retrieves the previous Event using the operators Unpersist and D (de-ptrs a pointer) Thin event is
then passed to the display-.event procedure, with the DelVec returned being concatencted onto the
vertical vector. The loop is repeated until the null choice is reached end the operator null in obeyed
with argument void, Finally the vertical vector is converted into a Del using ToEtclstsDelVec.

9.2.3. Czeatc-.lsurnal

Before the procedures can be tested a journial hae to be created. The procedure create..journal takes
two strings, one the uners name and the other the nature of the action, and returns a journal.

Let datastore - Jdatastote ModutlRoPut..
Let root~set - sroet set ModultxPtI17
Ltil, date, time). *darte and tuie:ModutelRoPtI III

Let createjoatnat - Use (dataitore, rct,.pset. date tine) In

Late,:Fhcepti porn Event. Nu Su: ptpets Event))
Letilnt event: Event.* (who), sfvihatt,. @ date Oonut lone)..e)
Lot lndiatpara : pars Event -Persist (;ei-vent, datastote)
In

N CrawepVa, (sotset nitatjtets

Esdpmoc

An initial event describing the creation of a journal is formed using the who and what strings
and the date and time from the dateandlime module, with the pointer to the previous event betng
a null choice of type pir pera Event generated using the eperator Null. This initial event is then
persisted to the datastore, and a journal is created using Createlivar ts deliver a new pvar with
parent root..Pset. Finally journal in initialised to contoa the porn Event inittaLevent.

The systemt oprator GeiTime gives dhe number of seccods past midnight, but no date. Thus the date is input assa
strog ai the ouan of the demo.

23

9.3. TESTINGnIEJOURNALUING MODULE

The Procedure journaltestl tests beth the addjournal and reviewjournal procedures.

9.3.1. journal-testl

Jouroltesti is a procedure which takes void and delivers a persist Del.

Events are added to the journal asrng the add procedure defined in the journsllhng module, .nd
reviewed -aing the review procedure. Review returns a Del, but since the test procedure requires
that a persist Del is returned, the result of review is persisted to the datastere.

24

10o LOGIN AND REY AT nprMpc RES

The following procedures allow a user to login to the Ten15 editor. Once in the editor, the system

can be asked to answer questions and perforn/simulate operations, these form the basis of the

SERCUS demonstration. The questions include Who am I? (who), What's my clearance? (what),

and Am I on the trusted path? (where), while the operations include Review my journal
(my-journal), Put me on the trusted path (on.to.tp) and Take me off the trusted path (offtp). All

the above are written as ions. An ion is very similar to a procedure except that some of the non.

locals are not given values in the construct, only a specification, with the actual values being

supplied at a later time. These specifications have the same form as parameters.

10.1. MODES REQUIRED FOR THE LOGIN RELATED PROCEDURES

The following modes are defined for use in the login related ions and procedures:

User mode is defined as a structure of two strings representing the user's id and password and a

Class corresponding to the user's clearance.

User. struct(Strmg U d Password, Class Clearance)

ValidUsers is defined as a vector of entries of mode User as follows:

WVadUsrs - vc(User, Posint)

UserDetails is a structure of a string representing the user's id, a Class representing the user's

clearance and a Journal representing the user's journal,

UserDotauls struct(Strig Udd. Class Ud. Clear. Journal UdJournal)

NB, The modes User and UserDetails will eventually be expanded to include a user's cupboard

and mail box.

