
103

Verification of ANDF
components

Frédéric Broustaut, Christian Fabre,
François de Ferrière, Éric Ivanov – Open
Software Foundation Research Institute1.

Mauro Fiorentini – Etnoteam2.

This paper presents validation work3

done on ANDF at the Open Software Foun-
dation Research Institute. The ultimate
ANDF scenario splits a compiler into two
separate components (producer/installer).
This changes the compiler validation process
as the two components have to be validated
separately. This paper presents the original-
ity and the difficulties of such an approach
and summarizes the status of two pieces of
software to which the OSF-RI has contrib-
uted: the ANDF Validation Suite and the
General ANDF Interpreter4.

1. Introduction

ANDF is an Architecture- and language-Neutral
Distribution Format developed by OSF and other col-
laborators around the world5. It is based on an Inter-
mediate Language (IL) with specific features to
address software portability issues. The goal of ANDF
is to create an Architecture Neutral representation of
programs which may then be installed right out of the
box on a variety of target architectures.

1. OSF Research Institute, 2 avenue de Vignate, 38610 Gières, France.
andf-ri@osf.org, Fax: +33 76-51-05-32, Tel.: +33 76-63-48-64.

2. Etnoteam S.p.A., Via Adelaide Bono Cairoli 34, Milan 20127, Italy.
mfiorentini@etnoteam.it, Fax: +39 2 261-107-55. Tel.: +39 2 261-
621.

3. This work has been partially funded by the CEC under the project
OMI/GLUE (Esprit project n˚6062). For more information, please
contact Gianluigi Castelli, Etnoteam S.p.A. (see address above).

4. The General ANDF Interpreter has been developed in collaboration
between the OSF-RI and Etnoteam. See § 10 for details.

5. It is based on the TDF technology provided by the Defence Research
Agency of the United Kingdom Ministry of Defence. DRA is pre-
pared to assist vendors with the industrialization of TDF. Interested
parties should contact DRA directly at Defence Research Agency,
St. Andrews Road, Malvern, Worcestershire, WR14 3PS, England.
Tel.: +44 1-684-89-53-14.

Structure of the document

The rest of the document is organized as follows:
• A summary about ANDF is presented in the

“Experiments with ANDF” (see § 2) and “The
ANDF scenario” (see § 3) presents the final
goal of an Architecture Neutral Distribution
Format, how it impacts the compilation pro-
cess and how portability is achieved.

• The technology is presented in “ANDF fea-
tures” (see § 4), which describes the features of
the technology, and the “ANDF components”
(see § 5) are then introduced.

• After an introduction to “Validation of ANDF
components” (see § 6), the “ANDF Validation
Suite” (see § 7) and the “General ANDF Inter-
preter” (see § 8) are presented, as well as their
interaction in “The AVS and the GAI” (see § 9).

• The context of this work as well as “Related
work” (see § 10) are outlined, and the paper
ends with “Conclusion and Further work” (see
§ 11).

2. Experiments with ANDF

DRA’s TDF technology, chosen by OSF to become
its ANDF, is a very versatile piece of software. Up to
now, the technology has been extensively used and
exercised under different Unixes. A feasibility study
has also been carried-out for the Window environ-
ment, more precisely on the Win32 Application Pro-
gramming Interface (API) [10]. The experiments
carried-out so far have shown a wide spectrum of
potential applications:

• The most basic point of view, is to see it –as
any other intermediate language– as a vehicle
for the construction of modular compilers. While
this scenario allows separate developments of
the front-end and back-end, and to a greater
extent than that of other ILs, the resulting
compiler is still meant to be used as an inte-
grated tool. A typical case in this scenario is to
use DRA’s tcc as the default development
compiler on a multiple platform environment.

• One step further, the technology has proven a
very useful tool in the quest for improved
portability of application programs: it is then
used as a portability checker. The TDF tools
have a substantial capability to highlight port-

Permission to copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercial advantage, the ACM copy-
right notice and the title of the publication and its date appear, and notice is given that
copying is by permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

© 1995 ACM, IR’95, 1/95, San Francisco, California, USA.



104

ability issues, such as adherence to, and
proper use of, standard languages and stan-
dard APIs. One of the main results of OSF
experiments is that most of the issues raised
when using the technology concern discrep-
ancies among different Unix implementations,
rather than ANDF issues as such [9]. Recent
initiatives in the Unix world, such as spec-
11701, will reduce such conflicts in the near
future.

