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ABSTRACT

Persistent programming languages provide abstract mechanisms which com-
pletely describe the storage and retrieval of long term data. In this paper, the
Ten15 persistent programming language is reviewed. Ten15 can be categorised
as supporting a minimal persistence mechanism and an extremely powerful
and expressive type system. Details of using Ten15 to build a general purpose
filing system, based on dictionaries, are given. It is concluded that the ability to
build a complex and flexible file system depends on two factors: the construc-
tive power of the type system and the flexibility of the minimal persistent
store.
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1. Introduction

Persistence is the ability for program data to endure longer than the invocation of the pro-
gram which creates it [2]. It has formed the basis for a large research community which has
identified the underlying principles of persistence and led to the construction of a number of
persistent programming languages [1, 19, 22, 24, 27]. The resulting languages have been
diverse, conforming to no common design principle for the paradigm. Thus we have
languages ranging from the general purpose PS-algol [15], to the capability architecture of χ
[18] and the functional programming language Staple [21]. Thus it seems that persistence is a
principle which can be integrated into a programming paradigm, in addition to being a
language class in its own right.

In this paper we address the relationship between persistent programming languages and
operating systems [4]. An operating system is a nucleus of resources on which high level
computing applications, such as programming and data processing, is based. An operating
system provides facilities to store data in a secure and consistent manner; manage data in main
memory; provide concurrent execution of processes; and schedule processes and computations
[20].

Persistent programming languages provide the basic capabilities to support the main- and
backing store management of data. The integrity of data and the maintenance of concurrent
update is associated with these capabilities. Increasingly, other facilities traditionally expected
of an underlying operating system, such as network management, device controllers and con-
currency are being provided as base primitives of persistent programming languages [26].

In this paper we look at the abstract programming machine, Ten15 [7, 17], explore the
capabilities of its persistent programming mechanism, and identify how secure filestore sys-
tems can be introduced into the language.

2. Ten15

Ten15 is the result of many years’ research at the Defence Research Agency (formerly
the Royal Signals and Radar Establishment), Malvern, UK into the development of a strongly
typed intermediate language. The design rationale of Ten15 is to provide an algebraic basis for
software development. This leads to a mechanism by which different computers can be made
compatible through the implementation of the Ten15 algebra on each platform. In addition,
Ten15 is a complete systems programming language, permitting the fine-grained allocation of
mainstore, filestore and network resources. The facilities of the language extend its application
area to fields such as high integrity systems, secure systems, IPSE development, heterogene-
ous networks and fine-grained databases. This is associated with a mathematically described
strong type system, which ensures the type security of the system functions. The use of Ten15
means that its users can preserve their investment in existing software because Ten15 can co-
exist along-side existing operating systems and, since it is an intermediate language for the
majority of modern programming languages, such as Ada, Pascal, and Standard ML, it can
provide a mechanism for mixed-language working.

Ten15 possesses an extremely flexible and expressive type system. It has a number of
type system mechanisms which give the language great expressive power, such as first class
closure, lambda type expressions, existential quantification, dynamic extended unions and
typed data.

For this paper, one feature of Ten15 is of particular interest. That is the persistence
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mechanism. It is based on a mechanism used in the KeepSake database kernel [23], and
derived from experiences with the filestore of the Flex PSE [12]. The persistent filestore is
called the datastore, into which arbitrarily complex Ten15 data fragments can be made per-
sistent and preserved between program executions. The datastore is novel in that it is immut-
able, or non-overwritable. The datastore is structured hierarchically, radiating down from a
single root. New items of persistent data are written from the centre of the disk outwards;
since values cannot be overwritten, the update of a persistent value is equivalent to creating a
new item of data. Since the disk pointer to the update is no longer valid, the filestore provides
an indexing mechanism which can trace the changes in location of persistent data so that
referential transparency can be maintained.

The root of the datastore is the only location that is overwritable. The root is protected
by a four block, three stage commit algorithm to preserve its integrity in the face of error or
corruption.

