

The Probe Project

Tim Blanchard†

John A. McDermid

Department of Computer Science,
University of York

tim@uk.ac.york.minster

January 1992

hhhhhhhhhhhhhhh
† Research is sponsored by SERC/UK research grant number 89556293 and with the support of the
Procurement Executive Ministry of Defence.

Abstract

This report presents a detailed overview of the issues concerning the construction of an
object database system called Probe. Probe is based on the Ten15 persistent programming
language, exploiting its strong type system and flexible persistence mechanism to build an
efficient and malleable database system.

This document describes the Probe system and identifies the criteria for a successful data-
base programming language. The success to which Probe matches these ideals is discussed.

Probe is a based on a hierarchy of Ten15 data structures: data structures which manipu-
late the persistent store; which are used as a basis for database and bulk data structures; and a
programming notation which provides a seamless programming environment for the abstract
machine that Probe provides. A section of this document makes particular reference to the
conceptual programming language for the system, called TDBPL.

This page is left intentionally blank

1. Introduction

Databases and programming languages have remained diverse fields of research up until
the development of persistent programming languages [8] in the early 1980s. Persistent pro-
gramming languages provide a perfect vehicle with which to research the field of database pro-
gramming. In this report, we describe an attempt to merge databases and persistent program-
ming languages culminating in the Probe database programming language.

In this section is to illustrate the problems of existing approaches to database program-
ming in order to provide the context and motivation for our work.

There have been two major fields of research into the construction of database program-
ming languages (DBPL). One approach has been to integrate a particular data model into the
language. The second approach has been to exploit the characteristics of persistent program-
ming languages (PPL).

1.1. Model-based approach

The first approach in developing DBPLs has been to add a specific database model to a
programming language by providing the data structures associated with the model as primi-
tives within the language. Each database model has been integrated into a number of program-
ming languages. For example, the relational model [17] has been embedded into Pascal [34]
and Modula, and a language called DBPL has been developed specifically to support the rela-
tional model [30]. The functional model has been embedded into ADA, producing the
language ADAPLEX [35], and the persistent programming language, Galileo [3]. The object
oriented model has been widely researched, with such languages as Alltalk [36], O++ [2] and
E [33] being developed.

The model-based approach draws its popularity from the fact that a clearly defined model
is present within the language and the functionality of the original language still exists. The
main problem of this approach is that the actual implementation of the model and the represen-
tations of the data on disk are hidden from the programmer by access expression queries. This
means that the programmer has no flexibility to optimize or improve the functionality of the
model. This is the main reason that we have not followed this route in our research.

1.2. Persistent programming language approach

The second approach to DBPL development stems from the development of persistent
programming languages in the early 1980s. Persistence is the ability for arbitrarily complex
program data structures to outlive the execution of a single program. Persistence relies upon a
storage medium, such as a magnetic disk, being addressable and structurable from primitives
provided in the programming language which implements it. In addition, the type and structure
of the data are also stored. Languages have been developed that directly support persistence,
such as PS-algol [7], Napier88 [31] and Ten15 [11].

The main feature of PPLs is that the backing store is represented as an abstract entity
within the programming language. This means that arbitrarily complex data structures can be
built up and preserved on the persistent store without loss of type or structure. What this
means for databases is that the data structures of a particular model can be built up, preserved
and manipulated by the operators that support persistence.

There are several advantages to using the persistent programming language approach to
database development. Firstly, the implementation and persistent representation of the

database is visible. This means that the database can be altered to tailor performance or to
extend its application domain and so it can be used as a basis for the specialisation of the data-
base model. Secondly, by using persistent data structures, the persistent database is not con-
strained to one data model. This means that data structures can easily be created, based on
existing data structures, which introduce other models into the language. A third advantage is
that it is possible to ignore the database model for data storage since a mechanism already
exists in the language to allow for the persistence of data. This might be necessary in cases
where the data that needs to be stored cannot be expressed in a database model, or where the
extra cost of allowing for the generality of the modules which implement the database detracts
from the performance of the system.

We feel that this approach can lead to inefficiencies within such a system, since the low
level optimizations are not available to the programmer since the disk and memory cannot be
accessed directly. However, developing using a high level language speeds up the develop-
ment process, since abstract ideas can be expressed more readily, the type system prevents any
run-time type errors and it facilitates the adaption and maintenance of the resulting software.
There is a trade off between the ease of system development and efficiency of the resulting
system. We feel that the ease of development is of utmost importance. Efficiency of the sys-
tem can be achieved by introducing optimizations into the model of the system, and these are
discussed later in this paper.

However, there are further problems associated with this approach to database program-
ming. These can be generalised into two main areas: those concerned with the management of
bulk data, and the effects of concurrency.

1.2.1. The management of bulk data

Bulk data is the aggregation of data of a similar type or value or relationship. Such aggre-
gators include sets, tuples and lists. Two main problems occur with regards to the manage-
ment of bulk data: how to represent it, and how to make access to it efficient.

First, there is typically an impedance mis-match [19] between the intended database
model and the type system of the host programming language. Depending upon the particular
model used, it may require relational tables for the relational model, sets, tuple and objects for
the object oriented model or functional mappings for the functional model. However, program-
ming languages typically have structures and arrays as their main data constructors, using
pointers to build up more complex data structures. Hence the meaning of the programming
language data structures have to be overloaded to represent the data structures required by the
database model. Provided that a mechanism is present that allows the representation of the
data structure to be hidden, such as abstract data types, existential values or lambda type func-
tions, then PPLs can simulate database models, although the simulation may be complex and
clumsy.

The main problem with the simulation technique is that not only must the semantics of
the database type constructors be captured but, in addition, an efficient representation must be
maintained on the persistent store. This leads onto the second problem, concerning the
management of bulk data. Not only must the PPL support the efficient management of data on
persistent store, but it must also provide a mechanism which has uniform performance for all
extremes of stored data, from very small to very large. To this end, a representation based on
the decomposition of the data structure into a tree suggests itself as a mechanism flexible
enough to support all variations in sizes of data, but, as a result, there is an increase in

application paradigm development complexity, and the source code becomes progressively
more complex to understand and maintain. This goes against the original rationale for per-
sistent programming languages: to minimise the time it takes to write the source code which
deals with the interaction between the language and the backing store [7].

Another problem with the management of bulk data is that a generic storage structure
mechanism takes no account of the nature of the data that it stores, hence the characteristics of
data, such as constancy or sparsity (e.g. in a sparse matrix) are ignored. Optimized storage
capabilities can be provided as an alternative to the generic mechanism depending on analysis
of the data as it is incrementally added to the database constructor.

1.2.2. Concurrency

There are two problems associated with concurrency in DBPLs: the general problems of
concurrency control and the linguistic differences between PPLs and DBPLs.

The first problem for using PPLs as database programming languages concerns the con-
current nature of databases. Databases that are restricted to a single user are of limited use.
By permitting several processes to have concurrent access to a central database, the usefulness
of the database increases dramatically.

When adding concurrency and distributed databases to PPLs, several problems are
encountered. The main problem is that persistent data is updated on an object-by-object basis,
which conflicts with the database notion of a number of values updated at one instant in the
form of a transaction. This creates problems with regards to implementing the object database
model since, due to its hierarchical nature, values from the leaves to the root must be commit-
ted in turn, introducing the possibility of inconsistencies should a failure occur before every
entity in the database has been updated. Additional problems include the lack of timing con-
straints over a process’ access to persistent data and possible deadlock over shared persistent
resources. This is the problem classically addressed by transactions in relational DBMSs.

The second problem concerns the linguistic basis for PPLs. The majority of PPLs are
procedural-based: statements are executed in turn, and persistent data is committed to the per-
sistent store sequentially. The problem with procedural programming is that no allowance is
made for concurrent access to data on the persistent store, nor for failure and recoverability. In
the first case, a procedure may read data from the persistent store, act upon it, then wish to
rewrite the updated value. If locking of objects is not present, then the procedure which
rewrites its value may overwrite a value recently updated by another process, or invalidate the
data read in by another procedure which has an intent to write. In either case, the procedure-
based approach is unable to cope with recovering the consistency of the persistent object. If
object locking and process blocking are added, then the validity of a persistent object can be
guaranteed. However, for large procedures, which update a large number of values in one go,
it may take a long time to complete the transaction since it is waiting upon a large number of
values to become free, and the chance of deadlock are increased.

A solution to these problems is to change the programming style of PPLs from
procedure-based to transaction based, where procedures are broken down into a number of
small, logically complete transactions, in order to minimize the contention for values and the
amount of blocking required. Again, this will add complexity to the program development, and
force programmers to adopt a more restricted view of the persistent store, indeed forcing them
to be aware of the nature of the persistent store and of concurrency within the system.

1.3. Objectives

Persistent programming languages, despite the faults highlighted above, make an effec-
tive development platform for databases because of the availability of the backing store from
within the language. The rest of this paper concerns the development of a database kernel in
the persistent programming language Ten15, and discusses how the kernel can be used to
implement an object database model. Specifically, our approach addresses problems related to
the effective representation of database data structures on PPLs, and how these data structures
can be managed efficiently.

The next section concerns our requirements for an object database model. The require-
ments are analysed, and it is suggested, in section three, that Ten15 provides the type system
and persistence model appropriate to allow efficient implementation. Section four introduces
Probe, the object database built on Ten15, describes the rationale for its design and analyses
the component of its architecture. Section five presents our conclusions and ideas for future
work.

2. Requirements for an object database model

The type of database systems which we are interested in has a number of basic criteria.
First, it must have a general application domain, with the ability to support applications such
as IPSE, CAD, multimedia databases, as well as the more traditional database applications,
such as personal data storage and stock control. Second, the system must have efficient support
for the management of bulk data.

