o e e . ’ y . T T S

BN w0 e
- o e e e *;,,gé,;umﬁv v ‘ ‘,\@5,7\ . 9 1 e ~

‘ ; AD_ 1 {) ‘.r, ' e) - ’ \“’:‘ ’ h e ’“
. ul”‘fllfﬂl‘ubfllflll"thﬂ o R Al

RSRE

14 . .
‘ MEMORANDUM No. 4465
ROYAL SIGNALS & RADAR
ESTABLISHMENT
s
R
THIAL IMPLEMENTATION OF A SECLIRE APRFLICATION
USINQTems s
|
Author ERBIlsby K
PROCUHEMENTEXECUTEVE, i P
MINISTRY OF DEFENCE,
RSRE MALVERN,
4 . Womes,

Apmnd for pubﬂc wlcare)
mma Untmined.

RSRE MEMORANDUM No. 4465

unwmsoﬂ 91-02933

B

),

COND'TIONS OF RELEASE
301184

0098093
DRICU
COPYRIGHT (¢)
1988
CONTROLLER
HMSO LONDON
DRICY

Reports quoted are not necessanly available to members of the public or to commercial
organisatons

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 4465

Title Tnal Impk tation of a Secure Apphcation Using Ten15

Author: Elizabeth R, Bilsby

Date March 1941

ABSTRACT

This report desenbes how a subset of SERCUS has been implemented using Ten15 SERCUS 15 a
research implementation of & mult: level secure workstation based on the SMITE approach and
runmng & classified d t handhng application SMITE s an approach to the construction
of secure systems which uses strong typing Tenl5 15 an algebraically defined, strongly typed
abstract machine runming on a VAX station

This work was performed while the author was a Vacation Student at RSRE and used the Tenl5
Cross Compilation System as it existed in Summer 1990

Copynight © Controller HMSO London 1991

[T

INTENTIONALLY BLANK

18 St e e -

CONTENTS
1, Introduction. veeer ameses seen e e e 1
2 Overview ofSERCUS C e 2
2.1 General Overview of SERCUS on the Perq e e a2
2.2 The Ten15 Implementation of SERCUS.....v. 2
3. The Cross Compilation System 4
31 Compihing and Type Checking a Module.. 4
32. PERQ to VAX Transfers. 5

33. Executing a Procedure on the VAX....
3.4 Overview of the Ten15 Filestore . PRPR
SERCUS Modes and Ops C e e 8

4,
5. Overview of the Ten15 Notation L e .. 9
6 Exception Handhng Strategy . oo e .1
7 Classifications Module LB
' 7.1 Modes for Classifications Medule .o AR
72 Procedures in the Classifications Module | 13
7.3 Testing the Classafications Module, .. . 16
74 General Comments..... o 16
8 Context Module - . 17
81 Modes for Context Module.....corve ov virernnns 17

82 Procedures :n the Context Module
83 Testing the Context Module.
Journalling Module,
91 Modes for the Journalhng Module
92 Procedures in the Journalling Module . ..
93 Testing the Jeurnalling Module
10 Login and Related Procedures.
101 Modes Required for the Logn related Procedures
102 lons and Procedures Related to Login .
11 Regsts; Module ..
111 Modes for Regnstry \lodule
112 Procedures in the Registry Module
12 References.... ..

©

ERReRRRRRREEYg

Accesaion For

RIIS GRAXI &
DTIC TAB o
Unannounced fu]
Jastitication
By

Distribution/

Avanab_!_uty Codes

Avall andjav
Dist Spoected

| pol

|

INTENTIONALLY BLANK

1 4

2. OVERVIEW OF SERCUS

2.1. GENERAL OVERVIEW OF SERCUS ON THE PERQ

SERCUS is a research implementation of 2 multi-level secure workstation runming a classified
document handhing system. The overall secunty requirement of SERCUS 1s that classified
formation cannot be discovered by a user with insufficient clearance, eg a secret document
cannot be read by & user only cleared to restricted

SERCUS is essentially an electronic regustry system controlhing the creation of, and access to

lassified d ts and mail ges. Users are assigned clearances which himit thewr
ability to view and modify information in the system. All users have a personal cupboard where
they may store obiects such as the documents they are drafting. Whilst 1n the cupboard these
objects may be referred to by an unclassified name. A unclassified list is tained of all the
finished classified documents 1n the system, and this is called the Classified Document Registry
(CDR) Users nay view the CDR and ask to read any of the documents 1t holds. An additional
requirement of documents 1s that their classification may be altered However to ensure that the
new classification 18 appropnate, this requires the agreement of the secunty officer in addition to
the ordinary user

SERCUS also mamntains a journal for each document in which interesting events that have
occurred in it's life are recorded For example which users have accessed it's contents, and those
who have agreed to a re-classification of the d t Additionally a journal is mantaned for
each user remstered on the system an which security relevant actions are rceorded such as when
the user logs on to and off SERCUS, documents they were prevented from seeing because their
¢learance was insufficiert and any users to which they have sent mail messages The users
Journal aims to make users accountable for their actions

When a user logs on to SERCUS they are presented with a display consisting of a number of non
overlapping windows All the window software 15 completely trustworthy 1e a Trusted path (A
trusted path 1s a ~ahdated link between the human user and a system's trusted software which
mutually authenticates both parties) The trusted path may be used to anvoke untrusted software
such as a commercial word processing package While untrusted software 1s active 1n a window,
the classification of tne information 1s displayed pr tly SERCUS tors the movement
of information between windows and uses a high water mark mechanism to correctly maintain
the clasuification levels

For more information about the SERCUS Secure Registry see RSRE report, 'An Example Secure
System Speafied Using the Terry-Wiseman Approach”, Harrold [1)

2.2 THETEN15 IMPLEMENTATION OF SERCUS

The present implementation «* € _RCUS in Ten15 1s a demonstrable subset of the above The
Tenl5 SERCUS incorporates users, classifications and clearances, journals and documents
Documents can be ¢reated, opened and read, and document and user journals can be reviewed In
addition, the classification of a docurrent ¢an found, as can the clearance of a user The system

I
I

1_INTRODUCTION

Ths report describes the implementation of a subset of the SERCUS d ration in the abstract
algebraically defined, strongly typed Janguage Ten15. Tenl5 contains constructs that implement
all of the features of a modern high level programming language, as well as faalities for
manipulating system level aspects of a computer such as filestore.

A general overview of SERCUS as implemented on the Perq is provided, along with a summary of
the Ten15 implementation of SERCUS using the Ten15 Cross Compilation System The use of the
Cross Compilation System is then descnbed, along with an overview of the Ten15 notation.

The report then descnbes in detail the implementation of the individual modules making up the
Ten15 SERCUS demonstration. These include the class:fi , context, journalling, login
and related procedures, and the registry modules, Each section describes the modes and operators
defined 1n the module SercusModesandOps for use in the module, followed by deseriptions of the
procedures contained in the module. The exseption/failure strategy employed in the Tenl5
SERCUS 1s also desenbed.

The convention used throughout the report 1s that Ten15 operators are bolded in the text, as are the
names of the modules used in the SERCUS demonstration

can also tell the user whether they are on the trusted path, and move users on and off the trusted
path as desired It should be roted that the trusted path and :nvocation of untrusted software 1s at
present only a simulation

The Ten15 demonstration, unlike the Perq version, has only one window at present It also lacks
High Water Marks, thus the creation of documents does not perform high water mark related
checks before a document is created. Cupboards and mail between users has not yet been
incorporated either, and nor has the regrading of documents,

3._THE CROSS COMPILATION SYSTEM

The subset of the SERCUS demonstration descnibed 1n this report 1s implemented using the Ten15
Cross Compilation System on the Perq and the VAX machines The VAX has only one dictionary
s0 there are no separate users and only one process runmng. As yet there 1s no Ten15 notation
compiler on the VAX, thus the cross compilation system is wvital an the establishment and
development of software on the VAX while completion of the editor and notation compiler are
awaited

This document assumes the reader has a reasonzble working knowledge of tae FLEX system

COMPILING AND TYPE CHECKING A MODULE

VAX modules for use in the demonstration are wniten sn Ten15 notation contained 1n edfiles,
and compiled on the Perq Edfiles and compiled modules, ete, appear on the Perq in the form of
cartouches (boxes). An edfile ¢ ntaini tatron 1s first piled by applying the procedure
make_tenl5 This procedure does the syntax checking of the Ten15 notation 1e 1t checks such
things as de¢larations and scoping, and produces intermediate Tenfifteen code If a syntax error
1s found, then make_ten15 calls up the Perg editor which will :ndicate the nature and position of
the error(s) When the notation has been successfully checked syntactically ie the editor does not
get called, or only mves warmngs drawing the users attention to possible oversights in the
notation eg an object which 1s declared and not used (possible error in the scope of the object), then
the procedure vax s apphed

‘The vax procedure does the type checking and generates the VAX code The type checking detects
illegal mode coercion attempts, displaying the offending modes as cartouches These can be
duphicated and examined using the Show Ten15 Mode option on the Ctrl 1 menu (SMITE Team
systems only) If the type checking s unsuccessful, the vax procedure calls the Perq edator in the
same way

The error messages produced by both the make_ten15 procedure and the vax procedure are very
basic and not always very helpful This 1s largely due to the fact that we are using the first
embryonic version of the cross compilation system, and the clanty of the error messages 1s hkely
to improve as the system s further developed! The make_tenl5 and vax procedures are apphed to
an editable file (edfile) as follows

make_ten15! vax!
N B ! represents procedure application on the Perq

Unce the notation has been successfully compiled and tranwiatcd, it can either be amended into ar
existing module or made 1nto a new one as follows

1

A useful tnck that can be used to check types is to define what you think the type should be, and then to fet the
system tell you what it thanks 12 should be of 1t 15 unable 1o coerce the one type 1o the other

4

F

Creating a Module:
([edfite]make_tent5! vax!, ‘module_name”) new_vax!