There are several advantages to immutable filestores over the more traditional overwrit-
able ones. First, it makes the filestore more resilient to corruption from a premature commit-
ment due to a crash or an error. This is because, until the root is assigned with a reference to
the new state of the datastore, the old database is valid. If a crash occurs whilst the root is
being written, the subsequent system initialisation will determine whether the update operation
on the root was completed, since the root is not assigned unless the three protection blocks
contain the same value. A second advantage is that the history of changes to the filestore since
the last garbage collection is preserved in the immutable store, allowing privileged software to
undo the changes to persistent variables. Thirdly, it provides a many readers, single writer
mechanism for concurrent update, since any number of processes can access data through the
original root while a process is preparing a modification ready for assignment to the root.

Ten15 provides a set of strongly typed operations which allow the datastore to be mani-
pulated within the language without endangering the integrity of the system.

2.1. Persist and UnPersist

Data is explicitly preserved in the datastore by using a Persist operator provided within
the Ten15 programming language, called the Ten15 notation. When Persist is invoked on an
arbitrary piece of data, the data is compacted into a persistent format by tracing and con-
catenating all objects to which the data refers, altering all pointers and offsets within the con-
catenated block to reflect their new status as datastore objects, and writing the block onto a
new location in the data store. A reverse operation, UnPersist, takes a persistent reference and
delivers the mainstore representation of the persistent value, by copying the persistent block
back into mainstore, updating the pointers within the block to their new absolute location in
mainstore. This approach to persistence is an example of replicating persistence [3], and
found in PPLs such as Amber [9] and χ [18], since repeated retrieval of the same persistent
object causes identical copies of the object to be brought into mainstore. This is featured in
figure 1 where a value is made persistent in a datastore, then twice brought back into memory.
Operations affecting the one reference do not alter the other. In this case, the reference to the
mainstore version of the persistent value is incremented and reassigned to the reference.

Let ds : datastore = DISK CAPABILITY
Let value : Int = 5
Let persistent_ref = Persist{value, ds}
Var r1 := UnPersist persistent_ref
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Var r2 := UnPersist persistent_ref
In

r1 := @ r1 + 1
Ni

Figure 1: Using Persist and UnPersist

2.2. Persistent variables

Persist and UnPersist provide a means of writing and reading a value to and from per-
sistent storage. Due to the nature of the immutable storage, updating of a persistent value can-
not occur. As a result of this, the Ten15 datastore supports persistent variables (pvars) which
control the updating of single instances of persistent values. The mechanism for managing
updates to persistent variables is to create a copy of the datastore. This is performed by updat-
ing the root of the datastore to refer to a new datastore where the persistent variable has been
updated to reflect the change in its persistent value. The hierarchical structure of the datastore
has also been altered to propagate the changes.

Persistent variables provide a means by which object identity of persistent objects can be
preserved. The pvar acts as an outwardly unchanging reference to an object on the persistent
store, since changes to the pvar are propagated to all references. Referential integrity is
preserved by path following of updates and locations of the pvar, with the final update being
the current value for the pvar object. Figure 2 is a sample Ten15 text for updating a persistent
variable in place. Object identity is demonstrated because when this piece of code is executed,
true will be delivered, despite the assignment of a new value to the pvar. This shows that it is
the contents of a pvar which is updated rather than the variable reference itself.

Let root = DISK CAPABILITY
Let aPset = CreatePset root
Let pers = Persist{CrInt 5, ds}
Let pvar1 = CreatePvar{pers,

aPset {position in datastore hierarchy}}
Let pvar2 = pvar1
In

AssignPvar{pvar2,Persist{CrInt 6,ds}};
If pvar1 = pvar2
Then True
Else False
Fi

Ni

Figure 2: Demonstrating persistent object identity.
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2.3. Persistent Sets

A hierarchical structuring mechanism can be used within a Ten15 datastore. The data
structure for this is the persistent set (pset). If a datastore were flat, eventually as more pvars
are added to the datastore, the data structure handling the pvars would become unwieldly and
inefficient. Hence Ten15 supplies a mechanism for decomposing pvars into a tree of logically
related pvars and psets, where only the group of pvars and all the groups of psets and pvars
directly leading to the root of the datastore are updated when a pvar is reassigned. This is
displayed in figure 3, where a persistent value is updated and a hierarchical structure of pvars
and psets is updated as necessary to reflect the new nature of the datastore. Ten15 code which
demonstrates the use of psets can be found in figure 2, where a pset aPset is created as a child
of the root pset using CreatePset.

Old Datastore New Datastore

...........................................

.............................

data

pvar

pset

root

Figure 3: Updating a persistent value in a datastore.