To this end, the object database model was chosen as the data model to be implemented
on the system. It is eminently more flexible than more traditional data models, such as the
relational model or functional model, for such a diverse range of application domains. The
object database model is a more general form of the object oriented database model. Where it
differs is that an object is merely a collection of data, which may be first class procedures
which can act as methods. Access and update of data within an object is achieved by an exter-
nal navigational mechanism. This model is similar to the structural object oriented database
model, as exemplified by Damokles [22].

To support the object database model efficiently, we have the following requirements for
an object management system:

g A rich data model, which allows generalisation and aggregation of objects [26], arbitrary
nesting of objects and direct support for object identity or object sharing through a simple
navigational scheme.

g Support for persistence, where any object has the right to be persistent, regardless of its
type or structure.

g Concurrent access to objects, allowing for the security and integrity of objects to be pro-
tected when concurrent accesses are made to shared objects.

g Support for bulk data by providing means of decomposing large objects into smaller enti-
ties when they are preserved on disk, and using mechanisms such as clustering and index-
ing to enable portions of the large object to be accessed and updated efficiently.

In addition, support should be scalable. There should be no penalty in performance for
differing extremes in size of bulk data, in that access to, say, a small set, is not hindered
by optimization mechanisms that must be included to make access to large sets efficient.

g Provision of a reasonable mechanism for the incorporation of new data types, storage
mechanisms and algorithms, and the optimization of existing data structures to cater for
changes in usage.

Our five requirements listed above can be used to investigate the suitability of persistent
programming languages in the implementation of database models. Section 3 analyses the
requirements, then suggests that Ten15 is a suitable PPL for the development of such an object
manager.

3. Ten15

Of the five features mentioned in the previous section, three − a rich data model, extensi-
bility and support for bulk data − are reliant on the expressiveness of the type system of the
PPL. Concurrency and persistence are features of the language which are drawn from a partic-
ular programming paradigm. Hence our ideal model can be broken down into three main
areas: persistence, type system and concurrency. Each of these areas is analysed in turn with
respect to the language Ten15 [11, 24].

Ten15 is the culmination of many years’ research at the Defence Research Agency
(formerly the Royal Signals and Radar Establishment), Malvern, UK into the development of a
strongly typed intermediate language. The design rationale of Ten15 is to provide an algebraic
basis for software development. This leads to a mechanism by which different computers can
be made compatible through the implementation of the Ten15 algebra on each platform. In
addition, Ten15 is a complete systems programming language, permitting the fine-grained
allocation of mainstore, filestore and network resources. The facilities of the language extend
its application area to fields such as high integrity systems, secure systems, IPSE development,
heterogeneous networks and fine-grained databases. This is associated with a mathematically
described strong type system, which ensures the type security of the system functions. The use
of Ten15 means that its users can preserve their investment in existing software because Ten15
can co-exist along-side existing operating systems and, since it is an intermediate language for
the majority of modern programming languages, such as Ada, Pascal, and Standard ML, it can
provide a mechanism for mixed-language working. With regards to database development, the
salient features of Ten15 are that it possesses a mature type system which guarantees the type
integrity of programs developed using the Ten15 notation, an immutable persistence mechan-
ism, and that it has a model of concurrency and transactions.

3.1. Persistence

Ten15 incorporates a persistent filestore, based on a mechanism used in the KeepSake
database kernel [32]. The persistent filestore is called the datastore, into which arbitrarily
complex Ten15 data fragments can be persisted between program executions. The datastore is
novel in that it is immutable, or non-overwritable. The datastore is structured hierarchically,
radiating down from a single root, which is the only location that is overwritable. The root is
protected by a four block, three stage commit algorithm to preserve its integrity in the face of
error or corruption. There are several advantages to immutable filestores over the more tradi-
tional overwritable ones. First, it makes the filestore more resilient to corruption from a
premature commitment due to a crash or an error. This is because, until the root is assigned
with a reference to the new state of the datastore, the old database is valid. If a crash occurs
whilst the root is being written, the subsequent system initialisation will determine whether the
update operation on the root was completed, since the root is not assigned unless the three

protection blocks contain the same value. A second advantage is that the history of changes to
the filestore since the last garbage collection is preserved in the immutable store, allowing
privileged software to undo the changes to persistent data structures. Thirdly, it provides a
many readers, single writer mechanism for concurrent update, since any number of processes
can access the original root while a process is preparing a modification ready for assignment to
the root.

Data is explicitly preserved in the datastore by using a Persist operator provided within
the Ten15 notation. When Persist is invoked on an arbitrary piece of data, the data is com-
pacted into a persistable format by tracing and concatenating all objects to which the data
refers, altering all pointers and offsets within the concatenated block to reflect their new status
as datastore objects, and writing the block onto a new location in the data store. A reverse
operation, UnPersist, takes a persistent reference and delivers the mainstore representation of
the persisted value, by copying the persistent block back into mainstore, updating the pointers
within the block to their new absolute location in mainstore. This approach to persistence is an
example of replicating persistence [9], since repeated unpersisting of the same persistent
object causes two identical copies of the object to be brought into mainstore.

Persist and UnPersist provide a means of writing and reading a value to and from per-
sistent storage. Due to the nature of the immutable storage, updating of a persistent value can-
not occur in place. As a result of this, the Ten15 datastore supports persistent variables (pvars)
which control the updating of single instances of persistent values. The mechanism for
managing updates to persistent variables is to create a copy of the datastore by updating the
root of the datastore to refer to a new datastore where the persistent variable has been updated
to reflect the change in the persistent value, and the hierarchical structure of the datastore has
been altered to propagate the changes.

Persistent variables provide a means by which object identity of persistent objects can be
preserved. The pvar acts as an outwardly unchanging reference to an object on the persistent
store, since changes to the pvar are propagated to all references. Referential integrity is
preserved by a process of path following of updates to the pvar, with the final update being the
current value for the pvar object.

A hierarchical structuring mechanism can be used within a Ten15 datastore. The data
structure for this is the persistent set (pset). If a datastore were flat, eventually as more pvars
are added to the datastore, the data structure handling the pvars would become unwieldly and
inefficient. Hence Ten15 supplies a mechanism for decomposing pvars into a tree of logically
related pvars and psets, where only the group of pvars and all the groups of psets and pvars
directly leading to the root of the datastore are updated when a pvar is reassigned. This is
displayed in figure one, where a persistent value is updated and a hierarchical structure of
pvars and psets is updated as necessary to reflect the new nature of the datastore.

Since the datastore is constantly being written to and no parts of it are ever re-used, there
comes a time when the datastore becomes full. As a result of this, a garbage collection algo-
rithm is called which clears away all persistent values and variables that cannot be traced from
the root of the datastore. A similar event must take place in the mainstore to clear out all data
that can no longer be reached from the existing execution display. An efficient garbage collec-
tor for both the mainstore and datastore is central to the success of Ten15, since both resources
are hidden from the programmer s/he cannot exercise discretion in allocation in order to avoid
the need for the release of memory or datastore that are no longer required.

The distinguishing feature of the Ten15 persistence mechanism in comparison to other

Old Datastore New Datastore

Root

Persistent Value

List of psets and pvars

Notation

..

Figure 1: Updating a persistent value in a datastore.

PPLs, such as Napier88 and PS-algol, is that it was initially developed as part of an investiga-
tion into type systems and compiler construction. As a result of this, the persistence mechan-
ism came mainly as an afterthought. The persistence mechanism is the minimum necessary to
adequately support the arbitrary persistence of data. In addition, the form of persistence exhi-
bited by PS-algol and Napier88 differs from the Ten15 persistence mechanism. PS-algol and
Napier88 have a persistence mechanism based on environments, which are infinite unions of
all labelled cross products [20]. They are tuples of name to complex value mappings, which
can be incrementally and dynamically built up and reduced. Ten15 uses a value based per-
sistence mechanism [28], where a capability to the persistent value is the only form of refer-
ence. The naming approach introduces a degree of complexity into the underlying implementa-
tion which supports persistence, since the uniqueness of names must be guaranteed and com-
parison of names must be made at run-time. The value based approach means that the support-
ing software is simpler since the persistent capability is essentially a disk address, a represen-
tation of the type of the persistent data and an indication of the size of the stored data. The
capabilities can be quoted freely within data structures in the language, without any run-time
overhead for the evaluation of names, and, of course, uniqueness is totally guaranteed. On the
minus side, the capability approach means a greater complexity in the development of the sup-
porting software since capabilities must be unique, secure, unforgeable and able to address a
possibly large address space, especially in a distributed system, where remote access is

incorporated into the capability.

3.2. Type system

Ten15, like Napier88, incorporates a number of modern type system features, such as
lambda type functions, existential quantification, extended union, dynamic typing and first
class closure [15]. Ten15 has a strong type system, in that the type of every value and expres-
sion is resolved at compile time. Type equivalence is of a typed structural equality basis, such
that two values are equivalent if legal typed selectors can be applied to either to give the same
result [4].

The Ten15 type system provides a basis for the fulfillment of the criteria laid out in sec-
tion two. Each of the features is now analysed in turn to demonstrate their efficacy in database
data structure modelling.

Lambda type functions − A type function is the equivalent of a parameterised type. In
Ten15, a polymorphic type can be declared as an arbitrarily complex collection of type
constructors and polymorphic values declared at compile time. This is demonstrated in
figure two, where a lambda type is declared which creates a vector of type ptr X hidden
behind an abstraction called Set. Ptr X is a declaration of a normalised polymorphic
value in Ten15 where the normalisation is achieved by referring to the polymorphic value
through a pointer type which is of a known size. The lambda type can be instantiated as
a particular type, such as a set of pointers to positive integers. The relevance of this
feature to database structure modelling is that an abstract concept, such as a set, can have
a representation hidden from the database applications programmer. Other PPLs support
parameterised types, but Ten15 allows arbitrarily complex combinations of modes
(Ten15 types) to be hidden within the abstraction, through the use of such type construc-
tors as structures, unions, cycle (recursive types) and vectors.

