®
*ADA176693%* | 2

One Source. One Search. One Solution.

TEN15: AN OVERVIEW

ROYAL SIGNALS AND RADAR ESTABLISHMENT,
MALVERN (ENGLAND)

SEP 1986

U.S. Department of Commerce
National Technical Information Service




One Source. One Search. One Solution.

Providing Permanent, Easy Access
to U.S. Government Information

The National Technical Information Service is the
Nation’s largest repository and disseminator of
government-initiated scientific, technical, engineering,
and related business information. The NTIS collection

includes almost 3 million information products in a
variety of formats: electronic download, online
access, DVD, CD-ROM, magnetic tape, diskette,

muitimedia, microfiche and paper.

Search the NTIS Database from 1990 forward
More than 600,000 government research information products have been added
to the NTIS collection since 1990. All bibliographic entries for those products are
searchable on the NTIS Web site at www.ntis.gov.

Download Publications (1997 - Present)
NTIS provides the full text of many reports received since 1997 as downloadable
PDF files. When an agency stops maintaining a report on its Web site, NTIS still
offers a downloadable version. There is a fee for each download of most
publications.

For more information visit our website:

www.ntis.gov

oFr
f‘;ﬁ." U.S. DEPARTMENT OF COMMERCE

R Technology Administration
i,% j Nati_onall Technical Information Service
— Springfield, VA 22161



genmmTrm TR

AD-A176 693

4

RSRE MEMORANDUM No. 3977

AN W W e G

RS RE
MEMORANDUM No. 3977

ROYAL SIGNALS & RADAR

0T FILE COPY

ESTABLISHMENT

TEN }5: AN OVERVIEW

- Authors: P W Core and J M Foster

PROCUREMENT EXECUTIVE,
"MINISTRY OF DEFENCE,
 "RSRE MALVERN,

WORCS. DT,C

ELECTE g

UNLIMITED .
S L







ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3977

Title: TEN15: AN OVERVIEW
Authors: P.W.Core and J.M.Foster

Date: September 1986

Summary

o

Ten15 is a strongly typed, algebraic abstract machine. It is in use as
the target machine of several compilers. The method of definition
makes it possible to use formal techniques of algebra as a basis for

tools. This memorandum contains an informal description of the machine
and its programs. .- ...

Unannounced O
Justification

By
Distribution/
Availability Codes

Avall ahd/or
Special

Dist

Al

Copyright

©
Controller HMSO London
1986

“nig

i Accession For L o /;_;_ L L,} [
NTIS GRA&T—T oo
DTIC TAB !







CONTENTS

1 Introduction

2 Tenl15 Machine states: values and memory

Scalar values

Memory values

Mixed values

Filestore memory values

Abstract data types and new constructors for types
Network values

NN
N F WN —

3 Eval, procedures and exceptions.

3.1 Procedures

3.2 Polymorphic values

3.3 Exceptions and labels
4 Constructions in the Ten15 algebra and their translation
5 References
Appendix A: The Ten15S signature
Appendix B: Load constructors in the program algebra
Appendix C: Coercion

Appendix D: Operators in Tenl15

Appendix E: Assertions in Ten15

P

DONNOODWNN

18

18

21

25

26

48







1. INTRODUCTION

Ten15 is an abstract machine which is defined algebraically. It is
strongly typed, using a universal system of types.

e Tenl5 is the target machine for a number of compilers. At present
compilers for Pascal, Ada, Algol68, ML and a direct notation for
Ten15 are in various stages.

e Programs for the Ten15 machine can be translated into machine code.

A translator for the Flex computerl’Z has been in use since 1984 and
a VAX implementation is being started.

e Since Tenl5 is defined algebraically, algebraic techniques are
available to construct tools to operate on programs. The VAX
translator is being written as a homomorphism. Analytic programs to
determine properties of pieces of Tenl5 can be algebraically
implemented.

® Algebraic techniques can also be used synthetically to construct
Ten15 programs. This is our intended approach to "program re-use".

e The system of types used by TenlS is universal. The conventional
types in programming languages restrict their type checking to one
statically linked program. Ten15 types permit the checking of the
dynamic linking of unanticipated procedures and embrace the
operating system and the translator itself.

e The type checking in Ten15 is more stringent than the capabilities of
the Flex machine, yet it is equally flexible.

o The use of Tenl5 as a common target for compilers means that
programs from different sources can cooperate and a single system
of tools can be applied to them. The code produced is acceptably
efficient. Using the Ada compiler through Ten15 to Flex vields code
which is approximately equal in space and speed to code produced by
an ad hoc compiler for Algol68 on an equivalent program.