2.4. Garbage Collection

Since the datastore is constantly being written to and no parts of it are ever re-used, there
comes a time when the datastore becomes full. As a result of this, a garbage collection algo-
rithm is called which reclaim the space occupied by the root of the datastore. A similar event
must take place in the mainstore to clear out all data that can no longer be reached from the
existing execution display. An efficient garbage collector for both the mainstore and datastore
is central to the success of Ten15, since both resources are hidden from the programmer so he
cannot exercise discretion in allocation in order to avoid the need for the release of memory or
datastore that are no longer required.

2.5. Guaranteeing consistency

The Ten15 datastore is updateable at a single location, the root. The root refers to a pset
which holds all the details of the filestore, such as other psets and pvars. The root is itself a
pset. As the hierarchy of psets is updated, the root must itself be rewritten with the new disk
address of the pset.

Since the root is writeable, it is prone to be corrupted due to program or hardware failure.
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However, the root is protected by a four block, three stage commit algorithm. The root is
divided into three sections: one contains two blocks which hold two shadow copies of the root
pointer; another is another shadow copy; and there is the root copy itself. The update pro-
cedure is to write the new root into the two root block, then into the second block. Finally the
root block is overwritten with the new value.

If a crash occurs, the root update algorithm allows it to be detected and for the old state
of the filestore to be reconstructed if necessary. A filestore is consistent if all four blocks hold
the same value. If a crash occurs whilst or after writing the first two blocks then the value that
they hold will differ from one to the other and from the third block, and the old state of the
filestore is restored. If it occurs whilst writing the third or fourth block, this value will differ
from both values held in the first two blocks. Thus there are two consistent copies of the new
root and the update operation can continue.

This algorithm differs from the mechanism for providing stable storage used in PS-algol
and Napier88. Integrity of an update of a root is preserved using a variation of Challis’ algo-
rithm [8, 11]. The root is composed of two root blocks. Held within each root are date stamps
which differentiate between the active store and the shadow store. Updates occur by assigning
pages in the shadow store. When the time comes to commit the changes to non-volatile store,
the shadow root is overwritten with details of the update status of the shadow store. The root is
flanked by two identical timestamps. The new timestamps are generated and assigned in a sin-
gle write operations to the root. The two timestamps are then checked and if they are con-
sistent then the shadow store becomes the non-volatile store and the old non-volatile store
becomes the shadow store.

Both mechanisms provide adequate support for consistent and recoverable updating of a
single root. The approaches can be applied to incremental updating, since the pset structure
underlying Ten15 can be produced from multiple updates without affecting the root. Simi-
larly, the use of two filestores in conjunction with Challis’ algorithm allows the shadow to be
incrementally built up with changed pages. The latter is inconvenienced by the need to parti-
tion into two identical halves; whereas the Ten15 mechanism means that only those blocks that
have been changed need to be appended to the filestore. However the immutable nature of the
filestore means that this flexibility is paid for by the need to perform off-line garbage collec-
tion.

2.6. Persistence and types

The Ten15 type system allows persistence to be arbitrarily combined with other types
and type constructors to provide an orthogonal persistence mechanism. The type system also
permits persistent variables to be declared as complex types. Psets are treated as a basic type
by Ten15. Figure 4 demonstrates a typical mode declaration involving persistent values (per-
sist ...) and persistent variables (pvar ...).

Modes:
p1 = persist Int;
pv1 = pvar Int;
poly_mode = λ(X: ptr X);
p2 = persist poly_mode[Int];
pv2 = pvar poly_mode[Int]

Figure 4: Declaring persistent types.
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2.7. Comparing persistent paradigms

Ten15 provides a different mechanism altogether in comparison to that found in
Napier88 and PS-algol. Whereas both of these languages exhibit intrinsic persistence, where
the movement of data between and main and persistent store is transparently managed at run-
time. Ten15 provides a lower level approach to persistence in that the movement of data
between stores is apparent within the language.

Providing persistence as operations of a language, rather than an intrinsic property,
makes Ten15 a more flexible alternative, since the user is allowed to decide what data persists
and at what particular instant of time. Thus, the user constructs data structures specific to his
application which possess the expected performance characteristic and persistence.