PosInt = range(0, Maximum_integer);
Set = λ(X: vec(ptr X, PosInt))

Used as: Set[X], Set[PosInt]

Figure 2: A lambda type function.

Existential quantification − Existential quantification provides a mechanism for controlling
what is known about an object. An existential value is essentially a mechanism for hiding
the type of a value, until a means exists to access the internals of the existential using a
procedure called skolemization, or by providing a key. Figure three is an example of a
Ten15 existential value which contains a polymorphic data object and a first class pro-
cedure which reveals information concerning the data. The existential Obj can be instan-
tiated to any type, and every instance of Obj will be type equivalent. However, once the
existential object has been skolemized, information concerning the data held within it can
only be discovered by applying the first class procedure within the existential to the data.
The example is also a simple definition for an abstract data type, and it is for this reason
that existentials are useful for database structure modelling since they provide a mechan-
ism for the aggregation of data and objects into a format suitable for persistent storage
and a way of creating an object with the necessary amount of information hiding [5].

Abstract data types are provided for in other PPLs, notably Napier88 with its abstypes,
and Galileo.

Obj = ∃ (X: struct(ptr X, (ptr X → Int)))

Let addone = Proc (i : ptr Int) -> Int: i + 1 Endproc
(* procedure adds one to an integer *)
Let packed_int : ptr Int = Pack CrInt 5
Let int_object : Obj = ToExists: struct(Obj, Int){(packed_int,addone)}
(* create an existential object instantiated to type integer *)
Let (value,proc) = Skolemize int_object
(* skolemizes integer object to reveal contents *)
In (* applys addone procedure to value - result is an integer of value 6,

otherwise program fails if existential was not
instantiated to type Int *)

As: Int {proc(value) | Fail}
Ni

Figure 3: An existential quantification over an integer ADT.

Existentials provide a simplified means for providing dynamic typing in Ten15. When the
existential is generated, an unique value of the instantiated type is stored with it. When a
skolemization takes place, the fields of the resulting structure are universally quantified
with the type representation. When fields are subsequently reference or applied to one
another, the resulting type is the least upper bound of the application type and the
expected result type.

Extended unions − Extended unions are a refinement of the Ten15 mechanism for existential
quantification. They provide two useful properties: security and dynamic typing. An
extended union is effectively a value and unique pair hidden within an existential abstrac-
tion. Ten15 has a conditional skolemize operator, Match, which skolemizes the existen-
tial pair if a unique key value is provided as an argument to the operator. The unique key
value has to be the same as the one provided at construction time. Since unique keys are
unique system wide and cannot be forged due to the strongly typed nature of the Ten15
type system, a capability based mechanism for mainstore security can be provided. The
second property, dynamic typing, as discussed later, is a result of the way that unique
keys are generated. They are effectively a unique integer paired with an unforgeable
numeric representation of the required type. Hence when a Match is made against a key
and a union, the type of the result can be predicted and hidden information used in a type
safe way. Figure four is an example of using an extended union. Unique defines the par-
ticular type of an integer. An extended union is instantiated with the integer type and an
integer. An assertion is made as to the internal type of the extended union. If the two
type capabilities are the same, then the contents of the extended union are revealed, oth-
erwise a type mis-match failure is generated. Reference [11] contains a more detailed
account of using existentials for security purposes.

Extended unions are suitable for database programming for two reasons. First, they can
provide a language based mechanism for object security. Secondly, since unions are

Extended_union = ∃ (X : struct(unique X, ptr X))

Let unique = MakeUniqueInt ()
(* generates a unique value of type unique Integer *)
Let ext = ToExists:struct(Extended_union, Int){(unique, Pack CrInt 5)}
In

As: Int Match{(ext, unique)| Fail}
(* assertion yields 5 or fails if the uniques do not match *)

Ni

Figure 4: Using an existential as an extended union.

based on existentials, it is possible to provide a unified mechanism for the storage of data
structures of a mixed type, using first class closures to tailor access and update operations
to the types of particular elements.

Extended unions can be found in other PPLs. The environments of Napier88 are per-
sistent versions of vectors of name and extended unions pairs. A name is bound to a par-
ticular union, with the value bound to a particular type. When the value is to be refer-
enced, an assertion is made which checks that the type of the value is the expected result
type.

First class closure − First class closure provides a means of delaying the binding of parame-
ters to procedures until run-time and it allows for the partial application of procedures.
This is achieved by issuing a Close command at run-time to a procedure and the neces-
sary parameters. Closures may be nested to any level. Figure five is an example of the
first class closure of an upper bound for a vector delayed until run-time. A non-closed
procedure (Ion) is declared which expects to be bound with a non-local (size) before it
can be executed. The binding of non-locals to ions is performed by the Close operator.

Let test =
Ion

(size : Int)
(value : Int)

→ vec(Int, Int):

Vec(size Of value)
Endion

In
(CrInt 5 Close test) (CrInt 15)

Ni

Figure 5: First class closure in Ten15.

This example shows us the value of first class closure for database programming is that
the internal characteristics of the system need not be determined until run-time, allowing
for greater generality. In addition, closure can be used to limit the scope of the polymor-
phism provided by a procedure by insisting that first class procedures defining operations

on the polymorphic type are closed with the procedure before it can be executed. First
class closure can be simulated in persistent languages such as Napier88 and Quest
[1, 14], using higher-order first class functions, and they are automatically provided for in
lazy functional languages.

Dynamic typing − Dynamic typing is the ability for a data value to carry its type with it at
run-time. This is effectively achieved by pairing the value with a representation which
always denotes values of that type and cannot be forged. The Ten15 type mechanism is
implemented in this way, where a value is associated with a mode (type) which uniquely
defines the type. Using the least upper bound for modes rule, whereby the numeric
representation of a type can be coerced to other similar modes, such as characters to
integers, values which have an equivalent least upper bound for their modes can be
treated as values of the same type [25]. As with extended unions, dynamic typing is use-
ful for representing values of a mixed type within the context of a single data structure.

A combination of these features means that Ten15 has the expressive power on which to
model database structures and support a model rich enough to allow the creation of objects.
This is demonstrated in the following example, where a tuple data type is defined which pro-
vided efficient access to keys in large tuples.

A tuple can be implemented using an extensible hashing algorithm, provided that the key
value can be hashed onto an integer. This can be defined as the Ten15 lambda type function:

PAIR = λ(X : struct(STRING, ptr X))
PAGE = λ(Y : vec(PAIR[Y], PosInt))
TUPLE = λ(Z : cycle(vec(union(TUPLE[Z], PAGE[Z])),PosInt))

This creates a cyclic data type which either refers to another level of the tuple structure
(vec(TUPLE...)) or a page of name to polymorphic value mappings (vec(PAGE...)). To
instantiate the tuple data type and to allow a tuple to have mixed type, the tuple must be bound
to an extended union data type, called affectionately Wotsits.

let aTuple : TUPLE[Wotsit] =

An abstract data type is needed to define the operations permissible on the tuples. Since
extended unions require that the mode representation for a value is not defined until run-time,
first class closure is necessary to allow a procedure to be bound with the mode of the particular
field of the tuple. The ion indexTuple expects the closure of a unique value which defines the
type of a particular field of the tuple. Once this is done, the field can be indexed and the result
delivered provided that the closed mode matches the type of the extended union for that partic-
ular field. In the example, Formals X denotes a polymorphic value is used within the ion.

let indexTuple =
Ion Formals X

(mode : unique X)
(aTuple : TUPLE[Wotsit], key : String)

→ ptr X:
....
Endion

Existential quantification can be used to define the abstract data type for tuples, and provide
information hiding of the representation of the tuple.

TUPLE_ADT =
∃ (X :

struct(
TUPLE[Wotsit],
(unique X → (struct(TUPLE[Wotsit],String) → ptr X))},
....

)
)

tuple = ToExist: struct(TUPLE_ADT, X){(aTuple, indexTuple, ...)}

Using the advanced features of the Ten15 type system, complex database abstractions
can be represented and provide the applications programmer with a seamless database pro-
gramming environment.

3.3. Concurrency

The Ten15 abstract machine has a well defined model for concurrency , inter-process
communication, transactions and remote indirections [11].

Concurrent processes are achieved through the launching of first class procedures bound
to a set of parameters. Synchronisation and communication takes the form of typed queues.
The sender places a typed piece of data into the queue, which the receiver either waits for,
thereby providing synchronous communication, or times out should the data not be delivered
within a certain time, thereby providing asynchronous communication.

Within the abstract model that defines Ten15, there is a notion of transactions. Ten15
transactions are a data type which are incrementally built up out of persistent variables which
must be committed at the same time, to avoid inconsistencies in the datastore. As with the
traditional notion of transactions, the completed transaction can be committed or abandoned
without affecting the datastore. A number of processes can build up transactions in parallel
and, due to the flexible model for transactions adopted by Ten15, it is theoretically possible for
deadlock to occur if shared pvars are added to two or more transactions in differing orders.
However, Ten15 creates transactions based on a canonical ordering of pvars before any
attempt is made to insert them. Thus, in the case where two transactions which are to share
two common pvars are created in parallel, the possibility of deadlock is eliminated.

The Ten15 notion of persistent reference and variables provides an effective means of
abstraction over placement of persistent data across several distributed datastores. Since the
parallelism model is hidden beneath the notation, it is possible for local placement, remote
placement and object migration [27] strategies to be implemented without affecting Ten15
code written for a single node. A problem with this approach is that there is a loss of efficiency
in the resolution of capabilities and the some of the flexibility of placement is taken away from
the programmer.

In conclusion, although concurrency is not available in the Ten15 notation, a model exists
on which a conceptual distributed database management system can be implemented. Transac-
tions are available on the Vax implementation of Ten15 so that the update of a set of pvars can
be committed through the single writing of the root.