The TpFlag allows the user to determine whether they are on or offthe trusted path. However, the

actions of going on to, or off the trusted path are only simulated at present The TpFlag is defined

as a bool value as follows:

To-lag. toot

25

10.2. IONS AND FROCBDURES R ATDTO LOGIN

This module declares an ion for login which when closed with the ssniques for user..detaila andtrusted path flag, the valid-users vector and journal becomes a procedure of type void to void

Lot (aed,) - (12rE_0=1 Mdl1. P.
Let (adds.) - daeadt e

Let stdrngongth: Posut - rPoslot 10In

RD Packt Use (stfrregogth, oat, add. date. time) InIo (user detaja unlue UserDetails)
Spfleg: unique TpFtag)
(vatd -users .V&EdUsers)
journal ora

VodVoid:

Loop @next:
Output Please Enter Your Name",
Let ervecl - Vec(stringleongr 01 CrChar)
Lot 6~d: Striog - Input rnoedLeievocZ - (Output 'Please Ent Your Password%. Vec(stringtlr IOf Cr~har*')Ltpassword. String . Input tnoed
Ins

Forall user In colid users
It (U~d Quser VocEq ued) Andth (Password 0 user VecEq password)Than

Let edil- Cth edt Modue)Roptr
tot dloarance: Gloss - Clearance 0) userLet dotass Usoer~oais . (ted, clearance. Luroal)
Let f4a: TPIg -True

Isadd(pumra uV. Loged i,@ dae oncaltime)):set) uSs details. Pack detsf);
sat(Spfag, Pack tlag):
Trapp~o(" 0ds(

I Wau.n LmrloTtap I I
I Outpu (*BSy Bye IConicat tad):add) journa. Wd 'Lgged out'. @date Coicut tunnl));Goto @next

Else

Ooutput wAufthosavos Fauro-n
Endfsn

Endkoop,

Login is essentially a loop, which prompts for a user name followed by at password (The name orthe password is restricted to ten characters) The vector of valid-.users is then examined for amatch en the user name and the password. If the matc' a is successful, then the risers ID, the event

26

'Logged in", and the date and time are added to the user's journal. Additionally the userdetails
(uid, clearance and journal) and tpflag (set to true) are set in the context.

Login then calls the editor using the operator Trapply. Trapply calls the editing procedure edit
with the required void parameter, and tests the exit status of the procedure call. If the procedure
€ompletes normally then Failure IntToTrap 11 is obeyed. (This will never happen in practice) It
should also be noted that the only way to leave the editor is to make it fail ie. the editor is
successfully exited when it is allowed to fail. If the procedure fails (the only case that will apply
with edit) then the logout message is output, the appropriate *Logged out" message and date and
time are added to the user's journal, and the procedure again prompts for a user name to be input.
The third alternative in the Trapply is for a long jump out of the procedure, but as this will never
happen it can be ignored in the documentation.

If the user name was not found in the vector ofvalid.users, or the passwords did not match then
the procedure outputs an authorisation failure message and dies. This is sufficient for the
moment, but eventually it should prompt for a new user name after an authorisation failure
instead of requiring that the login procedure is called again.

10.2.2. Login Proctdure

The ion for login can be closed with the following non.local values, the unique for user details, the
unique for the trusted path flag, the vector of valid users, and the user's journal. Once each ion
has been closed, login becomes a procedure of type void to void ie.

on(unue User eaits. on(uvque TpFlag, en(ValiUsers. on(Journal, Vod .> Vod))))

Proc logi () > ():

Two uniques are generated as described previously, uniqueud is a unique for the UserDetails,
and unique.tp is a unique for the TpFlag

Let uniquo_ud:uniqua Usersatads " Unique (.)

Letunqu.lpt:un-qu TpFlag. , Un loseeo

A journal is also created using the procedure createjournal.

Leloturnal: Journal - crealeourna 'Journal Created*. "Admiostrater")

Sets of user details are formed as a structure of the three strings representing user ID, password
and clearance (the procedure clasts.tostr is used to convert a Class into a String). A vector of
valid users is formed from the sets of user details.

The login ion is then closed as follows to give a procedure taking void and returning void

Let closedl : ion(unqu TpFlag, o(Vatlsers, ion(Journal. Voe4 .> Void)))
unqued Clone lb_,on

Let closed2 ion(VaidUsers. in) Journal. Void -> Void)) unquetp Close closedi
Let closed3 t on(Journal. Vod -> Void) . vai users Close idossd2
Let logn -Void ., Void . journal Close closed3

27

10.2.3, ho Am lon

When closed to form a procedure, this ion will determine who is logged in to the system.