Ten15 is capability based, making χ its closest related language [18]. Both languages
refer to persistent data as capabilities which uniquely identify the data for its lifetime. One
difference is that χ provides a mechanism for allowing the virtual update of a persistent capa-
bility without bringing the data explicitly into memory, using the THRU command. In addi-
tion, object creation is managed implicitly. Thus a new persistent capability is created by
assigning a value to an undefined untyped persistent capability. In Ten15, this must be
achieved by incremental application of persistent and variable creation operations, the types of
which must be predetermined and consistent. Where they differ greatest is in the complexity
of the capability generated: χ generates 128 bit capabilities which contain information con-
cerning the type, size and, most importantly, the access capabilities for the language. Thus
capabilities can be defined to be read only or writeable. Ten15 capabilities do not include such
information since the persistent store is divided up into the two kinds of access modes: read
only, through persistent values; and read-writeable through persistent variables. Thus all items
of data can have three possible residencies: in mainstore; read only on persistent store; and as a
persistent variable.

2.8. Implementation

In its current implementation, Ten15 exists as a cross-compiled system on a DEC VaxS-
tation. A VMS file is used to model the Ten15 datastore, which the Ten15 kernel interprets as
contiguous Ten15 datastore blocks of 512 bytes. As values persist they are added to the next
free block as indicated by the freelist.

There is a mainstore buffer, of 32K bytes, which holds all data being passed between
mainstore and datastore. The top half of the buffer is used for writing values and the bottom
for reading persistent data. When either end extends to occupy more than half of the buffer, the
whole buffer is flushed.

As data is added to the persistent datastore, available space decreases. As the datastore
becomes full, off-line garbage collection is employeed which rids the datastore of all values,
variables and psets that can no longer be referenced from anywhere with the datastore data
structure.

2.9. Summary

In this section, we have presented the persistent features of the language Ten15. Ten15 is
minimal in it approach to persistence in that it provides no support for transparent manipula-
tion of persistent data; nor for controlling access characteristics of the data stored. Both facili-
ties are functions of the language: the former provided for by operations to save and retrieve
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data, and to structure the persistent store; and the latter through the separation of read only and
read and writeable data into distinct type extensions. We feel, however, that the simplicity of
the Ten15 mechanism is compensated for by the expressiveness of its type system, which we
will discuss in greater detail in the next section.

3. Filestores and Ten15

The previous section introduced the Ten15 persistence mechanism. In this section, we
concentrate on the area of filing system support and how Ten15 can be applied to such an area.
A filing system provides a means for mapping names onto areas of data on a physical device,
such as a disk. In traditional operating systems, such as Unix, this consists of mapping a tex-
tual name onto disk aliases which represent blocks of the physical store; in a more modern dis-
tributed system, such as Mach [25], a dedicated naming service maps names onto object
addresses which are logical aliases for disk addresses.

We can identify three key elements of a filing system:

g Naming − names map onto stored data; for more general use, names should be complex
or multilevel to allow a number of name spaces and users. This provides names with a
degree of local scope dependent on the current depth of accessing within the file system.

g Access rights − stored data should be protected from internal and external interference.
Thus a user should be able to make his file read only, writeable, executable and also place
these restrictions separately on other users, or groups of users.

g Typing − the type of a value stored should be preserved along with the data. This
corresponds to the notion of persistence. Unfortunately, the majority of file systems do
not preserve the type of values stored: Unix treats all data orthogonaly as vectors of
bytes, and such modes that it possesses, such as executables, are dependent on the ability
to dynamically execute the code without failure.

Ten15 provides two out of the three criteria as basic features of the language. Access
rights to persistent data are catered for by the distinct read-only and read-write capabilities of
persistent values and variables respectively. The storage of typed data between program invo-
cations is a basic facility of the persistent mechanism. The one area in which Ten15 is
deficient is in the distinct naming of objects. Persistent data is represented as capabilities
which incorporate a unique name, based on the disk location. In the case of persistent vari-
ables, these are relative offsets within a structured acyclic graph, assignable through a single
root location. Thus if data is stored within the graph structure, the capability to retrieve it is
delivered and the capability acts as the name for the object. This leads to two problems: the
persistent capabilities can only be generated in the process of actively storing persistent data,
so that the ‘names’ of persistent object can be generated dynamically to retrieve previously
stored data. This expands into the second problem that the returned persistent capabilities must
be stored between program invocations so that references to the the persistent data themselves
endure. Thus the references must be made persistent between program executions which
means there is the problem of circularity, since a persistent reference is required to hold onto
the original persistent reference in order to later access it.