4. Probe

In this section the Probe object database system is presented. The architecture underlying
Probe is introduced and analysed, and mention is made of its salient features. In addition, we
demonstrate how Probe is an attempt to solve the problems of databases developed using per-
sistent programming languages, as discussed in the introduction. We pay particular attention
to the programming language TDBPL which is our attempt to provide a coherent notational
semantics for the Probe abstract database machine.

4.1. The Probe architecture

Figure six shows the levels that comprise the Probe object management system.

TDBPL

Application

Data Structures
Database

Data Structures

Ten15

Database Programming

Language

Persistent

Probe

Abstract

Machine

Figure 6: The Probe architecture.

4.1.1. Ten15

Ten15 provides the development language for Probe. Hence Probe is developed in a
type-secure environment, with a value based persistence mechanism and concurrency control
using transactions. Ten15 permits buffer, mainstore and datastore management, datastore
security and data integrity.

4.1.2. Persistent data structures

This level provides data structural abstractions over the persistent store. The philosophy
in their implementation is to hide the persistent store beneath a level of well-defined abstrac-
tions, such that the locality of a value is invisible to the programmer. In addition, the level
should allow access and update of values with the minimum number of interactions with the
persistent store, and with the minimum amount of data having to be brought into mainstore to
achieve this. The mechanisms available in this level are:

g Accelerators, which are a means of providing fast access to bulk data through the mani-
pulation of persistent references. The indexes to bulk data make use of extensible hash
tables [23], B-trees [18] and fixed indexes. The approach for the implementation of the
accelerators is to decompose the data structures which fit into chunks which can be
retrieved in one backing store access (BSA). In the case of extensible hash tables, this
approach is highlighted by the decomposition of the hash table into nested chunks of ‘bit
slices’ of the hash key. Also, another goal is to provide generality of keyed access, so
that an arbitrary data type is as valid a key as a string, provided that there is a suitable
hashing algorithm for the data structure. Generality allows for a larger application
domain for data structures of the level.

g Associative matchers, which map names onto persistent values. The data structures per-
mit related polymorphic keys to be mapped onto values to be represented on the per-
sistent store. They are used in association with the extensible hashing accelerator to pro-
vide storage for name to value pairs.

g Sequences, which group together values of similar characteristics, locality or type. These
are similar to associative matchers, expecting that values are stored using a numeric index
as the key.

g Compactors, which provide compact representations for persistent data that have similar
values. For example, sequences in which every index has an identical value can be
represented as a single value and a pair of the sequences upper and lower bounds.

4.1.3. Database data structures

The database data structures make use of the data structures defined in the persistence
level, to provide the abstract data types that make up an object database model. The imple-
mentation policy for the model is to minimise the overhead of frequent access to the persistent
store by providing a mechanism whereby the database data structures can be partially built up
and evaluated in mainstore. This necessitates that for changes to be propagated to the store, an
explicit commit operation must be applied to the data structure. Failure to commit a data struc-
ture is equivalent to aborting the partial transaction. Used in conjunction with Transactions,
this means that no unnecessary writing to disk needs to be made.

Transactions on database objects must be partial due to nature of Ten15’s memory organ-
isation. Values are kept in memory until there is no longer a reference to the value from any
active data structure. In the context of database objects, it is possible that a data structure will
be larger than mainstore, and since it will be active, none of its limbs can be cleared out by the
garbage collector, and so the memory will become full. Two solutions exist to this solution:
first, the brute force approach is to commit the entire structure to the datastore, and start again
with the new copy, since each limb will now be replaced by a persistent value rather than the
mainstore expansion of the data structure. A second approach relies on an intelligent commit
algorithm. Each data structure is allocated a maximum partition size. As a data structure is
incrementally brought into memory, it will grow beyond the bounds of the partition. When
memory becomes tight, it is possible to apply the partial commit algorithm which will persist
limbs of the data structure, replacing expansions with persistent references, until the data
structure is back within the bounds of its allotted partition. The approach is analogous to pro-
viding a paging policy for each database data structure. When the partial commit is invoked is
left to the discretion of the applications programmer. The object is not fully committed until
the pvar is assigned with the new persistent reference.

It is currently a matter of research as to the optimum mainstore representation to provide
a suitable basis for the implementation of the partial committal algorithm. Preliminary investi-
gation suggests that the mainstore representation should consist of a nucleus, which extends to
the boundary of the partition size, consisting of the roots to any persistent data structure, key
information, such as the size and bounds of the data structure, and any hot spots, i.e. values
that require optimized access since they are frequently referred to. The concept of hot spots is
discussed in section 4.3.

Each data structure in the database level has three things in common. First, they can have
three variables types: a main memory representation, which can be used for the incremental
building of the data structure, or as an intermediate store for results and inter-transaction com-
munication; a persistent representation, which permits the data structure to be represented on
the persistent store as a value; and the persistent variable representation, which allows the data
structure to preserve object identity. The main memory representation can be derived from the
other two forms by incrementally loading those persistent values that are referenced, so that
values within the data structure can be changed without having to repeatedly read or write
from or to disk respectively.

Second, each data structure allows the specification of mainstore and backing store con-
straints. When a data structure is created, it expects the closure of a persistent set, which
specifies the location of the object in the datastore hierarchy, the size of a value in bytes and
the size of a disk block, so that levels of the accelerator indexes can be fitted into a single
backing store access. In addition, a cluster size is required, which defines the optimum size of
the core data structure that is required to remain in memory.

Thirdly, each data structure allows for persistent mutation whereby it changes to its
optimum, most efficient representation over its lifetime, based on access and writing trends.
This concept is discussed more fully in section 4.3.

The data structural abstractions of the object database model include sets, tuples and
databases.

g Tuple A tuple is a fixed size set of string to extended union pairs, where each extended
union is an instantiated polymorphic value. The tuple is stored as a fixed index, with the
name field mapped onto an index using rehashing. For large tuples, i.e. large than one
BSA, the index is decomposed into blocks. The leaves of the index are pages of keys to
value pairs. Operations on specific keys in the tuple require the closure of a unique value
which represents the type of the resulting value. If the type of the closed value and the
extended union match then the required value is returned.

g Uset A Uset (unordered set) is a set of values stored in an unstructured manner. Values
must be unique, requiring the closure of an equivalence operation. This form of set is
inefficient for large sets, since operations such as to test for membership or addition
require iteration through the entire set to test for uniqueness. Usets are implemented on a
refinement of the extensible hashing data structure, where each value is assigned an
unique numeric key when it is added to the uset.

g Oset An Oset (ordered set) is a set of values stored with a partial ordering, the partial
ordering being based on the provision of a hashing operation for the stored value. Osets
bring efficiency to the storage of large sets since tests for membership and addition
requires the resolution of the hash of the value to be stored. If the hash key is not unique
then pages of values can be created. Should a page become full, a simple rehashing

algorithm can be used.

g Database The Database type allows for the coexistence of a single database in the pro-
cess of change. The change may be the development of the schema describing the struc-
ture of the database. This data structure is discussed more fully in the next section.

In addition, this level supports atomic data types composed using the persistent data
structures. Atomic data types are bulk constructors for data types that do not conform to a par-
ticular data model, i.e. the data structure cannot be expressed in terms of the data structures
provided by a database model. Vectors, arrays, queues, lists and stacks are examples of
atomic data types. However, atomic types can make use of the same data structures to provide
efficient persistent representations. Like the data structures defining the object model, the
atomic data structures can have mainstore and persistent representation, depending upon their
respective needs to be persistent which is the responsibility of the applications programmer.

The database data structure level also supports statistical analysis, so that optimization on
the location of particular values in the persistent store can be performed independently of the
persistence level data structures. This is one of the more important features of Probe, which is
discussed fully in the next section.

4.1.4. Ten15 Database Programming Language

Probe provides the basic mechanisms to support an object database model. In this section
we discuss a concrete programming notation that resides on Probe, eponymously called the
Ten15 Database Programming Language or TDBPL. The rationale behind the production of
TDBPL is discussed in conjunction with examples demonstrating the problems arising in using
Probe as a basic model for database construction. The equivalent examples are then present in
the TDBPL notation in order to demonstrate the expressiveness of the language.

4.1.4.1. Why yet another programming language?

As discussed in the introduction, DBPLs combine the facilities to build a database with
the expressive features of a programming language from a particular programming paradigm.
We have three main criteria for a DBPL, derived from the experiences of reference [13]:

Data model − The DBPL should have a powerful modelling ability, so that any reasonable
database model can be constructed within the language, In addition, the data model
should provide orthogonal storage capabilities for data structures that are external to the
model yet require an efficient representation (atoms).

Expressive power − The DBPL should possess a rich variety of operations and data struc-
tures, so that the data model can easily be combined and reasoned with by operations that
are independent of the database.

Underlying efficiency − The DBPL should be constructed upon an efficient database kernel,
so that the database application programmer does not have to ‘break’ the model to pro-
vide maximum efficiency for a database system. Garbage collection and data reorganisa-
tion should be part of the database kernel, so that the representation of a database on
backing store is hidden from the programmer and cannot be altered.

Probe satisfies all three criteria. First, Probe supports an object based model, allowing
complex objects to be arbitrarily nested, using sets and tuples. In addition, the entities of the
database can be drawn from the infinite number of data structures that can be constructed
using the Ten15 type constructors, or from the set of persistent atoms defined in Probe, which

provide efficient persistent representations for traditional programming language bulk con-
structors, such as fixed vectors (SVEC), dynamic vectors (DVEC) and arrays.

Second, Ten15 has a set of powerful operations and control flow facilities. These can be
combined with the data retrieved from the database and the database operations to improve the
expressiveness of the language.

Third, Probe provides an efficient platform for database development, due to its reliance
on optimised accelerator data structures to give access to data. Data re-organisation is under-
taken on an heuristic basis, with analysis of operations on data taken as the basis for a policy
of data structure mutation.