Let (.get) - 1context, Module(Rofi..
Let (feitproe) - FafluraNuorbers :Module(RoPtr..
Let byabya - b b a e: Module RoPtr..I
Let message -Message :ModuleiRoPti..

In
Ru Pad Joe get. uipro .beye message) tn

Ts
'qy ge .e De tais

)

t' Op ptde.ta ls . t dld
Lot me: StruV Udid detals
Is

IlOp trap,
Let meoss. - faisroc(trap)

messagel mess Concat * Panc No User Delads ns Coet'
Padjie lIrsriurp byebye

Endon

W~hoAml ion is bused en the operator Is-apply. Getecontext is sed to extract the user-details from
the context. If successful, got returns a pointer to the userdetuils which is de-pired using D to get
the user~detoils. The users User ID is then extructed from the structure end returned,

If get foils to fisd the userdetails in the contest then the procedure will fail using the Operutor
Failure which forms on exception from the trup value created from the integer cootextfuil
defioed in the FailureNumbers module.

The other ions described in this section are generally constructed in a manner very similar to
that of the NWhoAol ion, using the operator Ti-apply.

10.2.4. Whs Am I Procedure

ThWNhoAmison is closed with the unique for user details to give a procedure that takes void and
returns a string.

NThe saeuiqegnrtdor theg unique user details in login must be used to close the

WhoAml ion

Let wtoumi *.Vod _?. Stng . unklue od Close whoansjos

28

10.2.5. Whats My Clearance Ion

When closed this ion will allow the clearance of the user to be determined.

Let (,classjo.tt) . 1ctassilications :Module(RoPtr..

Let (get). -contest Module RoPtr..11
Lot W,,.,liproc) . lFaidureNumbers: Module RoPt,..

Let byeby.. - .5yy a: Modulei)I~r

Letroessage . IMessag. : Module RoPlr7

Irk
So Pack Use (get, clas5.s t sl aS,.proc. byeby.. tmessage Ino

Ion) (ser-daus a~nque UserDetais)
VoWd-> String:

Trapply) get, user details
IOp ptr..dealot:
Let detains UserDeo~s - D plidatals
Let clear: Class . UdClear delals
In

claissj.tostr(clear)I
Mo
100 trap.
Let tress - totjsroc~ trap)
In

trenoogo) reoss Concat *:Parvcll No User Detis cr Contoot)
Faitufe IotToTrap byebys

Delo

WhatsliyClearance extracts the user-.details from the content so the same way as the WhoAmi
ion. The clearance is converted from a clats into a string using the procedure class..to..str fronm
the classiricotions module. If no user details ore found to the content, then the procedure will fail.

10.2.6. Whats My Clearance Procedure

The WhatsliyClearance ion is closed with the unique for user details to give a procedure which
token a void and returns a string.

ion) unique UaerDoltsts, Void -> Stinug)

N.B. The unique for user details genesated in login must he used to close the ion as follows

Let royctear Void.-> String . uruque.ud Close royctear ion

29

10.2.7. Am I On The Trusted Path Ion

This ion will determine whether the user is on the trusted path when it is closed to form a
procedure.

Let (get) - 1Contast :Module RoPir..
Let).talLpro) . lPailureNumbery Module(RoPtr..)

Lot tybyoy. - eb.Moue)ot.
Let messag. ~e ue RoPir..