® The Ten15 types are sufficient to describe backing store and network
values, and appropriate operations are available upon these.

The Ten15 machine has programs, which can be obeyed in a state of the

machine, producing another state. TenlS programs are defined as
members of a particular algebra, the program algebra. The states and
transformations of a Tenl15 machine are also defined algebraically. We
have chosen to make the effect of obeying a Ten1S program legal for
every state (including inappropriate states and non-terminating
programs), so a program is associated with a total function from states




to states. The formulation of universal algebra which we use is derived

from that of the ADJ group3.

In order to define the Ten15 machine we must describe the program
algebra and the association between programs and state-to-state
functions. Formally this association is defined as a homomorphism, but
in this paper we are giving an informal account of Teni5. All the
constructions will be treated in enough detail to give an initial
understanding, but not enough to create an implementation.

In writing this description, we must especially acknowledge Ian
Currie, one of the designers of Tenl15, and the RSRE staff who have
worked on TeniS.

2. TEN15 MACHINE STATES: VALUES AND MEMORY

The basic constituents of a Teni5 state are values and a memory. A
memory is a repository for values. The whole memory is changed by an
assignment. References into the memory are themselves possible
values.

Ten1S values are typed (moded, following Algol68 terminology ),
every value having an associated type which determines the operators
which can be applied to it. A type corresponds to a set of values, but
these sets are not all disjoint. Many of the types are close to those
required by high level languages so that the Teni5 values representing
values in high level languages are usually obvious.

The values are divided into those which do not involve memory (the
scalar values), those which are pure memory values, those which are
mixed, values in backing store and network values (which are not
described here), and those values which are involved in procedures and
exceptions, the description of which is deferred to the next section.
In addition Ten15 permits the introduction of new user-defined abstract
types. The values belonging to new abstract types are represented by
values belonging to previously defined types.

The different types of value are described below. In this paper the
names and constructors for types are underlined.

A few of the operations on the values are described here, but the
full list of operations is given in Appendix D.

2.1 Scalar values

void
void is a primitive mode. There is only one value of mode void.
bool

bool is a primitive mode with two values. There are the usual
operations on boolean values,



range

Ten15 does not have a mode integer, but instead the mode constructor
range. A range mode has two integer parameters, the first less than or

equal to the second, and every value belonging to the range lies
between these as inclusive limits. For example, a representation of
characters might be range(8, 255).

In all operations delivering ranges,such as '+', '-*, etc., the range
of the result is the smallest range including all possible results, given
the ranges of the operands. For example a wvalue of mode
range(1,10), when added to a value of mode range(1,1088) delivers a

value of mode range(2,110).
real

real is a mode constructor, designed to represent usual

implementations of real numbers. A real modes has two integer
parameters; the first represents the number of bits in the mantissa,
and the second the number of bits in the exponent. Exponents are
assumed to be base 2. The operations on reals are conventional and the
mode of the result is the real mode constructed from the maximum of
all mantissa sizes and the maximum of all exponent sizes.

This form of real modes allows reals to be transferred to another
machine, be operated on and returned to the original machine in the
same representation.

2.2 Memory Values

Memory in TenlS is entirely controlled by Ten15 values. If there are no
Ten15 values with access to memory then there is no ability to access
the memory. The memory is organised on a capability basis, that is,
memory can only be accessed if a capability, a value with access
ability, for that part of memory is held. Capabilities can not be forged,
so by controlling the distribution of a capability the memory which it
has access to is also controlled.

pointer

pointer is a mode constructor, and the modes generated are constructed
from one mode parameter, for example pointer(bool). The values whose
mode is constructed using pointer are values with access to memory,
and the mode from which they are constructed is the mode of the value
in memory to which they have access.

Pointers are generated by the operation ‘generate pointer’ which
operates on any value, generates a memory location in which to place it
and then generates a value, the pointer, to access it. This pointer
gives the ability to replace the value to which it points with any other




value of the same mode. It also gives the ability to read the value to
which it points.