The problem of circular storage of reference is insoluble unless some form of agent is
introduced which maps persistent references onto a concrete name. The address of the central
repository for such names is known to all processes in the system, and so the mapping of name
to value will endure for the lifetime of the name in the name space. This feature is called a
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dictionary data structure, as found in the Flex PSE, which acts a central repository for map-
ping names to stored values.

A dictionary, in its most simple form, maps names onto values. For a Ten15 implementa-
tion, there are two issues which require resolution: how to unify the infinite union of persistent
data types onto a single data type; and how to provide complex name spaces. We will address
each issue in turn.

3.1. Unified types

Persistent data maintains the data type of the value as it is stored in mainstore. Thus mak-
ing an integer persistent yields the persistent capability of type persist int. In the same way, a
persistent string has type persist string. As a result it is impossible to provide a data structure
which maps names onto persistent data in its basic form, since it can never be determined how
much mainstore or filestore should be allocated and where the boundaries between distinct
values will lie.

The solution to this dilemma is to make use of the dynamic typing facility of Ten15.
Dynamic typing means that the type of a value is not evaluated until run-time. Then an opera-
tion is performed to determine the type of the value and deliver the actual contents of the
dynamic value. In Ten15, dynamically typed values are represented as a pair of the value
itself and a type representation. All dynamically typed values are of the same type, the type
Typed. This means that names can now be mapped to a single unified type, which is statically
typed.

The data type dictionary provides a set of operations to permit the construction, addition,
retrieval and removal of name to persistent value bindings. A single set of operations can be
provided due to the combination of polymorphism and first class closure. Values that are to be
made persistent are still statically typed. Update operations on a dictionary are polymorphic, in
that they can be instantiated to any type, and deliver a statically typed dictionary structure.
Retrieval and assignment operations need to access the dynamically typed value to deliver the
value. The dictionary data cannot export dynamically typed values since, in a reassignment
operation, the stored value can be overwritten with a value of a different type. Thus these
operations require as a parameter a first class procedure which evaluates a dynamically typed
object and delivers its value part. The procedure is best given as a first class closure, a means
by which efficient higher order functions can be implemented, in order for a clear operation to
be presented and to allow a set of operations to range over a number of name mappings of the
same type. A type signature for the retrieval operation follows:

Let dict_retrieve =
Ion { procedure requiring first class closure }
Formals R { declares free type called R }
(eval: TYPED → ptr R)
(n: NAME) → ptr R:
{ ptr R denotes normalised polymorphic value }

A typical evaluation procedure, such as one to evaluate whether a dynamically typed value is
of type integer, would be like:

Let int_eval =
Proc
(t: TYPED) → ptr Int:
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Let v = TypedIsInt(t) In v Ni

The complexity of the values held in the dictionary structure is in fact more complicated
than initially defined. If values are passed in as simple polymorphic values, they could be of
any size. Thus, when the dictionary itself persists, it could be large and inefficient. Hence,
when a value is added to a dictionary, it must provide some indication of its size, complexity
and its expected access characteristics. We can map the three persistent type extensions
directly onto these characteristics. If a value is small, i.e. smaller than the size of a persistent
capability, it can be stored as a normal mainstore value and be persisted when the pvar which
holds the dictionary is traced through; if a value is large and read-only, it can be made into a
persistent value, in order to limit the amount of tracing required when the dictionary is itself
made persistent; and writeable large values can be stored as persistent variables, in order to
avoid having to update the dictionary and allow for object sharing. In reality, the type of each
value stored is a variant of the three possible persistent extensions,i.e:

Value = (TYPEREP×union(TYPED, persist TYPED, pvar TYPED))

The TYPEREP value is include so that the type of the stored value can be determined without
having to make a further access to the persistent store.

3.2. Complex naming

Ten15 dictionaries allow polymorphic values to be used as names. The minimum require-
ment for a name of any type is that it can be hashed onto a numeric value, and its equivalence
can be tested against other values of the type. For these criteria, a user must provide functions
which map their chosen key type onto first class closures for the dictionary manipulation
operations, as demonstrated by the type signature for the dictionary creation operation:

Let create =
Ion
Formals N { formal type for names }
(eq : struct(ptr N,ptr N) → bool)
(hash : struct(ptr N) → Int)
(...)