As an abstract machine, Probe possesses the three desirable features of a DBPL. How-
ever, there are several features of the machine that are not consistent with a coherent DBPL,
and it is therefore prudent to layer a notation on top of Probe. The inconsistencies of Probe are:

g Due to the way in which attributes of a TUPLE type are constructed, the type representa-
tions of specific fields are instantiated at run-time, and are unique for that particular exe-
cution. Hence two databases with the same schema and containing identical values can
be type-wise incompatible if they are created at different execution times. In providing a
notation, a degree of consistency can be applied to type representations, in that a particu-
lar type is incorporated into the compiler. When a new type is defined, this is dynamically
added to the compiler data structures for future reference.

g The data model level of Probe relies on the closure of several values which describe the
underlying structure of the persistent heap and the machine architecture, such as a
polymorphic hashing function, the size of data stored, the optimum size for blocks and
clusters of blocks. The inclusion of the values detracts from the readability of the schema
definition, and the values can be standardised for a particular compiler, or derived from
compile time analysis of the data structures involved.

g Each data structure in Probe can be memory resident, read only, or can have both read
and write access capabilities, which can be arbitrarily applied in defining a schema. By
hiding the decision process under a notation, the choice of whether a value should be read
only, or readable and writeable, or whether the value should be kept in memory whilst
intermediate operations are applied to the data structure, can be based on heuristics in the
compiler and static analysis.

g Probe provides a number of disparate database data structures. Each is logically com-
plete, in that update operations are either committed or are aborted, without leaving the
data structure, or the datastore, in an inconsistent state. However, a database is typically a
nested set of the data structures, and so update operations must affect the entire database,
or leave it unchanged. As a result, update operations on individual data structures must be
coordinated through the use of transactions. The management and composition of transac-
tions can be made a part of a notation compiler, since the compiler will have a greater
understanding of the structure of the database and so be able to allocate transactions
accordingly.

g Since key fields of tuples can be identified at compile time, it is possible to provide
optimisations in retrieving values that use the key value field as part of the query. The
language should be able to determine when a key value is being accessed and substitute a

specific index operation instead of a general iteration to find the value.

g Probe lacks a graceful exception handler, in that Ten15 insists that if protection from
exceptions is required, procedure invocation must be made conditional upon the likeli-
hood of failure†. This hinders the programming style of Probe and the necessary code
could be generated automatically by a compiler of the notation.

g The final justification for a notation for Probe is more pragmatic, in that the notation that
Ten15 uses is, although expressive, intellectually difficult to reason and program with. A
new notation would hide the less intuitive parts of the language under ‘syntactic sugar’.

These limitations have guided the definition of TDBPL.

4.1.4.2. Programming a database application using Probe

This section describes an actual database built using Probe, highlighting the notational
inadequacies of the abstract database machine. Due to the limitation of space, this section pro-
vides only brief demonstration of using the Probe system as a development environment for
database applications.

The application developed in Probe is a simple employee database, where an employee is
represented as a tuple, consisting of a name, which acts as a primary key, an age attribute and
a salary. Employees are collected into an ordered set, using the uniqueness of the name to pro-
vide a partial ordering, dependent on the hashing algorithm applied to the key field.

The schema for the the employee database is represented using Ten15 modes (types) as:

Employee = TUPLE
Database = OSET[TUPLE]

Figure 7: The modes defining an employee database.

The schema defined in Figure 7 contains little information about the nature of the
employee database. Tuples are created dynamically, and every tuples has the same basic type,
hence there is no provision at compile time for the definition of attributes of the tuple object. A
Probe database schema is effectively an informal collection of types, whose interactions and
constraints are defined dynamically. Hence the schema makes no provision for the integrity of
the database application, nor does it define the specifc details of the application, such as attri-
butes and ordering policies.

Tuples are created dynamically, using the Probe operations crtuple (create tuple) and
addtuple (add tuple), which require the late binding using first class closure of the characteris-
tics of the underlying datastore, such as the size of data stored and the size of a backing store
block, and the placement of the tuple in the persistent store hierarchy. This is demonstrated in
Figure 8∗ . The code in Figure 8 makes use of the database types defined in Figure 7. The
Employee type is returned from the create_employee operation since the operations on tuples
hhhhhhhhhhhhhhh
† The Ten15 operator Trapply is used to conditionally apply a set of parameters to a function. An alter-
native branch of code is supplied to deal with a failure in the procedure application. The following ex-
ample demonstrates, where 4 is applied to a function which adds one to an integer. In the event of a
failure, such as overflow, then the second limb (|) of the result code is subsequently called.
Trapply {(4),add_one | Op x: writei(x) | write("Failure")}

return a structural equivalent type to the Employee type.

Let hashstring = Proc (str : String) → PosInt: {body omitted} Endproc
Let eqstring =

Proc (str1 : String,str2 : String)
→ bool: {body omitted} Endproc

Let create_employee =
Proc (name : String, age : PosInt, salary : PosInt)

→ Employee:

Let fields = ["Name","Age","Salary"] {simplified vector constructor}
Let initial_tuple =

((16, 512) Close (stringmode Close (pset Close crtuple)))
(3, name, fields, RW)

{ crtuple defines the outline of the tuple with 3 fields,
assigning the first field of the vector fields with name.
(16, ..) is the data size and the block size of the underlying
machine. Stringmode defines the type of the Name field.
Pset defines the placement of the tuple in the datastore
RW makes the tuple readable and writeable}

Let partial_tuple = (posintmode Close addtuple)
(initial_tuple, age, "Age", MEM)

Let complete_tuple = (posintmode Close addtuple)
(partial_tuple,salary, "Salary",MEM)

{ addtuple incrementally builds up the tuple in memory (MEM), assigning
each key of the tuple with a type and a value of that type}

In
commit(inital_tuple,complete_tuple)
{ commits RW tuple with complete mainstore tuple }

Ni
Endproc

Figure 8: Creating an employee tuple.

By invoking the create_employee procedure defined in Figure 8, the resulting employee
can be used to create an employee database. Figure 9 demonstrates the creation of an
employee database in this way. The ordered set (OSET) data type provides a partial ordering
of its elements through hashing. With respect to the employee type, a hash function is defined
which returns a hashed value based on the primary key of the value. In Figure 9, a database is
created using croset (create oset), and tuples are subsequently added to it using addoset (add to
oset). This links in with the types defined in Figure 7, since a database is defined as an OSET
of employees. Create_employee delivers a value of type Employee which can be added to the
hhhhhhhhhhhhhhh
∗ For the sake of clarity, and due to the obliqueness of the Ten15 type system, the notation has been
somewhat simplified in the all the examples given.

OSET created in new_database.

Let eqemployee = Proc(e1 : Employee, e2 : Employee)
→ bool: {body omitted} Endproc

Let hashemployee =
Proc (e : Employee) → PosInt:

hashstring(
(stringmode Close indtuple)(e,"Name")

)
{ Indtuple returns the value associated with the specific

key value with the closed type. In this case, the primary
key name field is return so that it can be hashed.}

Endproc
Let new_database =

Proc () → Database:
Let tuple1 = create_employee ("Smith",23,25000)
Let tuple2 = create_employee ("Jones",45,18000)
Let database =

(hashemployee Close ((64,512) Close (pset Close croset)))
(tuple1, RW)

{ croset requires the closure of the hashing function for
employees, the size of data to be stored and a location
in the persistent hierarchy. As parameters, it takes a
tuple of type employee and a read/write capability.}

In
(eqemployee Close (hashemployee Close addoset))(database, tuple2)
{ addoset adds an employee to the database, using eqemployee

to check that tuple is unique, and hashemployee to
specify a lcoation for storage of the value.

Ni
Endproc

Figure 9: Creating a database of employees.

Queries on values held in the employee database take the form of path following. For
example, a query such as ‘What is Smith’s salary?’ will result in every element of the set
being searched until an employee called Smith is found, whose salary is then returned. Probe
allows iteration through sets using a for_each operator. The for_each function iterates through
each value in a set and performs a programmer-supplied action on the value. If the result
status of the action is satisfied then the iteration terminates. This is demonstrated in Figure 10,
where a version of the query defined above is highlighted.

Let db = new_database() {defined in Figure 9}
Let introduction : PosInt = CrPosInt 0 {value will instantiate action}
Let action =

Ion
(name : String)
(e : employee, result : PosInt) → (bool,PosInt):

{action requires late binding of name}

Let tuple_name = (stringmode Close indtuple)(e,"Name")
{get name from this employee}
In
If name = tuple_name
Then {found the right person → deliver salary and cease searching}

(True,
(posintmode Close indtuple)(e,"Salary"))

Else {not found → continue looking}
(False, result)

Fi
Ni

Endion
Let smith_salary : PosInt = for_each(introduction, ("Smith" Close action), db)

Figure 10: What is Smith’s salary?

The example in Figure 10 demonstrates the general form for retrieving an arbitrary attri-
bute from a set of tuples. However, it is possible to provide an optimisation for the operation
by exploiting the way in which values are stored in a partial ordering in the set. In the exam-
ple database, the Name field is used as the basis for the hash function which is closed into all
the operations on the set of employee. The query ‘What is Smith’s Salary’ makes use of the
Name field to ascertain Smith’s salary. The weak type of tuples and the operator findoset
which takes a set and a value and returns the equivalent value stored in the set can be used to
provide an optimised access for a specific name field.

Figure 11 is an efficient rewriting of the query solution of Figure 11. Since hashing and
equivalence testing of employees rely solely on the Name field, a minimal tuple, with the
required Name field as its only attribute, can be given to findoset, and the operation will return
the equivalent tuple with the additional fields.

Let partial_tuple =
((16, 512) Close (stringmode Close (pset Close crtuple)))

(1, "Smith", ["Name"], MEM)
Let full_tuple = (eqemployee Close (hashemployee Close findoset))

(database, partial_tuple)
Let salary = (posintmode Close indtuple)(full_tuple,"Salary")

Figure 11: An efficient implementation of the ‘What is Smith’s Salary’ query.