• At the other end of the spectrum is the sce-
nario of the Architecture Neutral Distribution
Format. This scenario is described § 3, but the
idea is that the end-user buys a software pack-
age and installs it on his platform through a
completely automatic process, regardless of
any architectural or language details.

ANDF will bring no magic: an application will
have to be intrinsically portable before ANDFizing it
could make any sense, if doable at all. Recent studies
have shown that many ISVs have a hand-crafted
approach to portability. Usually they develop their
software on one platform and port it to other plat-
forms later on, rather than addressing portability from
scratch through the use of standard APIs. The current
status of the industry is such that portability is
addressed as something that has to be lived with,
rather than as a competitive advantage.

Thus, the ultimate goal of ANDF, will be achiev-
able only when ISVs start to address portability earlier
on in their engineering process through the use of
standard APIs and API checkers. In other words, an
Architecture Neutral Distribution Format is viable, but
the industry approach to portability will also need to
evolve.

3. The ANDF scenario

A sensible porting strategy is to write an applica-
tion which uses standard compliant APIs on a plat-
form where a validated compilation chain provides
support for those standards. In an ideal world, the
porting effort to another platform supporting the same
set of APIs should be reduced to a single recompila-
tion on the new platform.

Abstract APIs

The figure below shows how this changes with
ANDF. Our example application uses the spec-1170

1. Spec-1170 consists of operating system headers and interfaces. They
are published by X/Open as X/Open Portability Guide issue 4.2.

API for the system services and the Motif2 API for the
GUI.

Tokens, together with a unique naming mecha-
nism, are used to provide abstractions of APIs. E.g. the
API object errno is defined by [8] to be in
<errno.h> with the following properties:

It is unspecified whether errno is a macro or an
identifier declared with external linkage.

Therefore:
• The only thing that the C producer will know

about errno is the fact that it is a modifiable
lvalue of type int. In fact, errno might be
implemented as an external symbol, a location
into a system area accessed from a hidden
pointer, etc.

• The installer will be provided with the actual
definition of errno on the target platform.

A fortunate side-effect of the producer knowing
very little about an API object, is that it has to check
more thoroughly the usage made of this API object in
the source code. Consequently, ANDFizing a piece of
code will highlight more portability issues than a tra-

2. The OSF/Motif toolkit has been standardized by the IEEE under the
reference IEEE Standard for Information Technology – X Window System
– Modular Toolkit Environment (MTE), IEEE Std 1295-1993.

C application

C producer

ANDF files

installer

installed
application

OS

hardware

Spec-1170

target platform

development platform

using Motif & 1170

Motif

Spec-1170

Motif
API abstraction

API abstraction

implementation

implementation



105

ditional compilation will. Consider the following C
fragment:

#include <errno.h>
extern int errno ;
/* …other code… */

It will pass unnoticed under many compilers
because it happens that errno is actually imple-
mented this way on many platforms. But the C pro-
ducer will complain because it has been told earlier
that errno was only a modifiable l-value, which is not
necessarily a global variable.

As a matter of fact, just attempting to ANDFize
code has proven to be a very useful way of improving
the portability of the code in terms of proper use of the
language and APIs.

The compilation process is fragmented

As opposed to the traditional porting scheme,
where everything is done on the target platform, the
correct compilation and execution of an application
using ANDF relies on a chain whose elements may
never be used together, but more likely at different
times and places. I.e. the producer will be used at the
software developer’s site, while the installer will be
used at the user’s site, possibly months later.

Therefore, a high level of confidence in the ANDF
components is necessary for the success of ANDF.

4. ANDF features

ANDF is a full programing language situated
somewhere between HLLs (High Level Languages)
such as Ada, C or Fortran, and low-level ILs such as
the RTL of gcc. ANDF provides constructs to describe
data types, variables and operators.

In addition, portable use of APIs is done through
two ad-hoc mechanisms that delay the actual usage
until installation on the target platform, while ensur-
ing that the use is correct at the production level.
These two mechanisms to tackle portability are: tokens
and conditional constructs.

A more detailed description of ANDF features fol-
lows.

ANDF files

The basic ANDF file is called a capsule. A capsule
can import or export declarations or definitions of
ANDF entities by binding them with external names.
A set of capsules can be packed into an ANDF library1.
An ANDF linker uses the external references to bind
together multiple capsules and/or libraries.