In
Sa Pack U=: ,;et, falprao. byebye. message) In

kvi (tpflag: unique TpFtag)
Widl .u boot:

Ttapply) got tptlag
I Op ptrjflag:
tot tlag :TpFag.0 ptrjflag
In

flag
fat
I Op trap:
Let maess - Iaef.proc(trap)
to

message) mess Concat Porno') No Trusted Path Flag un Context').
Fatture lotToTrap byebye

th
lOp).mp:umpo

AiolOnTheTcustedPath extracts the tpflog from the context using the procedure gt..context, in a
way similar to the NWhoAml ion. If get..context succeeds then a pointer is returned which is de.
prted to return the value of the flog, If there ionso trusted path flag in the content then the procedure
fails in the usual way.

10.2.5. Am I On The Trusted Path Procedure

The AmlOnTbeTrustedPath ion is closed with the unique for th, trusted path flag to give a
procedure which takes void and returns a boo).

ioo(sosque TpFtag, Voct -> toot)

The some unique for the trusted path flog as generated in the login procedure is used to close the
ion as follows:

Lot IPA h Void -> Boot . uniquaejp Close tpalhjon

Tpath is then used as a non-local is s procedure which takes a void and returns a string, If the
tpath procedure returns true then the string 'Youaore en the Trusted Path' is returned If tpath
returns false then the string 'You are NOT on the Trusted Path' is returned

30

10.2.9. On..tajtP and Off-tp Ions

These ions, when closed to form procedures, will simulate the action of the user going on to or offthe trusted path,.

Lot (Sot,.get) -cotet: autoPir..
Lot (l,,5Lproc) - FasIluretumbersMod ultRopr..
Let byeby. - b eba Module RoPtr..
Lot message -MoaeMdl(ot.

In
Ro Pack~ Use (set. gel. WLapfoc. byehye. message) InIonOipflsg toslque TpFlag

Tropply(geot tpf lag
I OP ptrjflsgt
It (Not) (0 ptrjlag
Then

sat $0ipflag, Packt False(Ttua))
IOp trap:
Lot maess - taLproo(trap)
Is

omessa,)oess Comical *: Panicl) No Trusted Path Flag em Context')'eue oToTrap byebye

lOpiump *rmpo
Erfoos

The procedure get-context is used within the operator Ttrapply to extract the trusted path flag fromthe contest. lf get is successful, then a pointer to the flag is returned. This is rle-ptred, and the flagis re-set , as appropriate in the coteat. If the trusted path flag cannot be eotracted from the contextthen the procedure foilso.

10,2.30. On.so..tp and Oif..sp Procedures

The ions are closed with the unique for the trusted path flag to give procedures which take void andreturn void.

bsuaaqu&Tptag. Void aVad)

The same unique for the trusted path flag as generated in the login procedure must be used to close
the ion eg

Let ospalh : Vood ->Void . uema~p Close oepas ems

31

10.2.11. Review My Jounl Ion

This ion, when closed to form a procedure, will allow the user to examine their journal as long as
they are on the trusted path.

Lot (.review). -fournal: ModuleIRoPtr..

Let f,,lagjai,l Iw..proc). -FailuteNumbers Module RoPtr.)
Let byebye - Jbyebyo : Module Ro=Pir..

Ltaessage - (Messaga: Modale(RoPtr..

in
Rn Packm Use (rtevsw. get. flag &. feitproc. byebye, moss&49 In

ton(user deags sunique UserDelaIs)
Vodtpf)46: - nique TpFlag)

Trapplyl gel, user delals
I Op ptr.datl
Tropplyl get. ilag

Then
Let detals : User~esis - D) pli datals
Let ournal; ljournal . Ud.Ounldat

tview) journal)

Else
Faluio totToTrep hulaal

lOp trap: FaNo trap

I OP trap:
message) Iatprnc(trapt Concat Panic" INo User Ostals in Context*

rao aotap byabya

Endon

Revew~fyJournal uses the procedure geteconteot within the operator Trapply to retrieve the users
details from the content. Get..cosoeot is then used again within Trapply to retrieve the trusted path
flag from the context. Assuming the trusted path flag is true, then the user-details are de-ptred
and the journal field is extracted from the structure. The review journal procedure is then applied
to the journal, returning a Del. If get..conteot fails ie. there are no user details or no trusted path
flog in the context then the procedure Review',yJouroal will also fail,