The examples in Figures 7-11 demonstrate that Probe provides a logically complete
DBPL. It provides a fully functional object database model, using the tuple and set primitives.
It possesses the ability to finely tune the storage policy for database data structures using the
late binding of the size of data and backing store blocks, and of the specification of the attri-
butes that are be used as index values. It possesses expressive power since Probe and Ten15
data types and operators can be combined in an orthogonal manner. Efficient storage of values

stored using the database constructors is hidden beneath the abstraction. Reliable and resiliant
storage is provided for by the underlying Ten15 persistent storage implementation.

Probe conforms to the three criteria for a DBPL described in section 4.1. However, the
notation Probe uses is obviously awkward, and the meaning of operations is not readily
apparent, and that the structure of database is open for destructive operations, since the schema
provides only a general description of the databae and does not enforce integrity.

4.1.4.3. Programming using TDBPL

TDBPL is an attempt to alleviate the problems of lack of clarity of Probe. It achieves this
through providing a more succinct syntax for operations and relying on inference to form com-
plete Probe operations.

Before introducing TDBPL, it is worth discussing the rationale of layering TDBPL on
Probe, as opposed to the approach of implementing TDBPL as an independent DBPL. There
are a number of advantages and precedents. First, it compiling down to a high level language
is easier, from an intellectual and software engineering viewpoint, than to machine code.
Secondly, Probe provides an existing, architecturally neutral, efficient set of database primi-
tives which are combined with the very expressive Ten15 programming language. Thirdly, the
approach for building PPLs has been to provide a persistent architecture beneath the program-
ming language. Examples of this approach include POMS [16] and PAIL [12, 21] which are
the persistent object stores underlying implementations of PS-algol. The mapping between
Probe and TDBPL is the database programming language equivalent of this approach.

Figure 7 gave a Probe schema definition for an Employee database. A problem with the
definition is that all values of type TUPLE are structurally equivalent. TDBPL can apply name
equivalence to tuples by generating more type information from an expanded schema
definition, as demonstrated in Figure 12. TDBPL can now create a type representation based
on the extra information given with the tuple, which is paired with the tuple, and used to
prevent inappropriate tuples being applied to procedures. The textual description of the
schema can be used as a basis for an auxiliary data dictionary data structure. When an opera-
tion is applied on the tuple, the data dictionary is checked to ensure that the key value is valid.
The addition of the Key Field keyword permits the automatic generation of hashing and
equivalence functions, which must be closed into ordered sets at the Probe level. If the Key
Field keyword is omitted then it is left to the discretion of the language to decide on a hash key
field, chosen at compile time or altered dynamically using statistical analysis of the data struc-
ture.

Employee = TUPLE [Name : Key Field String, Age : PosInt, Salary : PosInt]
Database = SET of Employee

Figure 12: A schema in TDBPL.

The task of building database objects can be hidden beneath the syntax of TDBPL. Fig-
ures 8 and 9 demonstrate the construction of an employee and a database respectively. Figure
13 is the TDBPL equivalent of the two functions.

e1 : Employee = ("Smith",23,25000)
e2 : Employee = ("Jones",45,18000)

db : Database = {e1,e2}

Figure 13: Creating a database in TDBPL (1).

The (..) operator takes the place of crtuple and addtuple, constructing a tuple on disk in a
single transaction. The {..} operator takes the place of croset and addoset. If the construction
process is re-arranged into a single statement, it is possible for the whole database to be con-
structed in a single transaction, as depicted in Figure 14.

db : Database = {("Smith",23,25000),("Jones",45,18000)}

Figure 14: Creating a database in TDBPL (2).

First class closure is now in the control of the TDBPL compiler. The type of each field
can be inferred from the schema, and hashing functions are based on declared key fields. The
low level characteristics are embedded into the compiler and are no longer the concern of the
database programmer.

Using the TDBPL notation, the query defined in Figure 10 can be expressed with
increased clarity. This is detailed in Figure 15.

Foreach value in db
Return PosInt
Do

name = value.Name;
If name = "Smith"
Then

Exit With (value.salary)
Fi

Od

Figure 15: Performing a query in TDBPL.

The Foreach iterator is an abstraction over the Probe for_each. It requires db as the set
type, generates a dummy PosInt as the introduction, and the body of the loop is expanded to
create the action of the for_each statement. Exit_for is equivalent to exiting the iterator with
(True, result). Value.Name is a re-expression of the indtuple operator.

The notation in Figure 15 hides the choice of representation for the above query, where if
all the key fields of a tuple are known, but additional attributes are required, then it is possible
to directly index the tuple value using a partial representation of the tuple. In the case of Figure
15, it is the decision of the notation compiler to decide whether all the key fields of the tuple
are known and generate code using the the findoset operator.

4.1.5. Application

The application level is the layer which the database programmer produces. The pro-
grammer is presented with a language which supports an object database model that uses sta-
tistical analysis to provide the optimized representation for a database, based on analysis of
previous operations on the database. In addition, since TDBPL is a super-set of Ten15, it is
still possible to integrate the advanced features of Ten15 into the model, such as the storage of
first class procedure.

4.1.6. Statistical analysis

Probe provides for statistical analysis of execution of procedures and queries for the top
three levels of its architecture. Analysis of the Database level involves the storage of average
execution times for distinct types, operations and, in the case of tuples, attributes. A combina-
tion of particular type, operation and attribute constitute a statistics object. For example, an
employee tuple will have a statistics database with the following statistics object, indexed on a
combination of the type, operation and field names, i.e.:

{ stats_object["employee","create",""]
stats_object["employee","index","Name"]
stats_object["employee","index","Age"]
...

}

In addition, for each statistical object, a list of slowest operations to particular values within
the associated data structure is maintained. The list is used as a basis for identifying values
and regions which require optimized access.

The statistics module is made available to the language and applications, so that blocks of
code, queries and transactions can be associated with statistics objects. At this level, statistics
can be used to compare different implementations and algorithms in implementing queries.

4.2. Features of Probe

There are two main design criteria in the construction of Probe: to provide support for a
complex data model and to provide efficient management of bulk data. The complex data
model is achieved through the expressive power of the Ten15 type system, as discussed in sec-
tion 3.2. Efficient management of bulk data is managed through a combination of factors,
which make the Probe system unique, particularly its provision of persistent mutation. Three
main branches can be identified: organisational, representational and schema mutation.

Mutation is a refinement on the ideas of database reorganisation, as found in relational
database systems [10], and on storage selection, as found in the object-oriented database sys-
tem ObjectStore [29], in that the representation of a database changes to match optimum
access patterns and that there is control over the representation that a database adopts.

4.2.1. Organisational mutation

Probe supports two kinds of bulk constructor: sets and tuples. A set is effectively an
unordered collection of unique values of a particular type. A tuple is a set of name to value
mappings, where each name is unique to the data structure. As discussed in section 4.1.6, attri-
butes of tuples and individual values of sets can be identified as having slow read or write
times. Organisational mutation requires the identification of values requiring optimization in

order to provide a more efficient representation. This form of mutation exploits the dynamic
characteristics of a data structure.

Two criteria can be used as a basis for organisational mutation: those values that are fre-
quently accessed thereby overshadowing the importance of access times; and those values that
are accessed a ‘reasonable’ number of times, but access times are extremely long. The vague
statements in the previous sentence can be translated into hard thresholds for organisational
mutation by the identification of average number of accesses per value and the average access
time, and their respective standard deviations, for both reading and writing. An addition factor
must take account for the size of the values and the current extent of the bulk constructor,
specifically the number of BSAs required to reach the value. This data is brought together into
a mutation lattice, which is a three dimensional table which maps access times onto value size
and the constructor extent.

The actual process of mutation can be invoked after a specific period, after a slow opera-
tion on a value or as a separate operation. When a data structure mutates, the statistics from a
statistics object are compared against the mutation lattice. Using the value size for the data
structure and the current size depth of the representation, the threshold time for mutation will
be delivered. If the average access time for the current data structure lies outside the critical
region for the threshold, then it is likely that that particular operation on the data structure
requires some form of optimization. If the case is the same for all or a majority of permissible
operation on the data structure, then an actual alteration to the current representation should be
made.

Mutation can take several forms. Hot spots, those values that require an optimized access
path, can be placed higher in the data structure hierarchy, i.e. at the root, increasing the perfor-
mance of read and write operations. Also, they can remain in their location but be brought into
memory whenever the data structure is first accessed, thereby obviating the need trace the
value for a read or a read with intent to write operation. Active regions can also be identified,
which are group of values or levels in the data structure representation that are frequently
accessed or inefficient. Similar optimizations can be applied as for hots spots.

Optimized access brings with it its own problems. Once a value or region is given an
optimized access path, it must be possible to determine whether a value still requires it at sub-
sequent invocations of the mutation process. This can be achieved the careful monitoring of
performance by assigning a statistics object to the set of optimized values. In addition, there
must be a constraint as to the number of optimized access paths that a data structure can sup-
port, since the actual process of determining whether the path to a value is through the normal
mechanism or is optimized adds an extra overhead to access, and the larger the number of
values that are supported, the greater the overhead. This constraint can be user supplied or be
determined by the mutation process.

Organisational mutation is being used in sets and tuple. In sets, operations are used as the
main analysis criteria and accesses to values that are inefficient are maintained in the slow lists
of each operation object. If a value appears in the slow list of all operations, then it is mutated,
provided that it meets the mutation threshold as defined in the mutation lattice. Tuples provide
a greater control over mutation since inefficient access to keys and operations can be used as a
basis for statistical analysis. Hence mutation takes the form of analysising operations for each
key, and mutating accordingly if the key meets the threshold and is inefficient for a majority of
operations.