1. Often named a token library because it is currently mainly used to
hold the target-dependent definition of API tokens.

Data types

ANDF shapes describe the basic data types of pro-
gramming languages: integers, floating-point numbers
(including complex numbers), bitfields, pointers, offsets
and procedures. It is also possible to recursively build
structures, unions and arrays. These types can be
parameterized by different means:

• Integers, floating-point numbers and bitfields
are parameterized by the range of values they
can represent.

• Pointers and offsets are characterized by their
alignment, i.e. the memory layout of the data
they refer to.

• Tokens and conditionals can be used to
parameterize shapes. This allows parameter-
ized data types to be built that depend on fea-
tures of the target architecture.

Operators

The ANDF language defines a set of constructs,
about one hundred, for arithmetic and pointer opera-
tions, memory object access, and flow control. They
have been designed to allow a straightforward transla-
tion from a large set of high level language constructs,
and to permit easy implementation on most architec-
tures. In addition, some of these constructs can hold
information for specific behavior, such as overlay of
memory on assignment, or for optimization purposes
such as profiling information on conditions. For arith-
metic operations, specific treatments can be set-up if
an exception occurs.

Variables & Identifiers

The basic variable identifier in ANDF is a tag. A
tag is referred to by an integer. An integer refers to
only one tag. However, a given tag can not be used
everywhere: it has got a scope of visibility.

A tag can be given an external name visible outside
the capsule.

Tokens

A token is a parametrized placeholder for actual
ANDF code. Most pieces of ANDF could be tokenized.

When the declaration of a token is known, it may
be used in relevant places as plain ANDF code. When
the definition of the token is actually provided, refer-
ences to it are expanded.

Conditionals

A conditional construct is just an integer test
expression with two branches. The expression is eval-
uated at installation time, and according to its result,
one of the two branches is selected and the remaining



106

branch is discarded. Note that the integer expression
might depend on tokenized values.

5. ANDF components

Two typical components in the ANDF scenario are
producers, that compile code from an HLL into target
independent ANDF, and installers that translate this
ANDF code into object code.

The production process is very HLL dependent.
The main role of the producer being to check the valid-
ity of the source code, and then to generate ANDF.

The installation process can be logically divided
into the following phases:

Token binding, where the definition of target
dependent tokens are provided,

Conditional expansion, where the conditional
constructs are evaluated and replaced by one
of their branches. At this point we obtain tar-
get dependent ANDF.

Translation, where the target dependent ANDF
is translated into object code. This phase only
performs target code generation, as all the tar-
get dependent information has been provided
by the expansion of tokens and conditionals.

Linking, where the system linker is used to create
the final executable from the object files.

6. Validation of ANDF components

The fact that the compilation process is now frag-
mented, with the two components knowing nothing
about each other has many implications:

• The producer and the installer must be vali-
dated separately, whereas in the traditional
scheme, the front-end and the back-end of a
compiler are validated together on a single
platform.

• The user’s platform must provide a conform-
ant implementation of the APIs used by the
application, Motif and spec-1170 in our exam-
ple, whereas in the traditional porting scheme,
final fine-tuning or fixing of a discrepancy for
a given platform is always possible.

• The installer must have access to all the sys-
tem tools necessary to install a software pack-
age without any intervention from the user,
e.g. system libraries.

It is worth noting that validation of ANDF compo-
nents by only means of tests suites for a specific lan-
guage is inadequate, for a number of reasons:

• Each language is likely to generate code with
a specific profile: e.g. a Fortran producer is
more likely to pass parameters by reference

only, thus never exercising the pass-by-value
convention.

• Producers might make undocumented
assumptions about the target architecture; e.g.
a C producer might assume that:

sizeof(long) == sizeof(int).

• Producers and installers might share a num-
ber of unspecified assumptions that would
not be found by testing them together with an
HLL suite.

Therefore, the approach chosen for validation is as
follows:

• Installers are validated with specific test
suites: the “ANDF Validation Suite” (see § 7). It
is a collection of hand-written test cases that
exercise each ANDF construct in turn.

• A “General ANDF Interpreter” (see § 8) (GAI)
has been designed to assist validation of pro-
ducers by providing interpretations of ANDF
code. The final goal of the GAI is to run HLL
test-suites for a specific language on top of it
to validate producers.

It is worth noting that the AVS and the GAI could
be used to validate other possible ANDF tools such as
an ANDF-to-ANDF optimizer, etc.