10.2.12. Review My journal Prmocedore

The Review~tyJournal ions is closed with the unique for user details and the unique for the trusted
path flog to give a procedure that takes void and returns a Del

tool onque Ustr~etls. oool onque Tp~lug. Vod -. Del))

The some uniques generated for the user details and the trusted path in login are used to close the
ion as follows-

32

Lot closed: ion(sxqseTpPlsg. Void ., Del) - vnqvosd Close reviewmylournaL.,on
Let ravlowm1ylurnall Void ->Del . umquojp Close closed

Since the procedure is actually required to return Text, which is a persist Del, reviewsnyjournal is
passed as a nsn-local to a procedure which calls Persist en the result of the reviewmyjournal
procedure call so returning Text.

33

11 !FrISTRYMOIIT

The registry contains all the documents held in the system, with the CDR number of a document
being its position in the registry. The registry will be supplied to the registry procedures as a non.
local variable. Documents are only accessible via the procedure to supply their contents, and the

clearance of the user issuing the request must dominate the classification of the document.

11.1. MODES FOR REGISTRY MODULE

The modes used in the registry procedures are as follows:

The Document mode is defined as a struct of three fields, the classification of the document, the

contents of the document and the document's Journal, as follows:

Document - struct(Class Class, Del Contents. JournalJournal)

The registry is defined as a vector of Document entries as follows:

Registry. vec Documornt, Posint)

11.2. PROCEDURES IN THE REGISTRY MODULE

The procedures in the registry module are written as ions, they are read-document,

review.documentjournal, document.class and create.document.

11.2.1. Read Document

Read.document is an ion which can be closed with the unique for user details, the registry, and

the trusted path flag to give a procedure which takes the cdr number (where the cdr number of a

document Is simply its position in the registry), and returns the text of the document

Lot (dor.,.) - classilicatlons : ModuI(RoPtr.)

Let (..get)* cOntext : ModulaRPir.)

Let (add.) - journal : Module(RoPtr..

Lot (,datetme) - dateand time : Modula(RoPtr.5

Let mtochats - fitchars : Module(RoPtr..)

Let (,,,,cdrjacarjal.,) =FauoraNumbars. Modure(RoPlr.,)
Let datastor - datastoro : Modula(RoPtr.)

Let readdocument - Use (dora, get, add, date, in r ohrts, datastore. cdrfatL cata) In
ton(usar dtats unque User Detads)

(reistry: Registry)
(tilag:uniqueTpFag)

(ldr.o: It) -> Text

Trapp{y(get. userdetails
I Op ptrdeta-t
Ttsppy(get, lplag

I Op ptr. lag:
I ((cdtrum < I IOrel (cd r > Up g@ gistry))
Then

Falo lotToTrap cdr..ad

34

Else
Lot user -Udid (0 oil detahs
Lot user .clear. ttd.Clear l(0 ptrdi3s)
Lot sU.ri . W _Journal (1) pti-dtas)

Let document -@ (@ topstry Vecind cor-num)
Let doc c.lear -Class document
Lot djst - Journal document

Let date,,Urne - @ date Coocm tinr.O
It domr(user dear. doeclea!4r)

Than
Let tpt s~. -opened Document -Coscat -CDR_-'

Concat iotcharsor num)
Let offt10. tp..str Coscat : ORt TP-
tn

9tD ptr flas
Then ujn.ue.st.daeir)