Amending a Module:

make_tems‘vax![module name Mcdule(RoPlr..)]amend_vax'l

If the specification of the module has changed then it must be change_speced as follows:

- make_tent5! vax! [module_name Module(RoPir)] change_spec_vax!

N.B All other modules vhich use the change_speced module must also be recomprled. (See later)
3,2. PERQTO VAX TRANSFERS

Hawving created and compiled a module on the Perq, the VAX code can be transferred across to the
VAX for running in the Ten15 Evaluation System

N B The VAX should already be running the Tenl5 Evaluatisn system, .nvoked by typing

> @run_ten15 simple_load 115 <RETURN>
> <RETURN>

This sequence of commands can be defined in the users login.com so that a shorter command
such as ten15 can be used to invoke the Tenls system

rhe kernel inodule for the Tenld system must then be loaded by pressing return (since
kerne! mod s the default module)

To transfer a module from the Perq to the VAX, the followang commands must be obeyed on the two
machines with the Perq end being obeyed first

3.21. OnPerq:

Apply send_to_vax to the module as follows

[module_name Module(RoPtr)| send_to_vax!

N B The transfer routine always fails on the Perq with the error message *No Capabihty for
Creating Umques - see PDH", but should be ignored’

322 OnVAX.

Modules can be transferred to the VAX by issuing the relevant commands from either the truc
(command hne nterpreter) or from the editor iself

From Truc

Apply the procedure Transfer_module to the name of the Perq holding the required module 1e
Transfer_module.”perq name”, Note that procedure appheation 15 indicated by a “.” on the VAX,
and that the notation 35 forward polish rather than reverse pohsh as on the Perq

Truc only has a basic teletype interface so values created are given names of the form 80, 61 ete
To use the module 1t must be loaded using Load which delivers the ro_pointer to the keep hst of the
VAX module, then opened using open, and finally named either temporanly using “a*, or
per tly 1n the dict: y using “s=, as follows

input Transter_module tgger
@0

Input - Load @0

@1

input open @1

PuTo @2

nput @2 mm proct

From the editor:

The editor must first be called from truc by obeying the command Load.edit, or login.() if
SERCUS 1s to be run as follows

Input Load edit
or
Input login {)

Once 1n the editor the command Transfer_module.”perq name” can be evaluated within an
evaluation box The ds used to load a module from the editor are similar to those 1ssued
from trus, except cartouches are used instead of the @ numbers The module 1s loaded using Lond,
then the pointer to the keep hst is de_pointered using deptr

Transter_module “igger” = m
deptr (Load m) == proc2

N B The command hne interpreter in the editor and truc use the same dictionary

3.3 EXECUTING A PROCEDURE ON THE VAX

Having transferred a module from the Perq to the VAX, loaded it into the TenlS Evaluation
System and de_pointered its keep hst, the procedure can be apphed toits parameters

The syntax for procedure calls on the VAX 1s procedure,parameter For example procl takes void
1e no parameters and proc2 takes two parameters, thus to execute a procedure whose name 15
stored either temporanly or permanently, type

From Truc

Input : proct.(}

From the editor:
s proc2 (parami, param2)

3.4. OVERVIEW OF THE TENI15 FILESTORE
The Tenl5 filestore is simply one large VAX file. The implementation of the SERCUS
demonstration will involve some manipulation of the Tenl5 filestore, so a brief overview of
terminology is provided here.

Filestore values in Ten15 are accessed via filestore capabilities, and these are of two types:

1. Persistent Values (persistents)
2. Persistent Variables (pvurs)

3.4.1. Persistent Values
These are mainstore values written to filestore (persisted). They can be read (unpersisted) via

their disc capability, but they cannot be assigned to, The operator Persist is used to store a
p tion of a tore valie on datastore, returning a persistent value,

N.B. Persist takes the datastore as a parameter as well,

While the operator UnPersist uses this persistent to retrieve a copy of the value onginally stored
on the datastore,

3.4.2. Persistent Varlables
These are essentially updateable refe on dise ¢ont a persistent which can be
assigned to. (Persistents may ontain other persistents or pvars). The operator AssPvar assigns a
persistent value to a pvar, and returns void. DePvar is used to retrieve and dehver the persistent
value most recently assigned to a pvar.

3.4.3. Pointer
A pointer points to something in main memory. The operator Pack generates and delivers a
pointer to an area of memory of appropriate size which has been imitialised to contain the value.
Conversely the operater D de_ptrs the pointer, returning the value most recently assigned tot.

344, PSet

A Psetis a set of Pvars

s e i e e il 1 R

4 SERCUS MODES AND OPS

SercusModesandOps 1s a MoModule. It contains all the mode, operator and assertion definitions
required for any part of the Ten15 notation used in the SERCUS demonstration. The mode and
operator names available to a module are all those declared in the MoModule, plus all those that
oceur in the use-lists defined in the MoModule.

SercusModesandOps

{Basic_ketnel_mocss : MoModule]

Use Do, DelVec, DelSimpleLine, Line
O : ToExistsDelSimplelLine, ToExistsDelVec

From [EdnLnnoMo : MoModule|

Modes:
serenss Doscribed in Folowing Sections sesue

Opsrators:
Output » 402;
Input » 403,
GatTime = 407;
VduMessage = 528(5)

Fiash

Definitions can be used from previously defined MoModules by specifying a use.list of the mode
and operator names that need to be made available from it eg. EditLineMo above. If no use.list is
specified then all the defimtions in the module will be passed through, eg. Basic_kernel_modes
above, All other modes, operators and assertions are then defined.

The MoModule is compled by applying the procedure modesandops to the edfile containing the
definitions, and then created by appiying the procedure new_mo-

modesandops!, "modes_module’) new_tmo!

If new definitions are added to an existing MoModule then it can simply be amended using
amend_mo:

desandops! {modes_module] amend_mo!t

However if definitions are changed or removed then the MoModule wall have to be ¢change-spaced
using change_spec_mo:

ol dop 'lmodes dut ,' change_spec_mo'!

N B. All Modules using this particular MoModule wall have to be recompiled This 1s best Cone by
applying recompile_vax to a top medule.

s oo < e

S OVERVIEW OF THE TEN1S NOTATION

The edfile ining the Ten15 notation must have a single MoModule at the top. MoModules are
the only place where modes and operators can be declared, and all the modes and operators in the

tation report, “A Notation for Ten15" Goodenough and Rees [2), are automatically defined in the
MoModule.

The MoModule is followed by Ten15: and the end of the notation is indicated by Finish. All
terminal symbols in the notation start with a capital letter and then continue in lower case. The
end of a clause is indicated by the key word reversed or Endkeyword (where the keyword is
generally in lower case) eg.

. HvTrenwEW x Theny Else z Fi
In NI

Proc....Endproc

Since a full modular compilation system does not as yet exist, keep lists have to be constructed by
hand. The operators Ro and Pack are used in the last statement in the module to pack whatever it
is you wish to keep into a read only block, returning a pomnter to this block. eg.

Ro Pack (proct, proc2, proc3)

Objects kept in one module may be used in another by extracting them from their defining module
using a Let statement eg.

Lot (procy, proc2, proc3) » | anymodule * Module(RoPtr)
Commas can be used if the kept values are to be ignored eg.
Lot (.,) = {anymodule : Module(RoPY)

N.B, The Module is automatically loaded when 1t is encountered in the text, and the keeps
extracted.

defs deel

Identifiers and variables d within ive stat ts (ie. Let and Var statements), are
only in scope between the following In..Ni%, Declarative statements can also be used to declare the
type of an identifier or variable, The translator compares the user defined type with the actual type
the object should have. The editor is called on the Perq allowing the user to examine the modes
and discover the error if the types fail to match.eg.

Lot idontdior3 s Modet w proct{ identiet!, entfier?)

N.B. Individual Let statements require no list tors, while stat: ts within the scope of a

Let stat t need to be separated by semi-colons,

1 Getung scopes wrong can lead 1o contradictory emor messages such as “Warming « x declared and not used™ and “x
notdeckared™,

The Ten15 notation for procedures allows them to be named using & Let statement, and their non-
locals to be explicitly identified using a Use..In statement as follows:

Lot proct = Use { non-locali, non-local2) In
Proc(identifiert, identdier2 1 Mode2) -> Mode1:

wune PIOCOGUIS DOGY uuee
Endproc

N.B. There is no ¢losing Ni for the In which identifies the non-locals to the procedure.