7. ANDF Validation Suite

This section presents the ANDF Validation Suite
(AVS), a collection of hand-written test cases to check
installer conformance to the ANDF specification.

Installer validation is an important aspect of
ANDF validation:

• It is essential that installers strictly conform to
ANDF semantics, as no tuning is possible on
the target platform: once one gets a shrink-
wrapped ANDF application, it must be
installed by plug and play.

• It is the only tool actually producing code that
can be run and consequently is the only candi-
date for testing.

AVS overview

The constructs have been divided into classes, and
each class is tested separately:

• namespace constructs;
• token expansion;
• conditional expansion;
• flow control;
• memory accesses;
• pointer arithmetic;
• integer arithmetic;
• floating-point arithmetic.



107

We have written the tests directly in ANDF,
through an ASCII to binary tool which we developed
separately. Thus we are independent of any HLL.
Most of the tests are hand-written test cases, with the
exception of integer and floating-point arithmetic
tests, which were generated semi-automatically.

We have a minimum API requirement for the tests
themselves. We need some basic I/O for the tests, at
least to print out the results. To do so, our ANDF code
uses a very limited subset of the ISO-C API [8]:

• Each set of tests is exported as a function
named main().

• We need to know the actual definition of the
two C types int and char.

• We output the results through calls to the
ANSI-C library function printf().

Coverage

Each construct is systematically tested within its
domain of validity, as well as at the limits of its
domain. Limit tests include tests such as large number
of parameters for a token or a procedure.

Some constructs are strongly related to each other,
e.g. div and rem. Such sets of constructs have also
been tested altogether.

For arithmetic constructs, each test is repeated
three times to stress different optimization schemes of
an installer:

Plain constants. Installers are expected to opti-
mize-out many of these tests by constant fold-
ing and just generate code that will report a
success.

Initialized variables. Clever installers can
replace these variables with their actual value
by constant propagation and therefore can
optimize-out these computations as well.

Dynamic values. The values are passed through
calls to a function that just returns their single
parameter. In this case, the installer is forced
to generate code and the test is actually per-
formed at run-time.

Other tests for installers

There are some test areas that are not yet covered
by the AVS:

Complex optimizations, such as optimization of
loops.

Typical HLL patterns. Such as structure layout.
We feel that these cases are already covered by test

suites specific to HLL, and that for the time being, it is
preferable to concentrate on other parts of the AVS.

Outcome

The process of writing the AVS was not without
some difficulties. Some were just minor points, others
were more critical:

• While writing tests, one has to forget that one
is using an actual installer on one’s develop-
ment machine: “I must forget that I am using a
32 bit RISC machine!”.

• The systematic testing of features yields some
bizarre test cases: “What is the purpose of the test
here? Which HLL will need this anyway!?”.

• As we were running our tests on a current ver-
sion of the technology, we were often one bug
ahead of the installer. This means that once a
bug is found by a new test, it can be difficult to
develop the follow-on test without having
anything to run it on as a sanity check.

In the end, writing tests for the AVS turned out to
be an interesting process that has raised a number of
interesting issues that resulted in clarifications of the
wording of the ANDF specification. Needless to say,
the quality of installers has also improved during the
process.

8. General ANDF Interpreter

Producers are more difficult to test independently
of installers. A producer takes high-level language
(HLL) source code and generates ANDF code. Note
also that this generated ANDF code embeds references
to tokens to be expanded on the target platform. Given
this, the conformance of a producer means that it gen-
erates ANDF code actually reflecting its HLL seman-
tics both by means of pure ANDF code and by the
correct use of its HLL Target Specific tokens. Thus, val-
idating a producer per se is not an easy process.

Compilers of a given language are usually vali-
dated through a specific validation suite. This process
validates the compiler running within its run-time
environment. In the case of ANDF, the actual run-time
environment is unknown: these environments include
any new architectures not yet designed. The point is,
regardless of how many environments we can gather
today, we will end up with a set of target-dependent
environments, which is not the same as being target-
independent. This strategy could be an effective prag-
matic starting point, assuming that certified installers
are available.

To tackle this issue a General ANDF Interpreter
(GAI) has been developed. The GAI interprets ANDF
code in an architecture neutral way in order to high-
light any unspecified platform specific behavior of the
ANDF code. It relies on an abstract execution environ-



108

ment to provide arithmetic operation emulation and
memory abstraction.