Capabilities not generated from sequences of operations on this
pointer will not have access to the memory location. Thus by limiting
the access of the pointer, control of access over the memory location
is maintained. Pointers are mainstore values which are lost when the
mainstore is lost.

reference

reference is a mode constructor, and the modes generated are
constructed from one mode parameter; reference(pointer(bool)) is an
example. The wvalues whose mode is constructed from reference are

values with access to memory, and the mode from which they are
constructed is the mode of the value in memory to which they have
- access. They are very like pointers. v

References can be created in many ways, but always from other
memory values. Hence they inherit their memory capabilities from some
other object which also has memory capabilities. The simplest manner
of creating a reference is from a pointer. A value of mode reference m,

a reference, can be created from a pointer of mode pointer m. Like a

pointer a reference gives the ability to replace the value it references
with another value of the same mode, and also to read the value
referenced. But whereas a pointer can only be created by generation,
and always refers to the whole of the object in question, a reference
can access parts of an object. For example a

reference(struct(bool,range(9,255)))

could be selected from to give either a ref(bool)) or a
ref(range(8,255)) each of which can be altered or read. They would

share store with the original reference, so if an assignment is made to
the ref(bool) and the original was read, the boolean field of the _

structure would have the new value.
vector

vector is a mode constructor, and the modes generated are constructed
from one mode parameter and a pair of integers, for example
vector(range(8,255),8,18) may be a vector of characters. Vectors are
memory capabilities with access to a number of values of the same
mode, the mode from which the vector was constructed. The number of
components in the vector lies between the two integers in the mode
construction (inclusively).

Vectors are created in two ways. Firstly, a vector(m, I, u) can be
made from a value of type m to initialise the vector and a value of
- range type to specify the number of elements. The vector then contains




a number of copies of the value. Secondly a structure with n fields,
every field having the same mode, m, can be used to produce a

vector(m, n, n}) containing the elements of that structure.

Vectors can be reduced in size by trimming, a trimmed vector
references a subset of the original vector. The trimmed result shares
store with the original. The components of one vector can be assigned
to another vector of the same mode, provided that they are the same
size.

There is an operation on a vector giving the number of elements in
the vector. For example, when applied to vector(range (8,255),8,10) a

value of mode range(08, 19) is delivered.

Vectors can be indexed by a range value to give a reference to an
individual component. If the index is outside the range of the vector,
then an exception is delivered. The reference provides a means of
altering and reading individual values independently of the vector. The
memory locations referenced can also be changed by assignments to the
original vector as a whole, or to trims of the original vector.

array

array is a mode constructor, modes generated from it are constructed

from an integer, which is the dimension of the array, a mode (the mode
of the elements referenced by the array) and a pair of integers for
each bound in the array.

Arrays are similar to vectors, but they have a different indexing
mechanism. Each dimension has a lower and upper bound, lying in
specific ranges determined by the integers in the mode
construction.They are indexed to give references, but one index is
required for each dimension to deliver the reference. If the index of
each dimension does not lie within the bounds of that dimension then an
exception is delivered.

Each dimension of an array can be trimmed individually in a similar
manner to vectors and an array can be sliced (have its dimension
reduced by one by indexing in only one of the dimensions). There are
array operations, similar to that operation on vectors which gives
their size, to give the upper and lower bounds of a specified
dimension.

read only memory values

For all the memory access values just described, there are ’read only’
versions. These can be read, but cannot be used to alter the memory.

They are generated from any memory value. They are not to be
assumed to be constant because they access the same memory as the
value from which they were created. This value may have the ability to
change the memory.




2.3 Mixed Values

struct

The Cartesian product of any number of modes is a mode, which is
written as struct(ml, m2, ... mn). The values of this mode are n-tuples

of values of the constituent modes. For example the Cartesian product
of a bool and a range(8,255) is a struct(bool, range(8, 255)). The

elements of a structure can be selected from the whole.

union

The disjoint sum of any number of modes is a mode, which is written as
union(ml, m2, ... mn). The values of this mode can be represented by a

tag to determine to which of the modes the incumbent belongs, together
with the value itself. There is an operation which takes a tag and a
value, uniting the value to the mode indicated by the tag. This will not
be allowed if the mode indicated is different from that of the value.
For example the value true can be united to either the first or third
fields of the union union(bool,range(B,ZSS),M), but not the second.

‘This type of union is different from the Algol68 union, which is an
approximation to set union in which it is not possible to have a mode
repeated in the union. It is also different from the Pascal variant
record which corresponds to reference to union and which allows the
assignment of the tag independently of the value.

choice

choice is a mode constructor, and the modes generated are constructed
from one mode parameter, for example choice(pointer{ bool )).

There are operations to convert any mode, m, to a choice(m), and
there is an operation to convert void to any choice(m) . To obtain the

value in a choice there is a test at execution time to determine whether
the value in a choice is void or not, and to obtain the value if it is not
void.