This operation builds a curried function which expects the eq function as its initial parameter
and generates a new function declaring the hash function as a parameter.

Using the polymorphic naming facility, we will demonstrate how a flat name space and a
multilevel directory structure can be constructed using dictionaries. Also we will outline how
version control can be introduced into dictionaries, by exploiting equivalence partitioning of
names.

3.2.1. Single name space

In a single name space, the names used are simple, typically a vector of characters, or a
string. Equivalence can be determined by matching two names, character by character. A
number of hashing algorithms exist, but a simple one would be to sum each character into a
single integer.
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3.2.2. Multi-level name space

A multilevel name space relies on the ability to locally scope the extent of a name and to
provide path expressions to allow the resolution of a name nested deep within the multi-level
name. In a Unix environment, the name space is provided for by directories of values which
may be stored data or other directories. Naming is resolved by the provision of an absolute
path, i.e:

/usr/tim
/usr/bill/maths/fourier.c

The need to always specify an absolute path is overcome through the use of an offset which
represents the current working directory. Thus when a name is resolved the offset is con-
catenated with the locally scoped name to deliver the required value.

We can implement such a system using dictionaries by introducing a polymorphic nam-
ing scheme which mimics the functionality of the directory structure described above. Rather
than providing the notion of disjoint directory structures, we can model the multi-level
filestore on a single dictionary by mapping the complex names onto values.

The complex names are modelled as vectors of strings, where the position of the name in
the vector represents the depth of the complexity. A typical complex name would be:

{"usr","bill","maths","fourier.c"}

where the depth of complexity increases from left to right. The equivalence of two such com-
plex names depends on every component of the vector being equal. A likely hashing function
is to concatenate all strings in the complex key and to hash the concatenation in the same way
as the previous section.

We can provide a notion of a current working directory by binding a variable into the
hashing and equivalence functions that are closed into the dictionary operations. Thus for each
dictionary we create a persistent variable which holds a complex name which holds the base
extension for the current directory. The pvar is closed into the hashing and equivalence func-
tions and also into a set of assignment functions, such as set which sets the current directory,
cd which moves up a level in the structure and cdback which moves down a level. Since the
pvar provides a mechanism for object identity, changes to the current level of the directory
result in the update being propagated to all operations which reference the value. In the case of
equivalence and hashing functions, the pvar is dereferenced and concatenated to the locally
scoped name. If the length of the current working directory concatenated with the local name
exceeds the maximum depth for the directory structure, which is held as an environment vari-
able within the dictionary data structure, then it is assumed that the local name is in fact an
absolute path and is treated as such.

The advantage of this approach is that a single dictionary can hold an entire multi-level
filestore. The only constraining factor is the performance of the name resolution data struc-
ture. If in its most simple form, the dictionary is implemented as a vector of name to value
mappings, the access time will be of order O(n/2). If we use accelerated data structures, such
as extensible hash tables [16], we can bring access time down to O(1). The scalability of such
structures to containing numbers of complex values in excess of 10 000 has been shown in
[5].
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3.2.3. Version control name space

A version control filestore allows the history of a filed data structure to be preserved.
This means that there are a number of versions of the data structure, each at a different stage
of update. The set of versions are addressible through as a single name and individual versions
appear as an extension onto this name. Such a system is available on the VAX/VMS operating
system.

Thus we have a two level name space, where the name for the data structure defines the
group and the version controller refers to the specific instance. One solution to this problem
would be to adopt the multi-level naming approach described in the previous section. The
problem with such an approach in this context is that often we wish to add new versions with
the same group name, rather than having to specify the exact version extension to the name.
To cover this feature, we must provide a more flexible name resolver which allows for both
levels of name to be refer to stored values.

We model a version name as a pair of the group name and a name extension, such as an
integer, i.e:

String×Integer

The name is hashed on the first attribute of the pair and multiple versions of the name invokes
rehashing. When a new version is added, the weak equivalence of the the first field of the
name is tested. The number of positive tests for weak equivalence forms the basis for a count
which is the current number of versions. The value is stored and the name is extended with an
incremented version count. In addition, the last versioned value is converted from a persistent
variable to a persistent value, if it is stored as a read-writeable value, so that the old version is
not overwritten by the new version. When a particular version is required, the user supplies
the complete key which holds the group name and the version extension and an exact
equivalence operation as a closure. In effect, the operations on a dictionary are doubled as a
set of operations is created by the closure of a weak equivalence function, which matches only
on group name, and another set which delivers single versions of a group, through the closure
of an exact equivalence operation.