A bt ot S e =~

£, EXCFPTION HANDIING STRATEGY.

Exceptions occur when for example the user_details or trusted path flag cannot be extracted from
the context or the cdr number supplied is cut of the range of the regstry. In such cases the
procedure where the exception oceurred should fail.

The following modes are defined for use in handling exceptions in the code. Failure is a structure
of an integer yepresenting the failure number, and a string representing the corresponding
failure message. FailVec is a veetor of entries of type Failure,

Faiure struct(Int Number, Stnng Fail_Maess)
FailVec = vec{ Fadure, Posint)

A module, FailureNumbers, is provided for use by all the other modules in the SERCUS
demonstration. It contains a vector of Failure entries consisting of a failure number and a
failure message relating to the various ptions that could possibly arise while running the
demonstration. These failure messages will be used in the diagnosis of excep throughout the
code. eg.

Lotbase ! Int = 80914
Lotclass_faltintebaso+ 1
Lot class_mess : String « *lavakid Classdcaton®
Lot class_details 1 Fature = (class_fad, class_mass) otc,
lLol 1ad_vec : FailVee « Voc({ 7 Of class_detals)
n
fal Ve 1= ittt

N

N.B. The base ber is & random large ber,

When an error is detected in 2 module, the operator Failure is used, This causes the procedure in
which it was called to fail, and an exception is formed from the trap value. The trap value is
generated by applying the operator IntToTrap to the apprepriate integer failure number taken
from the module FailureNumbers,

Lot (class_fad,....) = {FatureNumbers : Module(RoPtr .)

n
Faiure IntToTrap class_fal

This exception can either be caught in the enclosing procedure, which is usually the case, or
propagated on further to be caught at a later date.

The operator Trapply takes a procedure and it's parameters and returns a umon This union
contains the result of the procedure 1f 1t pleted Ily, the trap value if an exception was
caused during the tion of the procedure, or if the procedure was jumped out of, a proced
with which to complete the long jump. (This third option will not apply in the SERCUS
demonstration code).

A procedure is defined in the module FailureNumbers which takes the trap value generated using
the operators IntToTrap and Failure from the failure number defined in FailureNumbers
corresponding to the nature of the error. It returns the string which diagnoses the error, also
defined in FailureNumbers,

Lot fad_proc = Use (fad_vec, base } In
Proc(fait_trap 2trap) -> String:
Lettrap_no 1 lnt w TrapTolnt(fad_trap)
Lotfail_no :intw trap_no - base
Lot dotails « @ (fait_vec Vaclnd fai_no)
|ch massage 1 String = Fail_Mess dotals
n

message
Endproc

The operator TrapTolnt is used to retrieve the failure reason from the trap value e, the value used
by IntToTrap to create the trap. The base number is then extracted from this number ¢o give the
index into fail_vec. The appropriate diagnostic message can then be extracted from the vector
using field extraction.

This procedure is used within Trapply as follows:

Lot byebye = {byabyo & Module(RoPlr..

Trapply{ read_doc, cdr_num
1 Op text: toxt
10ptrap:
lllox mess = fail_proc{trap)
n

message(mess);
Falure IntToTrap byebye

N
{ Op jomp: pmpl)

N.B. The exception is propagated by calling Failure IntToTrap on the integer byebye, a large
number used to signify fatal errvors.

Error diagnostics are written to the bar at the top of the currently active window using the
procedure message which uses the system operator Vdudlessage with the appropriate parameters
ie. the display and window dimensions and the error message string.

—-—

Z._CLASSIEICATIONS MODULE

This module is used to provide a representation of document and user classifications for the
SERCUS demonstration.

7.1. MODES FOR CLASSIFICATIONS MODULE

The classifications mode is defined as the range of integers 1..5 as follows:

Class = range{4,1.5)
The 4 indicates that 1t is an integer range, rather than a character or long integer range.

The classifications represented by the hierarchy of irtegers are

unclassified
restricted
confidential
secret

top secret

o [o 00 [

String mode (used throughout the code) defines a string as a read only vector of characters with a
positive integer as it's upper bound,

$tring « ro_vee(Char, Posint)
7.2, PROCEDURES IN THE CLASSIFICATIONS MODULE

The classificati dule contains the procedures required to smplement classifications in
Ten15 notation for the SERCUS demonstration. They are as follows ¢

7.21. Dominates

Dominates is a procedure which takes two parameters of type Class and returns True f a1s
greater than or equal to b, and False otherwise ie. Unclassified (1) is dominated by Restricted (2)
since 2 >= 1, but Restricted is not dominated by Unclassified since 3 >= 2 is false, This procedure
is implemented using the basic integer greater than or equal operator, >m.

Let dominates = Uss () In
Proc{2,b:class)-> Bool.
a>ab
Endproc

7.2.2. Least
Least is a procedure whicih takes two Class integers and returns the lowest dominating

classification in the par, ie. given the pair of clasuifications Confid 1 (3) and Unclassified
(1), the lowest dominating classification 1s Confidential. This procedure is implemented using

13

S

————

et v -

.

the'basic operator Max, which delivers the maximum of two integers. Max is equivalent to the
construct *If a > b Then a Else b Fr”,

Letleast=» Uso () In
Proc (2,b: Class) > Class:
aMaxb

Endproc

7.2.3. Greatest

Greatest is a procedure which takes two Class integers and returns the greatest non dominating
classification in the pair, je. given the pawr Secret (4) and Restricted (2), then the greatest non
dominating classification is Restricted. This procedure is implemented using the basic operator

Min, which delivers the mini of two integers, Min is tially equivalent to “If a < b Then
a Else b Fi™,
Letgreatesta Use () In
Proc {a,b:Class) «> Class:
aMnb
Endproc

7.24. Class_to_str

Class_to_str takes a Class integer and returns the classification string which the integer
represents. For example the integer 1 represents the classification string Unclassified

The following shows how the vector of vahd clasmifications, valid_class, is constructed. Firstly
five lower case strings corresponding to the five clasaification classes are declared.
eg.

Lot fied : String =
Lot resuxtod 2 Stng = “restictod” ol

Valid_class is defined as a vector of five elements of type unclassified, and then the remaimng
four elements in the .ector are set to the other four classifications strings defined above. The
Tenl5 compilation system is able to work out automatically the rep! t of strings in the
vector by strings of different lengths.

:.M vaiid_class = Vec(5 Of unclassified)
n
vald_class 1a resticted; otc.

The procedure class_to_str is implemented using vector indexing into the vahd_class vector as
follows:.

Letclass_to_ste « Use (vald_class) b
Proc { class 1 Class) -> Sting
Let class_str : Stnng = @ (valtd_¢lass Veclnd class)
n
class_str

N
Endproc

N.B. The operator @ is used to de_ref a reference or vector, returning the value most recently
assigned to ith,

7.2.5, Str_to_class

This procedure returns the Class integer corresponding to a classifications string. Initially its
primary use will be in the testing of the classifications module, although it will also be used to
asuign clearances to users, It will eventually be used in the creation and regrading of d t
which require the user to be prompted to enter a classification,

The first implementation of str_to_class used an If..Then.Elif..Fi statement to recognise the
classification string as a whole eg. Unclassified, or the first letter of the string eg. U, to facihitate
the return of the correct class. This implementation was by no means ideal. A better
implementation of str_to_class was found which involved converting the gven string to upper
case characters, so that it is not case sensitive, and then matching it against the classifications
strings held in the valid_class vector, which are also converted to upper case,

Lotto_upper -||o_uppor 1 Modute(RoPtr,,)’

Let (class_fak,,,....) = {FailureNumbo:s : Module(RoPir..)}

Lot str_to_class = Use(vald_class, to_upper, class_fai) in
Proc (st 1 Stnng) »> Class:
Lot upb 1 Posint w Upb st
Lot new_str : String » to_uppaer(st)
Varl:ret Poshit e O
Ia
Fot n To Upb valid_class Whils @i« 0
Do

Lot class_str: String « @ (valid_class Vecind n)
Lot compare @ String = to_upper(class_stt)
Lottummed 1 String = compare Trunlo upd

n

¥ trimmad VecEg new_str
Then

iran
f
Y
Qd;
H@re0

n
Faiure [ntYoTrap class_fait

ise
CrClass @i
7]

M
Endproc

The idea of the procedure is to take a classifications string, convert 1t to upper case characters and
find its length, say upb. Before comparison, each string in the valid_class vector is trimmed to
upb characters using the vector operation Trimle (Trim when less than or equal to upb). The
string is then compared with the first upb characters of the upper case conversion of each stringin
the valid_class vector, using a For..To..While..Do..0d loop to index the vector until a match is

@ without a space is used for Latels ¢g. @label. When @ 15 used 10 de-ref 2n object, care must be taken to enswre
aspace 1 snserted as thus s a very dufficult ervor 3o spot.

15

[T R L S

found, if one exists, The Class represented by the string is returned, and this corresponds to the
index into the vector which provided the match, This Class must be changed ranged using the
operator CrClass which takes an operand and converts it into a value with type Class, so that the
value returned will actually be in the range 1.5, eg. 1 is given range 1.1,

If no match is found then the procedure will fail using the Failure operation which forms an
exception from the trap value, The operation IntToTrap is used to create the trap value from the
integer class_fail, Class_fail is defined in the FailureNumbers module along with an
appropriate error message. All other failure bers and ges are also defined in this
module. The exception can be ‘caught’ in an enclosing procedure using Trapply.