:d Jnf. user. tpstr, dlateoirre)
add) ojrnl. user. tp, date o

edd) Odysl user. offtp. dotejeme

Persist) Contents document dateutore
Ma

Else
Let mess - 'Prevented from Operung Document CDR:,

Concat ertcharal r sum)
In

edd(ujrnt. user, mess, datejunel

Fatlure InToTrap cleer,,tal

lop trap : Failure trap

I p trap !,Failure trap

Endon

Get _context is used within the operator Trapply to estract the user details from the context,
returning a posnter to the details, Get..costext is then used aguis within Trapply to extract the
trusted path flag, returning a pointer to it. If the user details and trusted path flag have been
successfully extracted, then the cdr number is checked to ensure that it is within range Ie, greater
thus or equal to ene and less than or equal to Upb registry. If either of the get-context procedure
talls fail then the read,,document procedure will also fail using the Falusre operator.

Assuming the cdr number is is range it is used to extract the document from the registry vector. If
it in not in range. then the procedure will fail. A check is thes done to ensure that the clearance of
the uuer trying to read the document is grouter thsn the clearance of the document itself This is
done usng the dominates procedure from the classificatians module. If the users clearance
dominates the document clearance and the user is on the trusted path, then the event "Opened
Document cdr..num* is added to the users journal along with the dat and time, and the same
event is added to the document journsl. If the user is notesn the trusted path, then "Off TP" is
concatenated onto the event string before adding it ts the user and document journals The
contents of the document are then returned. If the users clearance does not dominate the
classifIcation of the document then the event 'Prevented from Opening Document cdr..num" is
added to the users journal, aloog with the date and time

35

11.2.2. lteview.Documzentjourmul

Review..docjournal is an ion which can be closed withs the usique for user details, the regsstry,
and thse trusted path flag to give a procedure which takes the cdirriumber of'a document and returns
the text of the journal.

Let (.,get).lconteoY.:Modu1elRoPor.. ii

Let (.reviw) - Iiurnat : ModuleCRoPtr. I
Let (.f1&g Ia1Lcdra I -,,) E roNumbers: Module(RoPtr..
Let duatastore . Idsostate : Madule RoPt..)

Lo roivojunl Use (get. review. flagjatk cdrjai. duitastore) In
Ion (regis : Rogistry)

(tpfle: nique TpFlag)
(cdt-nuns: irs). Text:

Treipp(get tpftug
I OPptr.lag:

Then
Rt ((cdr.nm < I) Otel (cdrnon> Upb @ tegotry))
Then

Else aroniorperl
Let documeont - 0 (0 registry Veclud cdir.oum)
Lot docjrot - Journal document
In

Pirsist I soViewi docirot), datristore)I

Else
Fadore lotloTrop fiagjad

I Op trap : Felure trap

Endos

Get..context is used within the operator Ts-apply to extract the user detls from the contest. If this
is successful then a pointer to the user details is returned otherwise the procedure falls. The
poinater to the flag is de-ptred using D, and if it is set to true then the cdr number of the docur..ent is
checked to ensure that it is within the range of the registry. If the trusted path flag i s false, or the
cdr number is out of range, then the procedure fails using the operator Failure.

Assuming all the checks have been succes~ful, the document is extracted from the registry using
vector indexing en the cdr number. The journal is then extracted from the Document structure
using field extraction, and the procedure reviewjouroal is applied to review the journal
Review.journal returns a Del, hut snce the procedure is required to return Text, the result of the
reviewJotsrnal procedure call is persisted to the datostore.

36

11.2.3. DoctunenLctass

D~oc-.class is an ion which can be closed with tihe registry to give a procedure which takes the cdtnumber of a document and returns it's classification as a string,

tot .. classtontr,) .clss,ea n odllot.