We can provide further operations on dictionaries which allow the removal of an entire
group, the generation of a new dictionary from a group and the purging of a group up to its
most recent version. These are trivially implemented on top of the basic dictionary manipula-
tion operations.

The Ten15 immutable mechanism fits in well with this style of version control, because
on every update, the entire persistent value must be rewritten. Thus the old persistent address
goes out of scope. However, the name space for the version controller can bind the previous
persistent value to the most recent name, so that the old version remains in scope and be used
at a later date if required.

3.3. Controlling access rights

In the dictionary system we have previously described, criteria for a filestore are met: the
preservation of type; and the provision of a complex name space. Access control is solved in
part by the dictionary structures described since values cannot be assigned if they are stored as
persistent values. However, the security of the system is problematic since any user who
possesses the persistent variable capability for the dictionary can access any value held in the
dictionary, since the resolution of dynamic types is available to all users and structural type
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equivalence means that users need only guess the required format of the data structure rather
than the name.

A solution to this problem is to restrict the domain of a dynamic type to those users
which possess a password capability. This capability contains an unforgeable representation
of the type of the stored value. In Ten15 there is a mechanism for constructing conditional
existential quantification†. Existential quantification [10] is a mechanism for providing infor-
mation hiding by placing a complex value behind an abstract interface. The mechanism pro-
vides structures that are akin to abstract data types. Thus we can have an existential type:

∃ x.(x,x→Int)

where x is a value of any type, and x→Int is a first class procedure which takes a value of type
x and delivers an integer. The type specification for the existential type is equivalent to an
abstract data type.

Conditional existential quantification is a weaker form of existential quantification since
the representation contained within an existential can be determined by providing the right
key. Wotsits have the static type:

Wotsit = ∃ x:(unique x, x)

where unique x is a unique capability of the same type as the hidden value. When a Wotsit is
created, a unique value of the same type as the stored value is generated, or reused, and stored.
The Wotsit can then be passed around as a single statically typed value, with the type defined
above. When the value of Wotsit is to be retrieved a conditional matcher operation is applied
to the existential value with a unique capability as the other parameter. If the parameter was
generated from the same invocation of MakeUnique{x}, then the value will be delivered. Note
that the equivalence of the type of the stored unique and parameter unique is not enough to
resolve the conditional match. The following Ten15 code demonstrates the generation of a
Wotsit and the conditional retrieval of the contents of the value.

Modes:
Wotsit = ∃ (X: struct(unique X, ptr X))
{ ptr X defines a polymorphic value of
uniform size }

Ten15:
Let a : ptr Int = Pack 5
Let capability = MakeUniqueInt()
Let ext = ToExists:struct[Int,Wotsit](capability,a)
{ Witness type instantiated to int }
...
Let res = Assert as [Int] Match{(ext,capability) | Fail}
{Match fails if capability does not equal unique held in ext}

Using Wotsits, we have a means to control the access rights of users to values within a
dictionary. Not only must the user have the persistent variable capability of the dictionary, he
must have a copy of the unique generated along with the Wotsit in order to access a particular
value on the persistent store. The type capability must be stored externally to the dictionary
hhhhhhhhhhhhhhh
† Instances of conditional existential quantification are affectionately known as Wotsits.
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structure, such as a closure to a first class procedure.

In effect, Wotsits can reside alongside Typed values in the dictionary data structure, since
they are both statically typed, and a union can be used to distinguish between the two types at
run-time. Typed values will still be required in the case when values need to be universally
available.

3.4. Dictionary operations

Dictionaries provide a suite of operation for the storage and retrieval of single values.
The data type also has support for operations to alter access modes, provide views over the
dictionary structure and to manipulate name bindings, such as to rename the name bindings for
persistent data and to copy persistent data to another name binding. In this latter case, we have
a problem concerning how multiple copies of a single persistent variable affect the update con-
sistency. A copy operation must determine whether it is creating a new copy of the value or is
merely providing an alternative name binding for the value.