This implementation of str_to_class is much more versatile since any shortening of the
lassification classes, ranging from the initial letter to the whole word will be recognised.

TESTING THE CLASSIFICATIONS MODULE

Unfortunately in the cross compilation system at present there is no capability to examine
structures in the Tenl15 editor in order to extract procedures ete. for test purposes. Thus the
classifications module was not sent directly to the VAX, but instead five test procedures were
written in separate modules to test each of the five classification procedures, and these were sent
separately.

The test procedures for dominates, least, greatest, and ¢lass_to_str require Class integers az
parameters. The procedure str_to_class must therefore be applied to some classifications strings
0 as to produce Class integers for use in the test procedures.

$tr_to_class,"Unclassdind® w U o,

This will give for example, the stnng “Unclassified” the classification 1, and name 1t u, Some
examples of testing the classifications procedures are:

dominates.(s,u)
last.{v,¢)
Qreatest (1.1)

class_to_str{s)

GENERAL COMMENTS

The ¢lassifieations module as speafied above forms an abstract data type (ADT) representing the
classifications system used in the SERCUS demonstration, Thus assuming the required
operations on classes remain unchanged, the imp! t of the procedures ¢can be altered or

amended wath no affect on the use of classifications in the d tration

N.B. All modules using the classifications module will need to be recompiled, this can be done
using the procedure recompile_vax.

16

From a security point of view, proced ing d and journals must be abls to
determine the clearance of the user initiating the request. The context, which holds this and other
information, js implemented as procedures to add, delete and get entries from a list kept non.

must be passed to the procedures as such, if security is to be maijntained
8. MODES FOR CONTEXT MODULE

Entry mode is defined as a pelymorphic structure of a unique of type mode, and a pointer to
something of that mode, Polymorphic types are represented by the form 3 X. %),

Entry = 3 (X struet(ptr X, unlque X "

Context mode is defined as a veetor of polymorphic entries as follows:

Cortoxt w vee { Entry, Poslat)

The variable context is a vector of polymorphic entries non-local to the procedures. It is created as

& zero length vector, which requires a dummy entry (given moJe integer for simplicity),

Letdummy,_key :unique Int » MakeUnxqus ; L1

Lot dummy Vatue : pit Int « Pack Ctlny 1

Lot dummy I Entry w ToExists £ struet{ Entry, Int) (dummy_valve, dummy_key)
Var context : rof Contoxt e Vac(0 Of cummy)

MakeUniquetype is an operator which generates and dehvers a unigue value of type Unique type.
This value is totally unique since it is different from any other unique of any type and also
includes a coding of the machine on which 1t was generated. If a key is known to have type
Unique Y, then since all uniques are different, Unique X = key implies that X = ¥, and this js the
basis behind the assertion Match which is used throughout the context module. Pack generates
and delivers a pointer to an area of memory which has been initialised to contain the integer
value 1, ToExists takes the perand ie. (dummy_value, dums y_key) and delivers it unchanged
but with its type generalised o the polymorphic type struct(Entry, X).

8.2. PROCEDURES IN THE CONTEXT MODULE

The context module contains the procedures required to implement the process context in Tenls
notation for the SERCUS demonstration, They are as follows

821 Set_context

Set_context is a polymorphic procedure taking a key and its corresponding pointer value angd
adding them to the context Set_context has the context vector as a non.local vanable, and the

] Delining the polymorphic structure the more natur;

Al way round with the unique followed by the pownter, will
Cause the assertion Match to fal)

17

e

procedure returns void, If the key already exists then the existing value is overwritten with the
new value, A polymorphic procedure ¢an be recognised by a defimtion of the form Proc Formals X
ete. as below:

Proc Formals X (key : unique X, valuo zptr X } - vod:

Lot se?_context » Use { context) In
Proc Formals X (key 1unique X, value i pte X) -> voud:
:.el now_entry ¢ Entry = ToExists 2 struct(Entry, X) (value, key)
n

For n To Upb @ context

Repeat @againt
Match{ @ (@ context Vecind n), key
[@ contaxt Veclnd n t= new_entry
1Goto @agan}

Givin

9
lm now : Context w Vec(1 Of new_sentry)
n
contoxt i= new Concat @ context
Endfor
N
Endproc

The key and value are first converted to the correct mode for insertion into the context vector (ie
the polymorphic type Entry), using the polymorphic operator ToExists,

A Repeat .Giving loop is then used to run through the entries in the context vector looking for a
match with the procedure key. The match 1s done using the assertion Match which tests the
polymorphic operand to determine whether the umque comp t of the structure matches the key
If the uniques are equal then their types are also equal and the match is obeyed with the other
component of the structure as argument. In this case the matching entry in the context is
overwritten with the new entry, and the loop 15 exited. If the key does not match, the loop is
repeated.

If after examination of the whole context vector a match is still not found then the Giving part of
the loop construct is executed, This involves forming & new vector of mode Context with one entry
ie. new_entry, and then concatenating this new vector on to the existing context vector to give the
new context,

8.2.2. Zap_context

Zap_context 13 a polymorphic procedure which takes a unique key as parameter and finds the
corresponding entry in the context, which is then removed. Zap_context has the context vector asa
non-local vanable, and the procedure returns vord, If there is no entry corresponding to the key,
then the procedure fails,

Proc Formats X (koy 2 unique X) «> voxd:

Lot 2ap_context = Use { context, context_fad) In
Proc Formals x { key unique X) »> vod
FornToUpb @context
Repeat @agan:
Match { @ { @contoxt Vecind n), koy
JLotbolow : Context » @ context Teemin
:.ol above 2 Context = @ context Tnmg n
n

context *= below Concat above

18

B

1])
1Goto @again}

Gving
Falure IntToTrap context_fad
Endlor
Endproc

ARepeat.Giving loop is used to run through the context vector to find the entry with the parameter
key. Once this entry has been identified it is removed by tnmming the vector entnes below this
particular entry with the operator Triml, and trimming those above using the operator Trimg.
The new context vector is formed by concatenating these two trimmed vectors together, the loop
then terminates,

If the key does not mateh, then the loop is repeated until a match is found. If no matching entry is
located then the procedure will fail with the exception being created from the integer context_fail
defined in the module FailureNumbers. This exception can be trapped using Trapply in an
enclosing procedure.

8.2.3. Get_context

Get_context is a polymorphic procedure which takes a umique key, checks that it is in the context,
and then returns the value corresponding to the key, otherwise 1t fails,
Proc Formals X (key 1 unque x) > unon(ptr X, vod)
Lot gat_context = Use (context) In
Proc Formals X (key 1 unique X } »> pt X
Fot n To Upb @context
Repeat @aguin:
Match { @ (@ context Vecind n), key
{Op vaiue 1Unat vaiue
1Goto @290}
Giving
Faiiure IntToTrap context_fait
ndfot

Endproc
The context vector is examined one entry at a time using a Repeat.Giving loop, and the assertion
Match. If an entry is found matching the key, then the pointer to the corresponding value is

returned and the Joop terminates. If no mateh 1s found, then the procedure fails with the exception
being generated from the integer context_fail.

8.3. TESTING THE CONTEXT MODULE
Before the context module can be tested some uniques must first be generated.
8.3.1. Generating Uniques
Unique keys are generated using the following piece of Ten15 notation contained in an edfile
Dafing test_key = MakeUniquo type()

Koop tost_key

MakeUnique (type) generates and delivers a unique value of type Unique type.

19

To actually generate a unique the procedures compile_ten15 and run_ten15 must be apphed to the
edfile as follows:

compile_ten15tun_ten1s!

8.3.2. Context _testl

Three unique integer keys were gentrated by compiling and running the above edfile with type
defined as integer. An jnteger value was then associated with each of the unique keys generated.
This test procedure takes a void as parameter and retumns void,

Keys are set by calling the procedure set_context with a unigue key and a pointer to the integer
value eg.

set{ koy?, Pack valuet)

Keys are removed by calling the procedure zap_context from the context module with a unique key
as parameter, from within Trapply eg.

Trapply{ 2ap, key1
{Op context: ()
| Outpit "No Mateh®
;09 pmp L jumpl)

If zap.context is successful then void is returned, if no match is found for the key then the
message "No Match™ is output.

The value associated with a qven key is retrieved using the procedure get_context within a
Trapply.

Trappiy{ oot keyl
{Op context 2 ptr X
Output "Not Found®
)09 jump jumpl)

If get_context is successful the a ptr to the value corresponding to the key is returned. If the
procedure fails then the messags “Not Found™ is output.

20

A Pt o e o e — e o i e+ S ———o—i 4

2. JOURNALLING MODULE

Document journals are used to record the events that happen in the life of a document. User
Journals are used to record the actions camed out by a particular user eg. login and logout ete. A
docament journal is protected from arbitrary access by making it non.local to the read and
review procedures and not exporting it from the module. The users journal is protected from
arbitrary access by setting 1t in the context so allowing only a trusted procedure holding the key to
recover it.