Advantages of the GAI compared with an installer

An ANDF interpreter has many advantages com-
pared to a particular installer on a platform. Its main
advantages are that it is simpler than an installer and
easier to adapt to specification changes, for the follow-
ing reasons:

• The semantics of each ANDF construct are
defined in a high level language, rather than
being expressed by a sequence of machine
instructions to be generated by an installer.

• An interpreter does not need to bother with
particular hardware conventions, such as call-
ing conventions or memory allocation.
Instead, it relies on well defined interfaces and
data type abstractions to provide a straightfor-
ward implementation of the semantics.

• The semantics of each ANDF construct can be
implemented independently of any others,
while for an installer the same construct may
produce different code depending on the con-
text in which the construct is used. No optimi-
zations -such as register allocation, local and
global optimizations, etc.- are performed in an
interpreter.

Another advantage is that the ANDF interpreter
can be parameterized to emulate parts of different
architectures. Then, it can be used to check the execu-
tion of an application on a particular architecture, or
even on non-existent platforms, with unusual word
lengths for example. In addition, it can provide a dif-
ferent interpretation for undefined behavior in the
ANDF specification, providing “perverse” but legal
interpretations.

The interpreter, as it emulates an execution envi-
ronment, can perform intensive checking, while an
installer in most case is limited to the hardware error
detection mechanism, which is often not as restrictive
as one would like it to be. For example, uninitialized
memory cells are flagged, and arithmetic operations
are implemented such that they can detect undefined
results. Memory accesses are always checked, when
reading or writing. Every attempt to access an object
beyond its allocation bounds is detected. Also, when
calling an API function, which is not interpreted, argu-
ments are checked so that illegal calls can be flagged in
most cases.

Problems to be solved in an ANDF interpreter

An interpreter must not only provide the interpre-
tation of the semantics for the ANDF constructs, as an
installer generates code to express this semantics at

run-time, but also it has to provide an execution envi-
ronment for the interpretation of the application.
There are four main components which the ANDF
interpreter provides for the interpretation of an appli-
cation:

Arithmetic operation emulation, so that the
hardware architecture of the platform on
which the interpreter is run is not used.This
emulation must also be parameterized in
order to be able to emulate various execution
environments. However, this has not yet been
totally achieved for the floating-point arith-
metic operations.

An interleaving mechanism, to reflect the fact
that the ANDF language is rather liberal in
permitting reordering and indeed interleaving
of expression evaluation. The GAI supports
interleaving of expressions where it is allowed
by the ANDF specification. This is used to
detect code with dependence on evaluation
order. Interleaving has only recently been
added in the interpreter. It still needs some
development mainly to allow the user to
detect and resolve any conflicts between inter-
leaved branches.

A memory abstraction, in order to be indepen-
dent of the data types of the hardware plat-
form and from their alignments or storage
constraints. This can be used to implement
unusual data representations or alignment
rules.

An API implementation, for the application to be
interpreted. The GAI uses directly the API of
the platform. Another solution would have
been to provide an interpretation of the API
functions, either by obtaining an ANDF ver-
sion of them, or by directly recognizing them
in the interpreter and emulating their actions.

Difficulties

Using the GAI in conjunction with HLL test suites
to validate producers is more complicated than using
the AVS to validate installers.

In the case of the AVS, we have three entities inter-
acting, the AVS, the installer and the hardware. Hard-
ware problems can usually be excluded, the few lines
of the AVS involved are easily inspected, so that the
attention can be quickly focussed on the installer.

In the case of the GAI, we have three software
entities involved: a few lines from the HLL test suite, a
producer, and the GAI. Just as for the AVS, the few
lines of the test suite can be easily inspected. The prob-
lem is that the producer and the GAI are tools of simi-



109

lar complexity, so it is difficult to decide which of them
is at fault.

9. The AVS and the GAI

The AVS is used to validate installers. It has to
check that every ANDF construct is actually imple-
mented in conformance with the specifications.

The GAI is designed to validate producers, and
also any tool which makes ANDF to ANDF transfor-
mations. It must check that the semantics of the code
generated by a producer expresses the application
semantics without any particular architecture assump-
tions.

However, in order to fulfil their role, these two
tools have also to be validated. The AVS may contain
code which is not independent of the platform on
which it is run. The GAI may fail to interpret some
unusual patterns of ANDF. The validation of these
tools could be achieved by checking them against
many producers and installers to exercise them on a
large set of configurations.