In the case where each copy spawns a new version of the copied data, a new persistent
variable for each name binding must be generated. If a change to a single name should be
reflected in all other name bindings, then the persistent variable must be the same for each
binding. This produces further complications if the access type of a stored value needs to be
changed from writeable to read only. This can only be performed on a single name binding
since there is no means of determining what other names also refer to the value. A means to
overcome this is to create a ‘sink’ which holds the persistent variable when a copy operation is
performed. The sink is given an unique hash number and stored in the dictionary. The value
stored under the old and copied name bindings is now composed of a pair of the hash value
and a unique, which distinguishes the value from a normal integer. The unique and the hash
value act as a safe pointer [5] within the confines of the indexing mechanism of the storage
structure. When the type resolution is invoked on this value, it will fail. The failure can be
caught and a type resolution can be made to determine whether or not the value is being used
as an indirection into the dictionary. If it is then the new hash value can be retrieved, otherwise
a failure is delivered in the usual manner.

3.5. Evaluation

The dictionary data type we have described provides a flexible name to value binding
mechanism for the storage of arbitrarily complex persistent values. The development of such
a data structure is dependent on the low level nature of the persistence mechanism and the
expressiveness of the type system, in particular in the areas of dynamic typing, existential
quantification, polymorphism, higher order functions, object identity and first class functions.
We can identify six areas in which the Ten15 persistence mechanism and expressive type sys-
tem have combined together to the great advantage of the dictionary data type:

g Complex storage and naming systems, such as multi-level and version control stores, can
be built on an essentially flat file space.

g A number of dictionaries can be constructed from a single dictionary data structure. This
can be achieved through the use of polymorphism which allows the dictionary operations
to be instantiated to a particular set of access characteristics, yet still maintain a uniform
static type. Hence we could provide a number of hashing and equivalence protocols to the
dictionary operations and have all these dictionaries residing on data structure.
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g Instead of needing to export a number of references to persistent data from a program,
only the root of the dictionary must be passed out. In addition, there is only one reference
to each value in the data structure, making the job of garbage collection easier to imple-
ment.

g The structuring of the persistent datastore is hidden beneath the abstraction of the diction-
ary structure. Thus the dictionary can follow the construction of psets, ensuring that not
too many pvars are added to them, so that they do not become unwieldly to manipulate.
Also, pvars which are to be frequently updated can be deliberated stored higher up in the
acyclic structure in order to improve performance. Thus the management of the persistent
store becomes heuristic rather than arbitrary.

g The performance of a dictionary is greatly increased by the benefits of abstraction, such
as highly complex algorithms, as described in [6], can be used to provide the maximum
level of performance. In real terms, a dictionary structure constructed using a variation of
the extensible hashing algorithms allows 10 000 name to value bindings to be stored with
a guaranteed upper bound of access time of 1 second. This compares favourably with a
typical user’s name space which contains on average 2 000 name bindings.

g The access rights over what user can access any values in the dictionary can be achieved
through the use of a dynamic typing mechanism which adds an extra dimension to the
notion of a type representation by making it dependent on the exact time when it was
created.

4. Conclusion

In this paper, we have presented the notion that persistent programming languages can be
used as the basis for the development of standard, yet complex, operating systems facilities,
such as filing systems. To this end, we introduced the persistent programming language Ten15,
describing in detail the persistent programming facilities of the language, drawing out the dis-
tinct features of the mechanism in comparison to χ and Napier88.

The resulting dictionary data type provides the functionality of a filing system and could
be made part of an operating system constructed using Ten15. In a sense, the dictionary data
type is equivalent to the environment feature of Napier88 [13, 14], since block structured name
bindings can be applied to arbitrarily complex persistent values. Our mechanism differs in two
main ways: Napier88 supports the transparent movement of data and update of name bindings;
in Ten15 this must be performed explicitly. The dictionary mechanism we have described is
more flexible in what it allows as a name binding for a persistent value; hence it is more akin
to an environment constructor for a mechanism such as that found in Napier88 rather than the
mechanism itself.

The dictionary data type has demonstrated how the flexible manipulation of persistent
data can be coupled with a highly expressive type system to permit the modelling of highly
efficient complex operating systems abstractions. It is our belief that, as persistent program-
ming languages become more efficient, they will become the systems development languages
for operating systems of the future.
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