9.1, MODES FOR THE JOURNALLING MODULE

Both document and user journals are implemented as persistent variables (pvars) containing a
linked list of events. Modes required for the implementation of journals are defined in
SercusModesandOps and are as follows:

cycle (Event « struct{ Stning Who What Date, choco ptr pers Event Last))

Joutnal = pvar Event

Event s a structure of three strings, Who, What, Date, and a choice ptr pers Event. The names of
the three strings are used as operators to select the fields from the structure eg

Letname ; Stnng = Who ovent

The choice ptr pers Event is effectively a pointer to the previous entry in the linked list. It is
defined as a choice ptr s0 as to allow the previous event to be null if the end of the list has been
reached.

9.2, PROCEDURES IN THE JOURNALLING MODULE

The journalling module contains the procedures required to implement the user and document
journals in Ten15 notation for the SERCUS demonstration. They are as follows.

9.2.1. Add_joumnal

Add_yournal takes as parameters three strings, who, what and date and adds them to the journal
{also supphed as a p), the procedure retums vord. Datastore is supphed to the procedure

2s & non-local.

Retadd, _)oumal Use (datastore) In
¢ { pournal : Journal, who, what, date 2 Stang) -> vod
Lotj:pers Event » DePvar outnal
Lot c : chocs ptr pors Event = ToChowce Pack
Lot new_event : Event = (who, what, date, ¢ }
}.ol new . pors Evant = Persist { new_event, datastors }
n

outnat AssPvat new
Endpro¢

21

C o e« - o

e e~ e - ——

Add_journal retnieves and delivers the pers Event most recently assigned to the pvar 1e. the last
event in the journal. This pers Event 15 turned into a choice ptr pers Event! by first applying Pack
which generates and delivers & pointer, followed by ToChoice which converts the operand into the
corresponding non-null choice. A new event is defined as being a struct of the three paramster
strings and the newly formed choice ptr pers Event. This new event s then stored on the datastore
using the operation Persist, and returning a persistent value which is assigned to the pvar journal
using AssPvar,

9.2.2. Review _joural

Review_journal takes a journal and displays its contents as an editable vertical (vector of
strings). Review_journal uses the procedure display_event defined as follows:

Lot blank = ToExistsDelSimpleline(Pack Astine” *, dol_simple_lino_u)

Lot display_event = Use { blank, de)_simple_tne_u} In
Proc (ovent : Event) »> DeiVec:
Lot whatstr 2 String = *Event: * Concat What event
Lot whostr,
Let whens
Lot whatin
Lot whol
Lot whenlin
Lot ventcal=
In
vercaly = wholkine;
ventcaly e whenkine;
venkal, = blank,
vertical

6ExxslsDOISmploLvna(Pack AsLine whatstr, del_simple_ine_u)

Dalvac Voc{ 4 Of AsDol whatine)

1
Endproc

Display_event takes an event, extracts the strings using the names as field extraction operators,
and turns theminto simple hine umiques using ToExi=. sDelSimpleLine. A vertical vector is then
formed from the hines using AsDclVec, and returned.

Review_journal takes a journal as parameter and returns a Del. It takes as non.locals the
procedare display_event and del_vert_u, a procedure for creating uniques for verticals, It 1s
defined as follows:

Proc review_journal « (journal: Journal) -» Dat:

Letreview_joumnal » Uso (display_event, del_vert_u)In
Proc (journal : Journat) -> Dst
Lol po ; pers Event = DePvar journal
Lot furst 1 Event UnPatsist po
Vat vertical : ref DetVec 1= display_eveny(fust)
Var naxt : ref choice pir pers Event 2w Last fust

In
Loop @label;
NotvVod { @next
]

P
Letevent Eventa UnPersistDp

A choice pers Event was reatly what was requuired here, but supaisin, ly the system would not allow this Thus a
pur pers Event was used instead which could be choiced! When the systeny is improved, the pointer aspect wall be
nemoved.

22

3 m

[S A g

In
Vertcal *» display_event(evant) Concat @ vertical
noxt e Last event;
Goto @tabsl

Ni

10}

ndloop;
EEx;sstelVoc(Pack @vertical, del_vert_v)
Endproc

Farst the pers Event most recently assigned to the journal is extracted using the operator DePvar,
and unpersisted. This unpersisted event is passed to the display_event procedure, and the next
event in the linked list is referenced. The procedure then enters a loop to extract and display the
remaining events in the linked Jist. The loop is constructed using the NotVoid assertion which
tests the choice ptr pers Event je the next Event in the list. If this is not null then the operator
nonvoid is obeyed with the next Event as argument. The operator takes the ptr pers Event and
retrieves the previous Event using the operators Unpersist and D (de_ptrs a pointer), This event is
then passed to the display_event procedure, with the DelVee returned being concateneted onto the
vertical vector, The loop is repeated until the null choice is reached and the operator null is obeyed
with argument void. Finally the vertical vector is converted into a Del using ToExistsDelVec.

9.2.3, Create_journal

Before the procedures can be tested a Journal has to be created. The procedure create_journal takes
two strings, one the user's name and the other the nature of the action, and returns a journal.

Lot datastore = | datastore : Module(RoP1r..)
Lot root_pset = {roct psat 2 Module(RoPir..,
Lot(.date.hme)-[dam and time : Module(RoPtr)]l

Let croato_joutnal = Use { datastore, roct_pset, Sate, tme } in
Proc (what_str, who_str : String) «> Journal,
Lot o :choce pit pers Evert w Null 2 ptr pers Event()
Leting_event: Event » (who_str, what_str, @ date Concat teno(),)
:.el inial_pers : pers Event = Parsist { na_event, catastore }
n

CroatoPvar { root_pset, intial_pets }
Endproc

An initial event describing the creation of a journal 1s formed using the who and what stnngs
and the date and time from the date_and_time module, with the pointer to the previous event being
a null choice of type ptr pers Event generated using the operator Null. This instial event 1s then
persisted to the datastore, and a journal is created using CreatePvar to deliver a new pvar with
parent root_pset. Finally Journal is initiahsed to contain the pers Event imtial_event.

i The system operator GetTime gives the number of seconds past midnaght, but no date. Thus the date 1s inputasa

stnng at the start of the demo.

23

9.3, TESTING THE JOURNALLING MODULE
The procedure journal_testl tests both the add_journal and review_journal procedures.
9.3.1. Journal_testl
Journal_testl is a procedure which takes void and delivers a persist Del.
Events are cdded to the journal using the add procedure defined in the journalling module, .nd

reviewed asing the review procedure. Review returns a De), but since the test procedure requires
that a persist Del is returned, the result of review is persisted to the datastore.

24

o+ b

10..LOGIN AND RELATED PROCEDURES ‘

The following procedures allow a user to login to the Ten15 editor. Once in the editor, the system
can be asked to answer quest and perform/s late operations, these form the basis of the
SERCUS 4 ation, The tions include Who am 1? (who), What's my clearance? (what),
and Am I on the trusted path? (where), while the operations include Review my journal
(my_journal), Put me on the trusted path (on_to_tp) and Take me off the trusted path (off_tp). ANl
the above are wntten as ions. An ion is very similar to a procedure except that some of the non-
locals are not given values in the construct, only a specification, with the actual values being
supplied at a later time, These specifications have the same form as parameters.

10.1. MODES REQUIRED FOR THE LOGIN RELATED PROCEDURES
The following modes are defined for use in the login related jons and procedures:

User mode is defined as a structure of two stnings representing the user's id and password and &
Class corresponding to the user's clearance.

User = struct(Stng Uid Password, Class Clearance)
ValidUsers is defined s a vector of entries of mode User as follows:

VatidUsers = vee{ User, Posint)

UserDetails is a structure of a string representing the user's id, a Class representing the user's
clearance and a Journal representing the user's journal,

UserDotails = strucy{ String Ud_id, Class Ud_Clear, Journal Ud_Jourmat)

N.B. The modes User and UserDetails will eventually be expanded to include a user's cupboard
and mail box,

The TpFlag allows the user to determine whether they are on or off the trusted path, However, the

actions of going on to, or off the trusted path are only simulated at present The TpFlag 1s defined
as a bool value as follows:

TpFlag = boot

25

10.2. JONS AND PROCEDURES RELATED TO LOGIN
10.2.1. Loginfon

This module declares an fon for login which when closed with the uniques for user_details and
trusted path flag, the valid_users vector and journal becomes a procedure of type vaid to void

Let st =
Lot (add) = {journal : Module({RoP1r..
Let (datotime) =)

'Loi stringlength : Posint CrPosint 10
n

¢ Ro Pack Use (stunglangth, sot, add, date, ime) In
fon { Uset_detals : unique UserDetals)
(tpfiag 1unique TpFlag)
{ valid_users ValdUsers)
(Journal: Journaly
Void -> Voud:

Loop @next;

Output *Please Enter Yout Name®;

Letmvect =« Voc(stringlength OF CrChar')

Letuid : String « lnput ivect

Letinvoc2 « (Output *Ploase Entet Your Password®, Vae(stiinglangth Of CrChat)
Lot password 1 Sting w lput invec2

in

Foralluset In vahd_users
Roepeat @again:
Ud @ usor VacEq ud) Andth (Password @ user VocEq password }
on

Letedt« [cth_odit : Module(RoPrr..