Choices are included in Tenl1S so as to provide a convenient
representation for references in languages such as Algol68 where a
'NIL’* referenece is required; a REF X being represented as say a
choice(reference(X)) with NIL being the void option.

moded values

There is another primitive mode, moded, which can be thought of as the

value bound to its mode, or alternatively as the infinite union of all
modes. Very few operators can operate directly on moded values
because the mode of the value is not known until execution time. There
are two ways of obtaining the value bound into a moded. Firstly there is



an execution time test to assert whether or not the moded value is of a
specific mode, if so it delivers the value, otherwise an exception is
delivered. Secondly there is the case_moded construction described in
the following sections. Each of these is related to the corresponding
operation on unions.

2.+ Filestore Memory Values

In addition to mainstore memory, it is necessary for TenlS5 to
encompass the notion of filestore memory. This is in order that Ten1S
can be used in the description of an entire system. It is not assumed
that there is only one filestore. The values for accessing filestore
values are filestore capabilities, with similar properties to mainstore
capabilities. There are two types of filestore capability.

persistent

The mode of a persistent value is generated using the constructor
persistent and any mode.

Persistent values are generated in a similar manner to pointers with
a 'make persistent’ operator, operating on any value, generating space
for a filed representation of it on filestore, and generating a value to
access it. It is not possible to assign to persistent values, only to
create them and read them, so that they can be considered constant or
write-once values.

When reading a persistent value, a copy of the value stored is
delivered. For static values this is indistinguishable from the original.
But for memory values a copy is not equivalent to the original, in that
assignment to it does not change the original, nor vice versa. The copy
will be internally consistent, in the sense that if the same mainstore
capability is used more than once in the value which is output to
filestore, then the value read from filestore will maintain equality
between those capabilities, but not with any others which may still
exist in the mainstore memory.

Though a persistent version is available for values of any mode, it
is not possible to put on one filestore values belonging to another.

persistent_varisble

The mode of a persistent_variable value is generated using the
constructor persistent_variable and any mode.

Persistent_variable values are generated in the same manner as

persistent values. They can be assigned to and dereferenced. theyv
contain only persistent values from the same filestore.

2.5 Abstract Data Types and New Constructors for Types

As well as the mode constructors just listed, it is possible to make new




types and new type constructors which can be defined by the user. Each
new type or constructor must have a representing mode and a set of
atomic operations which are expressed in terms of the representing
mode. For example it may be desirable to have a new constructor list so

that Tenl5 can handle, for example, values of mode list(bool) or
list (range(8,255)) and list (x) could be represented as

r where r = choice(ptr(struct(x, r)))

and x is a formal mode. The appropriate operations might be head, tail,
cons and is_empty. ‘

2.6 Network values

These are not described in this paper.

3. EVAL, PROCEDURES AND EXCEPTIONS

3.1 Procedures

In order to evaluate a piece of Tenl15 it is necessary to know the values
which correspond to the names in it which are not locally declared.
Given this environment, we have a function from states to states. So
the Ten15 eval function is a mapping from the Ten15 program algebra to
functions from environments to state transformations.

(NAME — VALUE) — (MEMORY — MEMORY x VALUE )

Here (NAME — VALUE) gives the name-value associations of the
environment. The (MEMORY -— MEMORY x VALUE) is the effect of
execution. v

An illustration from Algol68 is the expression

X 1= 3

This can be expressed in the above form, where the external value (a
reference to an integer) associated with the name x needs to be
supplied. Execution produces a change in the memory accessible by the
external value, leaves the rest of memory alone, and delivers the value
of x.

The ability to treat programs as data is inherited by the Ten15
program itself and is one of the more important features of TeniS. It
does this by means of values of type protocode together with values of

type package and procedure. In the run_time system a protocode

corresponds to a piece of Ten15 program and so it needs to be bound to
values (its version of an environment ) before it can be run. When it is
so bound it yields a procedure. When this is run, it will produce a



changed memory and a value, the result of the procedure. It will be
shown that Tenl5 programs do not contain values, and particularly not
values which address the memory (literal constants are treated
differently). This means that Tenl15 protocode values are portable to
other Ten15 machines, as all Ten15 machines are driven by the common
Ten15 algebra. Properties of protocode can be analysed independently
of the Ten15 machine states, in particular independently of the memory.

A protocode, then, needs to access externally supplied values.
Indeed if it does not do so, then it is an entirely self-contained object,

without parameters or access to anything non-local. Such programs are
possible, but very rare.