4.2.2. Representational mutation

Representational mutation is an attempt to exploit the initial and static characteristics of a
bulk data constructor to provide the optimum efficient representation. It is the mutational pol-
icy which can be applied to data structures which have an known initial representation, such as
vectors and arrays, or have fixed upper bounds, such as bounded sets, bounded buffers.

Vectors and arrays are examples of the atomic data structures that Probe supports. An
atom is a data type whose representation is beyond the scope of the data model. Since they
may also be constructors for bulk data, and by the orthogonal laws of persistence, have the
right to be persistent, it is necessary for them to have a persistent representation which does
not inhibit the performance of the data structure. Arrays and vectors can make use of the data
structures provided by the Persistence level as a basis for a persistent representation.

The characteristics of arrays and vectors are that they are created to be a fixed size, with
each value referring to a constant value. These characteristics can be exploited by representa-
tional mutation. Accesses and additions to arrays and vectors can be described in terms of a
life-cycle model. On creation, a data structure is constant, where every value has the same type
and value. As indexes in the data structure are altered, an anomalous stage is reached, where
the data structure can be represented in its original format, with a set of anomalous value to
index pairs. As more indexes are altered, the data structure becomes sparse, whereby the origi-
nal representation is no longer valid, since a large number of the indexes have been changed,
and it is inefficient to continue searching the value to index pairs. The final stage in the life
cycle is when the data structure becomes dense, so that no trend in the values that the structure
contains can be identified. The life cycle is reversible, in that it is possible for a data structure
to become constant over time, by gradually altering all the changed indexes back to the origi-
nal value, or indeed some other value.

Every stage in the life cycle can have several representations. The constant phase can be
represented as a constant value paired with a set of bounds for indexes, as an alternative to the
obvious representation of an allocated contiguous block of constant values. The anomalous
phase can make use of the constant representation, pairing it with a set of value to index pairs,
where the indexes must be within the range of the bounds defined in the constant form. The
sparse form can have several, equally effective representations. One way is to decompose the
data structure into a number of regions, making use of the anomalous format to represent each
region. Another way is to extend the anomalous format, altering the storage for the index pairs
from a value domain to a regional domain. The dense phase is the full representation of the
data structure in a format suitable for persistent storage, i.e. making use of the primitive data
structures provided by the Persistent level of Probe.

A data structure can be seen as a power set of representations, connected by transforma-
tion processes. Using Ten15, it is possible to model the alternative representations as unions,
and manipulate them in the abstract data types of the Database level of Probe.

As an example of representational mutation, we consider the case of modelling a per-
sistent vector of values. The data type is represented by a contiguous block of values, indexed
by a numeric key, residing in persistent storage. The create operation for the data type takes an
upper bound, an initial bound and a single value, returning a block comprising the initial value.
The data type is ripe for application of the life cycle model of representational mutation, since
it clearly has an initial configuration distinguishable from its intended format. Figure 16
demonstrates in graphic form the alternate representations possible for a persistent vector.
During its constant phase, it can make use of the format described above, i.e. pairing the value

with the bounds. An anomalous format would be to use the constant representation and to
extend it with a set of index to new value pairs. Depending on the size of the vector, the sparse
format could be derived from the anomalous format, using regional decomposition of the data
structure, or it could be ignored if the data structure is small. In the dense stage, the vector
could be represented as either a persistent block, if the data structure is only a few blocks in
size, or using the primitives provided by the Persistent level. Indexing and assigning the mut-
able vector relies on the the operations of the data type understanding the different possible
representations. Changing between the different stages in the life cycle of the data structure is
governed by statistical analysis of the efficiency of access and update to the formats.

boundvalue anoms

region index

index

value

index

boundvalue anoms

value boundCONSTANT

ANOMALOUS

SPARSE

DENSE

Figure 16: Representational mutation applied to a persistent vector.

Representational mutation can also be applied to data structures that are constructed
dynamically but have a fixed set of bounds imposed at initialisation time, i.e. a set which can
have most ten values. The policy of mutation in this case is one of restriction, in that it is not
necessary to provide a full dynamic representation for the data structure and that an alternative
representation can be used. In the case of the set with ten values, instead of using an extensible
hash table to represent it, it will be more efficient to use the normal persistence mechanism
since the representation is unencumbered by the need to resolve hash indexes or have the over-
head of supporting data structures. If the bounded set is larger, then a limited form of decom-
position of the indexes can be used to optimize accesses. When the bound become extremely
large or the restriction is removed then the extensible hashing based representation can be
used. The thresholds for each level are held within the mutation lattice, but a general rule for
this form of mutation is that if the maximum size of the data structure is less than the cluster

size (a collection of disk blocks) then a flat representation is the most efficient.

Given the hypothesis that persistent mutation is desirable, a problem remains concerning
when to transform between the different representations for a data structure. The problem can
be solved by analysing the performance of operations on the data structures. In the case of
representational mutation, when accessing a particular representation becomes inefficient, the
data structure should adopt a different, hopefully more efficient representation. The thresholds
for representational mutation can be kept in a mutation lattice format as discussed in the previ-
ous section, where optimal access times are mapped against the size of data being stored and
variation in the bounds and dimensions of the specific data structure.

Representational mutation can be found in the Database level atomic data structure
SVEC (static vector) which is incrementally transformed form a constant representation to a
dense version and in the DICTIONARY (dynamic tuple) data structure, where key to value
pairs are added dynamically to a dictionary. In addition, it is possible to derive bounded sets
from Usets and Osets by simple modification to their sources, allowing for persistent vectors
of values if the size of the data structure will not exceed the size of a cluster.

4.2.3. Schema Mutation

A third form of mutation is provided by the Probe system. Schema mutation affects the
Database data structure available in the Database level of Probe. Generally, the Database data
structure collects together all object of the same type into a database. In addition, the Database
construct allows for objects with slightly different schemas to be present in the database. This
is because database schemas are not constant: as the use and needs of a database change over
its lifetime, so does its schema. The Database data structure is implemented as a set of schema
to set of object pairs, where the schema is a type representation of the objects contained in the
set. Operations on the database are bound to a particular schema by closure of the schema type
representation, so that errors resulting from applying operations to schemas that do not match
the one expected by the operation cannot occur. The usefulness of this facility is that it allows
several different version of a database to co-exist, alleviating the need to change every item in
a database whenever a schema modification is made†.

Where schema mutation differs from organisational and representational mutation is that
it is under the control of the database programmer to change the schema of a database, and is
undertaken at compile time, whereas the other forms are hidden from the programmer, and the
changes in representation are carried out at run-time based on statistical analysis of operations
on the data structures.

4.3. Satisfaction of requirements

In section two, we listed our requirements for the a system to support an efficient object
database model. We now examine the extent to which Probe meets the requirements.

Rich data model − Probe supports an object database model, allowing aggregation and gen-
eralisation through sets and tuples, which can be nested to an arbitrary degree of com-
plexity. Indeed the Ten15 type system allows for recursively nested databases to be built.
For example, a family tree can be built up as a recursive data model, where an ancestor is
a name and a set of descendents, and each descendent is an ancestor to the next

hhhhhhhhhhhhhhh
† The inspiration for schema mutation stems from reference [6].

generation:

Ancestor = TUPLE [NAME, SET {Descendent}]
Descendent = Ancestor

This can be expressed using the Probe object database model as:

Ancestor = TUPLE
(* has two fields, the second field of existential type Descendent *)
Descendent = SET [Ancestor]

Persistence − Probe supports orthogonal persistence due to its integration to Ten15. Also, it
allows the construction of persistent data structures that can be accessed efficiently, and
are controlled with respect to reading and writing.

Concurrency − The support that Probe has for concurrency depends on the model provided by
Ten15. Ten15 has a well developed concept of transactions on persistent variables. This
can be incorporated into the Probe model by extending the notion of writeable data struc-
tures to include an active transaction. This means that whenever a data structure is to be
rewritten, the operation should either create a new transaction or be added to an existing
transaction. Subsequent operations on associated data structures can then be added to the
transaction. Finally, when the transaction is complete, the transaction can either be com-
mitted or aborted, without fear of the integrity of the database being compromised.
Transaction-based write operations can exist in parallel with operations which assign and
commit a persistent variable in a single action.

Placement of persistent variables on distributed datastores can also be managed by Probe
using the facilities provided in Ten15. Ten15 provides anonymous references to values
on the persistent store, so these can easily be made to refer to local or remote persistent
data. In addition, each datastore has an associated write capability. Persisting a value with
a specific capability defines the placement of the value in the distributed datastore. If sta-
tistical analysis within Probe determines that it would be beneficial for the performance
of a particular process to have a remote persistent data structure stored on a local data-
store, by using the write capability to the local datastore, the data structure could be
rewritten onto the local store, thereby providing object migration and improved access
performance.

Transactions are integrated into Probe by the provision of a shadow set of operations
which require the provision of an active transaction. If the persistent object is in the tran-
saction, then operations affect the intended reassignment (i.e. a persistent value) to the
object which is stored within the transaction, otherwise the pvar is added to the transac-
tion, if it is not currently held by another transaction. The Ten15 primitive
commit_transaction assigns all persistent values to their respective pvars, updating the
root of the datastore in a single operation.

Bulk data − The persistent data constructors of the data structure level permit the efficient
management of bulk data due to a principle of decomposing data structures into nested
groups of data that fit into one disk block or clusters of disk blocks.

Extensibility − As mentioned above, the modular approach that was adopted to develop Probe
means that the system can be extended by making use of the abstract structures provided
at every level, and changes can be made to the system with no noticeable changes of
other parts of the system.

In the introduction, four reasons for the unsuitability of persistent programming
languages to database programming were given. To some extent, Probe eliminates these prob-
lems. First, the problem that programming language data structures fails to capture the seman-
tics of a particular data structure is overcome by providing a complex description of a database
data structure which allows the data structure to be viewed in a number of ways, depending on
its current use and access characteristics.