Lot cloarance 1 Class « Clearance @user

Lot detals : UserDotads » (wd, cloarance, journal)
Lotflag s ToFlag « True

in

&I journal, uid, "Logged 1n', @ date Concat tme)
sot(user_detarls, Pack detals)
sat{1pllag, Pack flag);
Trapply{ edn, ()
| Fadure WtYoTrap 11
10utaLt (* Byo Bye * Concatud);
add(ournal, ud, *Logged ou®, @ date Concat time());
Goto @next
)Ioobfnp Smp()
N

Else
Goto @again
Fi
Grving
Oulput "Authonisation Faure®
Endlor
Endiocp

Endion
N

Login is essentially a loop, which prompts for a user name followed by a password (The nams or
the password is restricted to ten characters) The vector of valid_users is then examined for 8
match on the user name and the password. If the matei is successful, then the users 1D, the event

’ 26

Lo

T e e e et e

e A —

“Logged in”, and the date and time are added to the user’s journal, Additionally the user_details
(uid, clearance and journal) and tpflag (set to true) are set in the context.

Login then calls the editor using the operator Trapply. Trapply calls the editing procedure edit
with the required void parameter, and tests the exit status of the procedure call, If the procedure
completes normally then Failure IntToTrap 11 is obeyed, (This wiil never happen in practice } It
should also be noted that the only way to leave the editor is to make it fail ie. the editor is
successfully exited when it is allowed to fail, If the procedure fails (the only ¢ase that will apply
with edit) then the logout message is cutput, the appropriate “Logged out” message and date and
time are added to the user’s journal, and the procedure again prompts for a user name to be input.
The third alternative in the Trapply is for a long jump out of the procedure, but as this wall never
happen it can be sgnored in the d t

If the user name was not found in the vector of valid_users, or the passwords did not match then
the procedure outputs an authorisation failure message and dies. This is sufficient for the
moment, but eventually it should prompt for a new user name after an authorisation failure
instead of requiring that the login procedure is called again.

10.2.2. Login Procedure

The ion for login can be closed with the following non-local values, the unique for user details, the
unique for the trusted path flag, the vector of vahd users, and the user’s journal. Once each ion
has been closed, login becomes a procedure of type void to void ie.

wn(unque User Detals, 1on{ unique TpFiag, on{ ValdUsers, ion(Journal, Vo +> Void))))

Proclogin = () > ()t

Two uniques are generated as described previously, unique_ud is a unique for the UserDetails,
and unique_tp is a unique for the TpFlag.

Letunique_ud : unique UserDetals »
Lotunique_tp tunque TpFlag «
A journal is also created using the procedure create_journal,
Lot purnalz Joutnal = create_journaX Journal Created, "Administrator)

Sets of user details are formed as a structure of the three strings representing user 1D, password
and clearunice (the procedure ¢lass_to_str is used to convert a Class into a String). A vector of
valid users is formed from the sets of user details.

The logan 10n is then closed as follows to give a procedure taking void and returming vord

Letclosedt lon{ unique TpFlag, on{ ValdUsers, on{ Journal, Voic -> Void) })
w unque_ud Close ogin_ion
Lot closad? : son(ValdUsers, on{ Journal, Void -> Voud) } = unique_tp Close closedt
Letclosed3 2 on(Journal Voud -> Voud) = valid_users Close closed2
Lot g * Voud -> Vod w journal Close closed3

27

O

-

B R

10.2.3. Who Am1lon

When closed to form a procedure, this ion will determine who is logged in to the system.

Lot (Lgot) = (ccntoxl 2 Module{RoPtr..)I

Lot G, fail_ptoc) = [FailureNumbars = Modute({RoPir..)i

Lot byobye = [byebye: Module(RoPtr..)}
Lotmessage = [Message Module(RoPtr..J}

Ro Pack Use(got fad_proc, bysoye, message) In
lon (user_detais : unique UserDetads)
Void > Siring:
Teapply{ get. user_dotails
Op ptr_(Jotails:
Lot detalis - UserDetalls » D ptr_details
Lol me : String » Ud_13 detalls
me
H
1Optrap:
lLot mess » f21_proc{trap)

maessage(mess Concat * : Panill No User Detads in Context®);
Fadure intToTrap byebye

IOplump 1hmp()
Endion

WhoAml ion is based on the operator Trapply. Get_context 1s used to extract the user_details from
the context. If successful, got returns a pointer to the user_details which is de-ptred using D to get
the user_details, The users User ID is then extracted from the structure and returned,

If get fails to find the user_detals in the context then the procedure will fail using the operator
Failure which forms an exception from the trap value created from the integer context_fail
defined in the FailureNumbers module.

The other 10ns described in this section are generally constructed 1n a manner very symilar to
that of the WhoAml ion, using the operator Trapply.

10.2.4, Who Am 1 Procedure

The WhoAml ion 18 closed with the unique for user details to gave a procedure that takes void and
returns a string.

fon(unique UserDstails, Vod -> String)

N.B. The same unique generated for the unique user details in login must be used to close the
WhoeAml ion

Lot whoami: Vod _> Stng » unique_ud Close whoams_ion

28

10.2.5. Whats My Clearance Ion

When closed this jon will allow the clearance of the user to be determined.

Lot (,..class_to_str) = |classifications : Module(RoPtr..)}
Lot (.got) = fcontext : Module{RoP1r..)

Lot G fait_proc) « [F: mbars : 2,

Lotbyebye |binb§e H ModuloZRoPlr..)I
Lot g -'Massago:Modula(RoPu B

in
Ro Pack Use { got, class_to_str, fal_proc, byebye, message) tn
lon (user_detais : unique UserDatais)
Void => Stnng:
Trapply{ got, usor_detarls
1Op ptr_detarls:
Lot details : UserDotalls = D ptr_detals
:.o! cloar: Class w Ud_Clear cotails
n
class_to_str{ clear)

{Optrap*
:.ol mess = fail_proc(trap)
n

message{ mess Concat * 2 Panc!t No Usor Detas in Context” §,
Fature [ntToTrap byebye

Ni
10p ump 1 ump()
Endion

WhatsMyClearance extracts the user_details from the context in the same way as the WhoAml
ion, The clearance is converted from a ¢lass into a string using the procedure class_to_str from
the ¢lassifications module, If no user details are found in the context, then the procedure will fail,

10.2.6. Whats My Clearance Procedure

The WhatsMyClearance ion 15 closed with the umigue for user details to give a procedure which
takes a void and returns a stoing.

won(unique UserDetals, Voud «> Stung)

N.B. The unique for user details generated an logan must be used to close the ion as follows :

Lot mycloar : Void -> Strng = unique_ud Close myclear_son

29

\-»-g e

10.2.7. AmIOn The Trusted Path Ion

This jon will determine whether the user 1s on the trusted path when 1t 1s closed to form a
procedure,

Lot (.got) = icemexl : Module{RoPtr..)I
Lot {unnnfail_proc) m [FaduroNumbors 1 Module(RoPir..)'
Lotbysbyo w Ibiob;o H MaduleiRon.. 2'

Lot ! -rMossagn s Moduls{RoPir..

In
Ro Pack Uss { got, fait_proc, byebye, message) In
lon (tpflag 1 unique TpFlag)
Vcid_r bool:
rapplyt got. tpflag
{ {Op ptr_flag:
ILot flag : TpFlag = D ptr_flag
n
flag
N

| Optrap:
Lot mess = fal_proc(trap)
In

message({ mess Concal * : Panic!l No Trusted Path Flag in Context®),
Faiure IntToTrap byebye

N
10p jump : pmp)
Endwon

AmIOnTheTrustedPath extracts the tpflag from the context using the procedure get_context, in a
way similar to the WhoAml ion, If get_context succeeds then a pointer is returned which s de-
pried to return the value of the flag. If there 18 no trusted path flag in the context then the procedure
fails in the usual way.

10.2.8. AmOn The Trusted Path Procedure

The AmlOnTheTrustedPath ion is closed with the unique for the trusted path flag to give a
procedure which takes void and returns a bool.

en{ unque TpFlag, Voud => bool)

The same unique for the trusted path flag as generated in the lomn procedure 1s used to close the
ion as follows :

Lot tpath * Voud > Bool » unique_tp Close tpath_ton
Tpath is then used as a non-local in & procedure which takes a vaid and returns a string, If the

tpath procedure returns true then the string “You are on the Trusted Path” 1s returned If tpath
returns false then the string “You are NOT on the Trusted Path” is returned

30

10.2.9. On_to tp and Off_tp Tons

These jons, when closed to form procedures, will simulate the action of the user gong on to or off
the trusted path,

Lot (sot, got) » m

Lot () proc) = [FaxlunNumbsrs : Module(RoPtr,. !I :
Lot byobyo = [Bysbyo : Modula(RoPir.)

totmssage» (ssags Mosvieapi])

In
Ro Pack Use (set, get, fall_proc, byebye, message)i
fon (1pflag 1 unique ToF!
Void -> Voud; 4o
Trapply{ got. tpfiag
1Cp pir_flag:
H(Not) (D ptr_flag)
Then
A sox{ tpllag, Pack False(Trua))
T

[Optrap:
:.ox mess = fail proc(trap)
n

Mossage(mess Concat *: Panic!l No Trusted Path Flag m Context*)
Faure IntToTrap byebye

N
10p jump 2 jump()

Endion

The procedure get_context is used within the operator Trapply to extract the trusted path flag from
the context. If get is successful, then a pointer to the flag is returned, This is de-ptred, and the flag
isre-set , as appropriate in the context. If the trusted path flag cannot be extracted from the context
then the procedure fails,

10210, On_to_tp and Off_tp Procedures

The 1ons are closed with the unique for the trusted path flag to give procedures which take void and
return void,

fon{ unque TpFlag, Vo +» Vod)

The same unique for the trusted path flag as generated in the login procedure must be used to close
theion eg

Letonpath: Vod -> Voud w uaique_tp Close onpath_ton

31

10.2.11, Review MyJournallon

This jon, when closed to form a procedure, will allow the user to examine their journal as long as
they are on the trusted path.