LW. 0id te. FailuiraNumbers Moul Rn-t,
Let doe etass - Use (clsss to str. edr 105) In

Io lf(regstry: Registry)3~ ~ c!s:toIra String;

If Odr Cuo < I) Oral (cdr..num nUpb @regstry))

EleFaire IrrtToTrap cdrjai

Lot documnt @ (@ rogmtry Vscind rdr jrnm

Lot class: Class - Class document
'Docum~ent clasnldcatin C.jncat cjjss tostri dots)

Endoo

The cdr number of the document is checked to ensure It ia within the range of the registry, And if itis Dot then the procedure fails. The document is then extracted from the registry using vectorindeosog seith the cdr number, and the classification of the document is extracted from thedocument stroucture. The Procedure class..to..str from the classifications module is then usec toconvert the class to a string which Is r,,turned with a aiable message.

11.2.4. Coeate..Oorsment

Create-document is an ion which can be closed with the unique for user details. the registry, andthe trusted path flag to give A procedure which takes some text and a classificatton string and
returns void.

Lot (get). conet solltor
Let (add.) uotMdo~tot,
Let (,,str.to- doss.) . dlassycatons ModeRP IrI
Let createJournat. create Ura! : ModlaRoPtr..I
Let C.Mtag fat... FatorGNmem : ooeRopr
Let (,dste.tmr~ a tadi s oue~~i

Let Cedeate doCometl - Us. (get, add. strjto cass, creat...joumat flag it date. trme) isIon (saer.dslals : unique UorD;ma7s)j
lt~tag: unquaeTpFlag)
(reg;$Iy; : eg'stry)(texts: Text, class : Strig IoVoid

Tbapply(get, user detatls
I OP pit...tsls
Trapslyf get, tyllag

I OP Ptf tug9
9 D Ptrtlag3
Then

Lot user .Ud_ d(Dpt detads)
Let what. *Document lournal Creatid - Conicat doass
Lot d-irs create~jornul(% hat, userI

37

Let class - sr o class(class
Let text: catl UOpersist text
Lei dual Document - (class, tea. djrrd)
Vat now: Regiwq ,- Vecit 10 doe,)

reg.tstry @registry Caneal b nrew

EleLot user - Ud id (D per dsrails)
Lot uJoi .13 oraQ 0ptr..detah5
Let daleorrre - @dzteConcur imel)

M; dd(ujrkt user. mross. datetrrel

Fatlure lolToTrap fligJal

I Op trap : Feure trap
lOpWVjUrMp :um

IOp trap t Failure trap
I Op rp rrrJUPll

Endan

Get-.context is Used within the operator Trapply to extract the user details from the context,

returning a pointer ta the details. Get-context is then used again within Trapply ta extract the

trusted path flag, returning a painter to it. If either of the Calls of get.cantext are unsuccessful,

then the procedure will fail. If the trusted path flog ie set to true, then the user's ld is extracted from

the details and a journal is crested using the praletdure cresaosurnall with the user's la and the

string 'Document Journal Created :'Concat class (where class is the result of applying

str.tl.class to the class string given as parameter to the create-document procedure) as

parameters.

The test supplied to the procedure is unperaisted to give a Del, and a new document is farmed

using the class, the test, and the newly created document journal. This new document is then used

to farm a new entry far the registry, which is then cancatenated an to the end of the existing

registry vectar.

If the user isnot as the truated path, then the string 'Attempt to Create a Document: Not an TP' is

added la the user's jaurnall along wtth the date and time, then the procedure fails.

38

11.2.5. Registry procedures

Each of the above foul ions are closed within the module registry Procedures, and the failures ore
trapped.

Firstly the variable registry is created as a zero length vector with dummy entries as follows:

Let (.d*Lsiloplen u .0 I) fine n, s$: Modute)RoPtr..
Lot (doL veiLs) . fvart nqoes MJvodueR~

Let sooe~taxt., Use) dato1_k~lie o. 5dot vs..u) in
Proc (message: istring T,> l:

Lot t - ToExiatsO~lSwnpiaun(Pack As~ino Massage. doLs~oe se)Lot vetcaAOW0Veovc(I Of AsDol 1)Lot va.- TaExislsDetVec) Pack vertial. doLvo..s

tova

Endproa
Lot dumiiornaiJOUMAIroaatswa(dom.dm

Le ~o .dsoc Document *ICreloas I - siroe..teo(daoooy'), clmmyjoamal)
Var registry : 1 egosty. VWcO Ot dummy doc)