Secondly, the complex description of a data type permits bulk data management. This is
due to the expressive power of the Ten15 type system, since it is possible to represent the
necessary decompositions of the data type onto the persistent store at a type system level. In
addition, mutation and changes in representation can be used to simulate and optimize the
storage of bulk data.

Thirdly, concurrency is provided by the transaction and process primitives available in
Ten15. The process primitives allows several processes to exist in parallel on a single node.
The transaction primitives provide a mechanism for concurrent process to synchronise their
access and update of the Ten15 datastore in an integrity preserving manner. The primitives, in
no small way, contribute to the possibility of changing the style in which persistent program-
ming languages are programmed. By building up transactions incrementally and allowing for a
single commit to access all persistent variables at a stroke, the problems of simultaneous
update of a persistent variable and of having partially inconsistent databases due to a single
value update, are avoided. The support that Ten15 gives for transactions also alleviates the
fourth problem, concerning the differing programming styles of DBPLs and PPLs. Procedures
can be used as the basis for concurrent processes and the transaction mechanism can be used to
incrementally build transactions from separate procedures, guaranteeing datastore integrity
thanks to a single commit operation.

4.4. Current status

Probe is still in its development stage. An initial prototype currently exists which imple-
ments the full object database model. Experimentation with the prototype, and statistical
analysis, will enable us to evaluate the costs and the benefits of mutation.

TDBPL is a conceptual database programming language, since Probe does not require a
notation in order for it to be programmed, and so the development of TDBPL is beyond the
scope of this project.

Ten15 is still in its development stages. Concurrent access to shared data is provided for,
but concurrent processes are still in development stages. Hence Probe is being implemented
as a single process, multi-transaction system.

5. Conclusion

This report has provided a detailed overview of on-going research into the Probe project.
It has suggested that the paradigms of databases and persistent programming languages can be
integrated in order to provide an extensible environment for the production of database appli-
cations. Probe is an example of such an integration of the two paradigms. It exhibits the func-
tionality of the object database model and the flexibility of the Ten15 programming notation.
In addition, it has mechanisms for the efficient storage of bulk data, dynamic changes to sche-
mas and allows the incorporation of new data structures, mechanisms and algorithms. The
mutation mechanism provides, so far as we are aware, a unique capability for dealing with
evolving, complex data structures. Also, the Probe abstract machine provides an ideal basis for

highly expressive database programming languages such as TDBPL.

Probe is an effective attempt at unifying the database and persistent programming
language paradigms. This is due, in no small way, to the expressive power of the Ten15 type
system, the simplicity of its persistence model and the ability to optimize access paths to data
using persistent mutation.

6. Acknowledgements

The authors wish to thank Simon Dobson and Derek Bridge for their help and comments
during the production of this report.

7. References

1. M. Adabi and L. Cardelli, ‘‘Dynamic Typing in a Statically Typed Language’’, 47,
Digital Systems Research Center (June 1989).

2. R. Agrawal and N.H. Gehani, ‘‘ODE (Object Oriented Database and Environment) :
The Language and Data Model’’, pp. 36-45 in ACM Sigmod Proceedings of the Interna-
tional Conference on the Management of Data (1989).

3. A. Albano, L. Cardelli and R. Orsini, ‘‘Galileo : a Strongly Typed Interactive Concep-
tual Language’’, ACM Transactions on Database Systems 10(2), pp. 230-260, ACM
(March 1985).

4. A. Albano, A. Dearle, G. Ghelli, C. Marlin, R. Morrison, R. Orsini and D. Stemple, ‘‘A
Framework for Comparing Type Systems for Database Programming Languages’’, pp.
170-178 in Second International Workshop on Database Programming Languages,
Morgan Kaufmann (1989).

5. M.C. Atkins, ‘‘Implementation Techniques for Object-Oriented Systems’’, YCST
90/01, Dept. of Computer Science, University of York (June 1989). DPhil Thesis.

6. M. Atkinson, ‘‘Questioning persistent types’’, pp. 2-24 in Second International
Workshop on Database Programming Languages, Morgan Kaufmann (1989).

7. M. Atkinson, P.J. Bailey, K.J. Chisholm, P.W. Cockshott and R. Morrison, ‘‘An
Approach to Persistent Programming’’, B.C.S. Computer Journal 26(4), pp. 360-365
(November 1983).

8. M. Atkinson and O.P. Buneman, ‘‘Types and Persistence in Database Programming
Languages’’, ACM Computing Surveys 19(2), pp. 105-190 (June 1987).

9. M. Atkinson, P. Buneman and R. Morrison, ‘‘Binding and Type Checking in Database
Programming Languages’’, B.C.S. Computer Journal 21(2), pp. 99-109 (April 1988).

10. D.S. Batory, ‘‘Optimal File Design and Reorganisation Points’’, ACM Transactions on
Database Systems 7(1), pp. 60-82 (March 1982).

11. M. Brandreth, P.W. Core, I.F. Currie, N.E. Peeling, M. Stanley and J.M. Foster,
‘‘Ten15 Prototype’’, R.S.R.E. Report 91025 (1991).

12. A.L. Brown, ‘‘Persistent Object Stores’’, Persistent Programming Research Report 71,
Universities of Glasgow and St. Andrews Computer Science Departments (March
1989).

13. P.A. Buhr, G. Ditchfield and C.R. Zarnke, ‘‘Basic Abstractions for a Database Program-
ming Language’’, pp. 422-438 in Second International Workshop on Database

Programming Languages, Morgan Kaufmann (1989).

14. L. Cardelli, ‘‘A Polymorphic Lambda Calculus with Type : Type’’, 10, Digital Systems
Research Center (May 1986).

15. L. Cardelli and P. Wegner, ‘‘On Understanding Types, Data Abstraction and Polymor-
phism’’, ACM Computing Surveys 17(4), pp. 471-522 (December 1985).

16. W. P. Cockshot, M. P. Atkinson, K. J. Chisholm, P. J. Bailey and R. Morrison, ‘‘Per-
sistent Object Management System’’, Software - Practice and Experience 14(1),
pp. 49-71 (January 1984).

17. E.F. Codd, ‘‘A Relational Model of Data for Large Shared Data Banks’’, Communica-
tions of the ACM 13(6), pp. 377- (June 1970).

18. D. Comer, ‘‘The Ubiquitous B-Tree’’, ACM Computing Surveys 11(2), pp. 121-137
(June 1979).

19. G. Copeland and D. Maier, ‘‘Making Smalltalk a Database System’’, pp. 316-325 in
ACM Sigmod Proceedings of the International Conference on Management of Data
(August 1984).

20. A. Dearle, ‘‘Environments: A flexible binding mechanism to support system evolu-
tion’’, Persistent Programming Research Report 67 , Universities of Glasgow and St.
Andrews Computer Science Departments (1988).

21. A. Dearle, ‘‘A Persistent Architecture Intermediate Language’’, Persistent Program-
ming Research Report 35, Universities of Glasgow and St. Andrews Computer Science
Departments (1987).

22. K. Dittrich, Damokles Reference Manual, University of Karlsruhe, Karlsruhe, W. Ger-
many (1989).

23. R. Fagin, J. Nievergelt, N. Pippenger and H.R. Strong, ‘‘Extensible Hashing - A Fast
Access Method for Dynamic Files’’, ACM Transactions on Database Systems 4(3),
pp. 315-344 (September 1979).

24. J. M. Foster, ‘‘The Algebraic Specification of a Target Machine: Ten15’’, in High
Integrity Software, ed. C.T. Sennett, Pitman (1988).

25. K.H. Goodenough and S.J. Rees, A Notation for Ten15, Royal Signals and Radar Estab-
lishment, Malvern (May 1989).

26. J.M. Smith and D.C.P. Smith, ‘‘Database Abstractions: Aggregation and Generaliza-
tion’’, Communications of the ACM, pp. 138-151 (January 1977).

27. E. Jul, H. Levy, N. Hutchinson and A. Black, ‘‘Fine-grained mobility in the Emerald
system’’, ACM Transactions on Computer Systems 6(1), pp. 109-133 (February 1988).

28. S. Khoshafian, ‘‘A persistent complex object database language’’, Data and Knowledge
Engineering 3(4), Ashton Tate, Walnut Kreek, CA, USA (February 1989).

29. C. Lamb, G. Landis, J. Orenstein and D. Weinreb, ‘‘The ObjectStore Database Sys-
tem’’, Communications of the ACM 34 (10) (October 1991).

30. F. Mathas and J.W. Schmidt, ‘‘The Type System of DBPL ’’, pp. 219-225 in Second
International Workshop on Database Programming Languages, Morgan Kaufmann
(1989).

31. R. Morrison, F. Brown, R. Connor and A. Dearle, ‘‘The Napier88 Reference Manual’’,
Persistent Programming Research Report 77, Universities of Glasgow and St. Andrews

Computer Science Departments (July 1989).

32. N. E. Peeling and K. R. Milner, ‘‘KeepSake: A Database Kernel’’, R.S.R.E. Memoran-
dum 88014 (March 1989).

33. J.E. Richardson and M.J. Carey, ‘‘Persistence in the E language : Issues and Implemen-
tations’’, Software - Practice and Experience 19(12), pp. 1115-1150 (December 1989).

34. J. W. Schmidt, ‘‘Some High Level Language Constructs for Data of Type Relation’’,
ACM Transactions on Database Systems 2(3), pp. 247-261 (1977).

35. David W. Shipman, ‘‘The Functional Data Model and the Data Language DAPLEX’’,
ACM Transactions on Database Systems 6(1), pp. 140-173, ACM (March 1981).

36. A. Straw, F. Mellender and S. Riegel, ‘‘Object Management in a Persistent Smalltalk
System’’, Software - Practice and Experience 19(8), pp. 719-738 (August 1989).