Lot (.go1) - {contoxt : Moduls(RoPw..)

Lot (roviow) =

Lot (.. ftag fa.,..tad_proc) = [FallureNumbers : Mogule(RoPIr,)}
Lot byobye = |bxubxn * Module(RoPtr..)]
Letmesssgo « (Massage s Hosun(oPt.]

in
Ro Pack Use (reviow, get, flag_fal, Ja_proc, byebye, messaye } In
fon (user_¢ dotals t unique UsarDetais)
(tp!laq 1unique TpFlag)
Vold -> Dal:

Trapply{ get, user_details
§Op ptr_details:
Tvappry{ [-118 lp!lag
10p pur_tiag:
l Dptr nag
Then
Lol detais 1 UserDetads = D pte_dotals
Lot journal s Joutnal = Ud_Journal detalls

In
teview{ journat)

Else
Faruie IntToTrap flag_fait
i
[Optrap : Fadvre trep
10p pmp tjump()

trap:
mossaqo(fail_proc(trapt Concat * - Pank!t No Uset Details in Context™));
Faiure IntToTrap byebye

10p jump 2 mp()

Endion

ReviewMyJdournal uses the procedure get_context within the operator Trapply to retrieve the users
details from the context. Get_context 1s then used again within Trapply to retrieve the trusted path
flag from the context. Assuming the trusted path flag is true, then the user_details are de-ptred
and the journal field 1s extracted from the structure, The review journal procedure is then applied
to the journal, returning a Del. If get_context fails ie. there are no user details or no trusted path
flag in the context then the procedure ReviewMyJournal will also fail,

10.2.12. Review My Journal Procedure

The ReviewMyJournal jon 15 closed with the unique for user details and the unique for the trusted
path flag to qave a procedure that takes void and returns a Del

Ton{ unque UserDetals, on{ unque TpFlag, Vod -» Del))

The same umques generated for the user details and the trusted path in login are used to ¢lose the
ion as follows

32

Lot closed :ion(unque TpFlag, Void -> Del) = unque_ud Close reviewmypurnal_ton
Let reviewmypumnal 1 Void -> Del = unigue_tp Close closed

Since the procedure is sctually required to return Text, which is a persist Del, reviewmyjournal is

passed as a non-local to a procedure which calls Persist on the result of the reviewmyjournal
procedure call so returning Text.

33

11, REGISTRYMODULE

The registry contains all the documents held in the system, with the CDR number of a document
being its position in the regstry. The registry will be supplied to the registry procedures as a non.
local variable, D ts are only ible via the procedure to supply their contents, and the
clearance of the user issuing the request must dominate the classification of the d t

11.1. MODES FOR REGISTRY MODULE
The modes used in the registry procedures are as follows:

The Document mode is defined as a struct of three fields, the classification of the d t, the
t of the d t and the d t's Journal, as follows:

Document = struct(Class Class, De! Contents. Journal Journal }
The registry is defined as a vector of Document entnies as follows:
Registry = vac{ Dogument, Pesint)
11.2, PROCEDURES IN THE REGISTRY MODULE

The procedures in the registry module are written as ions, they are read_document,
review_d t journal, d t_class and create_document.

11.2.1. Read_Document
Read_document is an jon which can be closed with the unique for user details, the regustry, and
the trusted path flag to give a procedure which takes the cdr number (where the cdr number of a
document is simply 1ts position in the registry), and returns the text of the document

Let(dom,,) = |classmcwons 2 Module{RoPtr,)|

Lettget) »

Latiadd) -

Lot michars » m@

Let (...,007_fadcloar_fal,) » (FauuuNumbars . Module(RoP1r..)]

Let datastore = [datastore : Modula(RoPit .)

Lot read_document = Use (dom, got, add, date, time, intehars, datastore, cdr_fai, clear_fait) ln
fon{ user_details : unique User Datails)
{ rogsstry : Registry)
{ptiag 1unique TpFlag)
(edr_num:int) > Text

Trapply{ get. user_details
P § Op pte_dotails
Teapplyf gat. tpflag
10p ptr_fiag:
mﬁd(_num < 1}0re! (cdr_num > Upb @ 1egisty))

Faihure IntToYrap cdr_fat

34

I

i et e s o o< [—

Eise
Lotuser = Ud_id (D ptr_dotals)
Lot usor, ¢ clear = Ud ctoauopu detals)
Lotu_yrni » Ud_dournal { D ptr_datals)

Lot document = @ { @ registry Voclnd cdr_num)
Lot doc_cloar » Class document
L9t d_ynl = Journal document

Lot date_tene = @ date Concat tima()
In
H dom{ user_clear, doc_clear)
Then
Lonp str-'Opo-\od Document * Concat "COR_*
= Concat intchars(cdr_num)
:.ol offtp = 1p_str Concat * + O TP* 1
n
¥ Dpir_flag
Then
. add{ u_jenl, user, to_str, date_time)
add(d_ynl, user, tp_sir, dato_time)
Ise

add(v_jml, user, offtp, date_tme)
adad{ ¢_jral, user, offtp, date_time)

Pomstl Contents document, datastore }

1]
Eise
Lot mess = "Provented from Opening Document COR_®
' Concat intehars(cdr_num)
n

agd{ u_grn), user, mess, date_tme)

3
. Fature InToTrap clear_fal
)
|Op trap 1 Falure trap
Op jump : ump()

Optrap 1 Falure trap
Opp

|
[0p b ki)

Enden

Get _context is used within the operator Trapply to extract the user details from the context,
returning a pointer to the details, Get_context is then used again within Trapply to extract the
trusted path flag, returning a poinier to it. If the user details and trusted path flag have been
successfully extracted, then the edr number 15 checked to ensure that it is within range ie. greater
than or equal to one and less than or equal to Upb registry, If either of the get_context procedure
calls fail then the read_document procedure will also fail using the Failure operator.

Assuring the cdr number s in range it 15 used to extract the document from the registry vector, If
1t as not in range, then the procedure will fail. A check 1s then done to ensure that the clearance of
the user trying to read the document is greater than the clearance of the document itself This is
done using the dominates procedure from the classifications module. If the users clearance

the d 1 e and the user 1s on the trusted path, then the event “Opened
Document ¢dr_num” 15 added to the users journal along with the dat and time, and the same
event is added to the document journal. If the user 1s not on the trusted path, then "Off TP" is
concatenated onto the event string before adding it to the user and document journals The
contents of the document are then returned. If the users clearance does not dominate the
lassification of the d t then the event “Prevented from Opening Document ¢dr_num” is
added to the users journa), along with the date and time

35

e

11.2.2. Review_Document Joumal

Review_doc_journal is an ion which can be closed with the urique for user details, the regstry,
and the trusted path flag to give a procedure which takes the edr aumber of a document and returns
the text of the journal,

Lot(.got)m Iconten * Module{RoP1r.. ![
Lot (ireviow) w F',gumal t Module(RoPir)]

Let (. flag_tad,cdr_fad,.,) = |FailureNumbars : Module(RoPtr.,)}
Lot datastore = [datastors : Modula(RoP1t.. }]

Lot roview_doc_journal = Use (get, review, flag_fai, cdr_fai, datastore) In
fon (registry & Rogrs!
(tpllagtunique TpFlay)
(edt_num iing) -> Text:

Trapplyf get. tpﬂag
10p pur_fiag:
H D ptr_tlag
Then
L] ((cdv num < 1) Orel (cdr_num > Upb @ registry))
Faduto InToTrap car_fad

LQl document = @ { @ registry Vecling cdr_num)
Lot doc_jrnl » Journal document

Parsist { review(doc_jml), datastore }

Eise

A Falure lntToTrap flag_fai
]

{Op trap 1 Falure trap

10p jump 2 imp)

Endon

Get_context is used within the operator Trapply to extract the user details from the context. If this
is successful then a pointer to the user details is returned otherwise the procedure fails, The
pointer to the flag is de-ptred using D, and if it is set o true then the ¢dr number of the docur.ent s
checked to ensure that it is within the range of the registry. If the trusted path flag s false, or the
cdr number is out of range, then the procedure fails using the operator Failure,

Assuming all the checks have been succesotul, the document is extracted from the registry using
vector indexing on the edr number. The journal is then extracted from the D t structure
using field extraction, and the procedure review_journal is applied to review the journal
Review_journal returns a Del, but since the procedure is required to return Text, the result of the
review_journal procedure call is persisted to the datastore.