Each of the four ions are then closed with the appropriate unique$ and the regitry as follows:

Letuotquetp:unlquoeTpptag. - : Unqu o
Let sf~okud : Unique User Details - A- -' Uno .4)
Let cloaedf :iloo(1Regstfy. ioo(onloe TeFlao. lot.,> Text)I) - uniqueod Close read..ocjonLet close!2 : toe) srsvu. TeFtag. lot ., Text).- registry Close closedt
Lot rerad -doc : lot.-> Tet. a nquejP Close closed2
Let fcd cod: fon)onicue TeFlag, lt -> Teat) . regsy Close roeiw..docjouroahionLet revew doe: Itt-, Taxi - sique r Close rd..closed
Lot doc olais: tt. Strong - registry Close doc.class ion
Let cd~closedt : ion) soque Tlitlao. ol Regostry. stroen) Test. Strop). Void)) - unique adclose Croatse40C on-Let ocdclosed2: Ion(Registry. strwt)Test. Strig)-> Void) aoUQUO-tp Chose aedeloseot
Let ciaeadoc : troct)Tat Strig I -, Void - registry Close cid..closed2

N.B. The unique for the user details and the unique for the trusted path flag are identical to thosecreated in the login procedure. In fact throughout the whole SERCUS demonstration, wherever
these values are required, those created in login are used.

Having closed the four ions, procedures are defined for each ion which catch and deal withexceptions caught in the ions and propagated. The general form of these procedures is the operatorTeapply which returns the result of the procedure closed from the relevant ion if the procedure wassuccessful, or a Viluliessage diagnosing the error if the procedure closed from the ion failed,
followed by a fatal Failure. eg.

39

Lot Message - Fesa M7 ue(sp..

LI read *Use (read-doe. faiproc. byebye) in
Proc (n~jum :1)-a et:

Trap;3pread -eddoc cdrjrurs
I Optext .tess
IOp trap.
Lot mtessage. -fai..prs(trap)

Mesae = (rressage):

Fah r IrtToTrap byabya,

loplumsp: jurpo

Erndproc

40

(1) (Harrold 90) An Example Secure System Specified Using the
Terry-Wiseman Approach
C. L. Harrold
RSRE Report 90011, July 1990

(23 [Goodenough & Rees 89) A Notation for Ten 15
F, H. Goodenough, S. J. Rees
May 1989

41

REPORT DOCUMENTATION PAGE DRC Reise.w Nube (kio")----------

Oml"onys ~at o o shot -UCASFED--.- -- -.----
(As fa as posobleis eet tMoarian cy urruasoed cdcaorrr a I Ish necesarto riertdssfe Woaor. " fid corwoeed
rmet be iakdokrdcae the clann~ficatr, #9 (R), (C) v (S)
Origoraors; Referericelepon No. othYear

MEMO04465 MARCH 1991
06.,==mn Name wd Lcaebri

RSRE, St Andrews Road
MalvernoWorco WRl43PS

Monlo" AgeyN" rd Lcation

TRIAL IMPLEMENTATION OF A SECURE APPLICATION USING TenlS

Report Securry Cansdcawo Tn C'*n oon (u. R. COf, S)
UNCLASSIFIED U

Freign UtVVi Mst*i (Irr theoA.0 lrtoins

Corierenoe 0.1505

a VAX Stationaid A

This reort wascpriored hwh autor wECUas a bactin Studeente SR.d use then Te5S Crssa

Compilation System as it existed in Summer 1990.

A nassanfremn (IJAC0 a S)

Dnnannne Staemem (Enter any Errliorv on the dnnenAori afthe dosrral

UNLIMITED
SOY"5

INTENTIONALLY BLANK