But a much better solution is to validate them
together. Indeed, as the AVS should cover the entire
ANDF specification, with usual and unusual ANDF
patterns, it will exercise the whole interpretation code
of the GAI. And as the GAI should be able to emulate
a large set of environments, as well as non-existent
ones, it will check that the AVS does not make any
assumptions about the platform it is executed on.

We carried out this validation process, and it
allowed us to correct a number of bugs which were
not detected by the installers on which we ran the
AVS. As we did not yet validate the interpreter on
benchmarks or validation suites, the AVS was very
useful for detecting problems in the GAI. This work is
still in progress.

10. Related work

This work took place within the CEC sponsored
OMI/GLUE Esprit project, more precisely in a work-
package dedicated to ANDF specification and valida-
tion.

The starting point of this workpackage was the
ANDF specification provided by DRA in plain English
[4], also called the informal specification. Besides the
AVS developed by OSF and the GAI developed in col-
laboration by Etnoteam and OSF, another important
achievement of this workpackage is the Formal Speci-
fication of ANDF developed by DDC-I [5]. DDC-I
used Action Semantics [6] and the RAISE Specification
Language formalism [7] as modeling tools.

Other teams have been developing ANDF compo-
nents, either as part of the GLUE project or indepen-
dently. The various discussions resulting from having
different teams working on the implementation of
ANDF-related tools resulted in increasing quality of,
both formal and informal versions of the ANDF speci-
fication.

Also, the various discussions with DDC-I about
the Formal Specification have been very fruitful, and
our modeling of interleaving in the GAI owes much to
their work.

ANDF components currently being developed
include:

• Installers: MC680x0, 80x86, mips, Alpha, Pow-
erPC, HP/PA, ARM.

• Producers: C, Fortran 77, Ada, Dylan, C++.
• An investigation to re-use existing compiler

technology to build ANDF installers: GANDF
[2], based on gcc from the Free Software
Foundation.

11. Conclusion and Further work

Having the AVS and the GAI exercise each other
will raise the level of confidence that they both imple-
ment the same semantics. But there is no way to
ensure that this semantics is the exact ANDF seman-
tics. However, the dynamic semantic description of
the ANDF constructs appears to be rather close to the
action performed in the interpreter to interpret the
ANDF constructs. This could be used to check manu-
ally that the GAI implements the right semantics. In
many cases, it may even be possible to automatically
derive the interpreter code from the ANDF Formal
Specification, but this has not been studied yet.

12. Bibliography

A number of papers on ANDF are available from
the OSF-RI WWW server:
“http://riwww.osf.org:8001/index.html”.
[1] ANDF Validation Suites Specification, Frédéric

Broustaut, Christian Fabre, François de Ferrière,
Éric Ivanov, OSF Research Institute, Grenoble,
March 1993.

[2] GANDF: Status and Design, Richard, L. Ford,
OSF Research Institute, April 1993. Available
through OSF-RI’s WWW server.

[3] The Ada compiler validation capability. John Good-
enough, Softech, Inc., December 1986.

[4] TDF Specification (Issue 2.1, June 1993). Defence
Research Agency, Malvern, U.K.



110

[5] Formal Specification of ANDF, existing subset, doc-
ument code 202104/RPT/19 issue 2, January
1994. Jens Ulrik Toft & Jens P. Nielsen, DDC-
International A/S, Gl. Lundtoftevej 1B, 2800
Lyngby, Denmark.

[6] Action Semantics. Peter D. Mosses. Published as
n˚26 under the Cambridge Tracts in Theoretical
Computer Science by Cambridge University
Press. 1992. ISBN 0-521-40347-2.

[7] The RAISE specification language, published in
The BCS Practitioner Series by Prentice-Hall.
1992. ISBN 0-13-752833-7.

[8] Programming language - C, International Stan-
dard ISO/IEC 9899: 1990 (E), First edition 1990-
12-15.

[9] Validation and Verification program for ANDF.
Frédéric Broustaut, Christian Fabre, François de
Ferrière & Eric Ivanov. OSF’s ANDF collected
papers. October 1993. Available through OSF-
RI’s WWW server.

[10] Porting ANDF to Microsoft Windows NT.
Richard L. Ford & E. Andrew Johnson. OSF’s
ANDF Collected papers. December 1993. Avail-
able through OSF-RI’s WWW server.