36

e

1124, Create_Document

11.2.3. Document_Class

Doc_class is an jon which can be closed with the registry Lo give a procedure which takes the edr
number of a document and returns it's elassification as a string.

Lot (,.class_to_str,) = [classdications ; Meodule(RoPyr,.)}
Lol {,,,.00r_fail,,) » [FaﬂuroNumbws : Module(RoPtr,,)I
Lot doc_class = Use (class to_st, cdr_fai) In |

« fon (registry : Registry)
(cdr_num 2Int) > Stung;

%S(edrum < 1) Orel (edr_num > Upb @ registry)
en

Fatre IntToTrap odr_fal
Else

Letdocumont = @ (@ registry Vecind ¢de_num)
Lot tfass : Class = Class document
n

"Document classification i * Concat class_to_st(class)
it

]
Endion

The edr ber of the d t is checked to ensure it is within the range of the registry, and if it
is not then the procedure fails. The document is then extracted from the registry using veetor
indexing with the cdr number, and the classification of the document is extracted from the
document structure, The procedure class.to_str from the classifications module js then used to
convert the class to a string which is returned with a switeble message.

Create_document is an jon which ¢an be closed with the unique for user details, the repstry, and
the trusted path flag to give a procedure which takes some text and a classification string and
returns void.

Let(.got) = [context : Module(RoPtr..

Let (2dd)) = [outnal : Moduls(RoP1r..)

Lot (..st7_to_class,) « [¢lassifications ¢ Module{RoPtr)
Lot create_journal «
Lot (.flag fal.,.) = FailyreNumbats : Module(RoPlr)
Lot (date.ume) « [dato_and_time : Module(RoP1r.)

Letcreate_document = Use (get, add, Str_to_class, create_journal, flag, fa), date. tme) In
lon (user_detals s unique UserDatads)
g!oﬂgg "Y un;uo 1;pFl)ag)
tegistry ; Registry
(toxt: Toxt, class : Stnng) > Voud

Trapply{ got, user_details
1 Op pte_detasts.
Teapply{ got, tpflag
!f Obp ptr_tlag:
pir_Tlag
Then
Lotuserm Ug_ut { D ptr_detass)

Lot what w "Documaent Journal Created * * Concat class
Lot d_jint « create_purnal(what, user)

37

Lot class w str_to_class(class)
Lot toxt 2 Dol » UnParsist taxt
Lot doc 1 Document = { class, text, d_jrrl)
Yar now : Rogistry t= Voc(1 Of doc)
n

& registry 1 @ rogistry Concat @ new

Eise
Letuset = Ud_K (D ptr_dotalls)
Letu_jrni = UG_dournal { D ptr_detadls)
Lot dato_time = @ date Concattime()
Lot moss = "Attempt to Create a Document ; Nt on TP*

n
 add{u_jml, user, mess, dato_tme)
i
. Faiure IntToTrap flag_fad
i
| Op trap 1 Falure trap
;Opium;wmp()
{Optrap i Falure trap
I}Opiu"vmm?()
Endwon

Get_context is used within the operator Trapply to extract the user details from the context,
returning a pointer to the details. Get.context is then used again within Trapply to extract the
trusted path fiag, returning a pointer to it. If either of the calls of get_context are unsuccessful,
then the procedure will fail, If the trusted path flag is set totrue, then the user's id is extracted from
the details and a journal is created using the procedure create_journal with the user's id and the
string "Document Journal Created : * Concat class (where class is the result of applying
str_to_class to the class string given as parameter to the create_document procedure) as
parameters.

The text supplied to the procedure is unpersisted to qve a Del, and a new document is formed
using the class, the text, and the newly created document journal. This new document is then used
to form & new entry for the registry, which is then concatenated on to the end of the existing
registry vector.

If the user 18 not on the trusted path, then the string "Attempt to Create a Document : Not on TP*1s
added to the user's joumnal along with the date and time, then the procedure fails.

38

11.2.5, Registry procedures

Each of the above four jons are ¢losed within the module regstry procedures, and the failures are
trapped.

Firstly the variable registry is created as a zero length vector with dummy entnes as follows;

Lot{, del_simple_kno_u) l] ting ymaues : Module(RoPir., !’
Lot (, dol_vert_u) = fvert_uniques : Modute(RoPir .

Lot somo_text » Use(del_simple_fine_u, doLvert u)In
Proc (message { String 1> Del:
Lot t » ToExistsDelSimpleLine(Pack AsLing message, dol_simple_fine_u)
Lot vertcal = AsDelVec Voo{ 1 Of AsDelt)
:.QI v = ToExistsDelVec(Pack verical, del_ve Ty}
n

va
N
Endproc
Lot dummy_journal : Journal = create _sournal("dummy*, "dummy" } ,
Lot dummy_doc : Document e (CrClass 1, some_text(“dumimy®), dummy_journal)

Var registry : Rogustry .» Vee{ 0 Of dummy,_doc)

Each of the four jons are then closed with the appropriate uniques and the regustry as follows:

Letunique_to tunique ToFlagw
Lot unique_ud : Unique User Detads = {4 + Unlque {.}
Lot chasedt tion(Registry, son(unique ToFlag, Int+> Text) } = unque_ud Close ead_doc_jon

Lot closed2 lon{ unique TpFlag, Int -> Text) w togistry Close ciosed!
Lotread_doc : It »> Toxt = unque_tp Close closed2

Lot rd_closed :ion{ unigue TpFlag, Int-> Toxt) = reg'stry Close review_doc_gournal_ton
Lot teviow_doc : Int+> Toxt = unque_tp Close 16_closed

Lot doc_class : Int +> String w registry Close doc_elass_jon

Loted_chosed1 : on{ unkue TpFlag, wn(Registry, struey(Toxt, String) -> Vod) = unique_ud

Close creats,_doc_won
Lot od_closed2 : lon(Registry, struct{ Text, String }+» Vod) » unique_tp Closs cd_closedt
Lot croate_doc : struct(Toxt, Sting) »> Void w registry Close od_closed?

N.B. The unique for the user details and the unique for the trusted path flag are identical to those
created in the login procedure. In fact throughout the whole SERCUS demonstration, whersver
these values are required, those created in login are used.

Having closed the four jons, procedures are defined for each fon which catch and deal with
exceptions caught in the ions and propagated. The general form of thess procedures is the operator
Trapply which retumns the result of the procedure closed from the relevant ion if the procedure was
successful, or a VduMessage diagnosing the error if the procedure closed from the 1on failed,
followed by a fatal Failure, eg.

39

[14

Lot read = Use (read_doc, fail_pros, byebye) in
Proc (cdr_num :fnt) - Toxt:
Trapplyf read_doc, edr_num
{1 Op toxt : toxt
| Op trap,
:.oi message w fai_proc(trap)
n

Mossage(message);
N Fadure IntToTrap byebye

§Op jump: jump()
Endproc

Nermms - —

e ——————— . —— 5

i s e

12 REFERENCES

{1} {Harrold 90)

' [2) {Goodenough & Rees 89)

R —

An Example Secure System Speafied Using the
Terry-Wiseman Approach

C. L. Harrold

RSRE Report 90011, July 1990

A Notation for Tenl5

K. H. Goodenough, S. J. Rees
May 1989

41

REPORT DOCUMENTATION PAGE DRIC Reterence Number ({ KOWN) o ewraarssmssssasmss s

Overall securty 1 sheet maremrsre s e et I NCLAS SIFIED st csemrns ermss s an s
(As far as possidle this sheet should contan only unciassified information, uuumsmtomdasmdw«mmmwdmm
st be marked to Indicate the diassificaton eg (R), (C) ¢ (S)

Originators Reference/Report No. Month Year
MEMO 4465 MARCH 1991
Origmnators Name and Locabon
RSRE, St Andrews Road
Malvern, Worcs WR14 3PS

MonXtoring Agency Name and Location

Tive
TRIALIMPLEMENTATION OF A SECURE APPLICATION USING Tent5

Report Securtly Classificaton Tite Ciassficavon U, R, Cor §)
UNCLASSIFIED U

Foreign Language Tite (in the case of ransiations)

Conference Detals

Agoncy Reference Contract Nurmbat and Peried

Project Number Othet Referances

Authors Pagniaten and Ret
BILSBY,ER 41

Abstract

This repont describes how a subset ot SERCUS has been implemented using Ten15. SERCUS 1s a
researchimplementation of a mult-level secure workstation based on the SMITE approach and runming
aclassified document handti I . SMITE is an approach to the construction of secure systems
wh»;hx uses strong typing. Teat5isan algebraically defined, strongly typed abstract machine runming on
a VAX station,

This work was performed while the author was a Vacation Student at RSRE and used the Ten15 Cross
Compiation System as it existed in Summert 1990,

Astract Classficadon (U.R.C o S}
]

Dascrptors

D (Enter any onthe on of the
UNLIMITED

S

INTENTIONALLY BLANK