There appear to be three times‘f‘rom the creation of a protocode

until its execution at which it would seem appropriate to supply values.
The first is at the creation of the protocode. For example a piece of

program may require the use of previous defined modules. It is
generally known when the protocode is created that it is only intended

to be run with specific modules and no others. We call these the
constants of the protocode, though the name is slightly misleading. The

result of supplying these values gives a package.The second is during

loading or execution of some other piece of program, when certain
non-local values may be bound in. The result of binding the non-locals
into a package gives a value of type procedure. The third time is just

before execution of the program itself, when the parameters are
supplied.

protocode + constants — package
package + non-locals — procedure
procedure + parameters -— executable program

Applying a Ten15 procedure to its parameters immediately causes
execution, and delivers the value which this produces. protocode are
therefore constructions in the Tenl5 algebra which require precisely
three external values, the constants, non-locals and parameters and in
consequence are supplied with three names.

For example consider the piece of Algol68

REF INT count = HEAP INT := 8;

PROC add = (INT i)INT: count +:=1i;

add(3)

The procedure add could be represented by a Ten15 procedure. It is
dependent on only two values, count and i. | is the name of the
parameter, with which it is supplied immediately before execution. The
appropriate value for count does not exist until the algol68 program is



executed, in particular it is not known at compile time. However it does
exist when the procedure is created as the second line is obeyed. So
- count is the name of the non-local. There are no constants. The Algol68
program would generate a reference count as the first line is executed.
This is then bound to an anonymous package, to give a procedure
representing add, which then finally is supplied with the value 3 as a
parameter before execution.
If this procedure were part of another procedure for example,

PROC add3 = (INT 1)INT:
BEGIN
REF INT count = HEAP INT := ©;

PROC add = (INT i)INT: count +:=i;
add(1i);
add(3)

END

then the value of the protocode from which add is constructed is known

when compiling add3 and can thus be supplied as a constant to add3 at
compile time.
In general the protocode, in terms of the Ten1S algebra, will

involve applying operators to values. The types of these values may be
known from the examination of the Teni5 structure and in such cases it
is known whether or not the value is of the correct type in order for
the operator to be applied to it. In the Algol68 example it is known that
count is a REF INT and i is an INT so that +:= is a valid operator to apply
to these operands. If the operator could not be applied to the value
then at execution an exception would have to be delivered. Since it is
known whether or not exceptions of this nature will occur at execution
by examination of the Ten15 algebraic structure, the same effect could
have been obtained by an explicit failure. If the specification of a
program involves the application of operators to values of the wrong
mode, then this is normally an error, which we treat differently. So
protocode can only represent Tenl5 structures which guarantee not to

produce this exception on execution. This is similar to saying that the
compiled code of an Algol68 program will not produce any modal errors.

The constants, non-locals and parameters are also available to the
protocode at execution and it is necessary to know the mode of these
values in order that the application of operators can be guaranteed not
to produce an error; in the add, if the modes of count and i were not
known, it would not be possible to determine whether or not the
application of +:= was valid. The mode of the protocode is thus
constructed from four wvalues; the modes of the constants, the
non-locals, the parameters and the result. When a protocode is
supplied with its constants, their modes are checked to ensure that
they correspond with the mode specification of the protocode and a

16



package is delivered whose mode is constructed from three modes, the
non-locals, the parameters and result. Similarly the procedure is
constructed from only two modes after the checking of the mode of the
non-locals against the mode specification of the package.

add was constructed from a protocode of mode

protocode(void, ref int, int, int)

void was supplied at compilation to give a wvalue of mode
package(ref int, int, int), which was supplied with the non-local count
to give a proc(int, int) which was finally applied to 3 to deliver a
value of mode int. The mode of the protocode from which add3 is
constructed is

protocode(package(ref int, int, int), void, int, int)

One of the most important kinds of value which can be bound in this
way is a value of type protocode itself. Consider an Algol68 praocedure

PROC f = REAL :

BEGIN REAL r = random;
PROC g = (REAL t )REAL :
BEGIN r + t END;

g(g(pi))
END

The internal procedure g has to be created from a package which needs
r binding to it when f is obeyed. That package in turn was created from
a protocode, p, by binding void to it. So f, which had to be created
from an original protocode, needed to have p bound to it as a constant.
This is why the Tenl15 signature contains no operations for creating
protocode values. They are created and bound in by an external
mechanism.

This notion of protocode adds one more binding time for values to

that of Landin’s closures*. This is not a fundamental change, since the
new notion could have been expressed in terms of the old one, and it is
not clear why we should stop at two binding times. The present decision
is just a pragmatic one.

3.2 Polymorphic Values

Ten15 contains some generic operators, by which is meant, operators
that are applicable to values of differing mode. One example of such an
operator is trim_vec, which trims a vector. This is clearly applicable
to a vec bool, vec range, in fact to any vector. It is possible to

specify Tenl15 protocodes which will guarantee not to have any modal

11




errors, but also be applicablé to constants, non-locals and parameters
of differing modes. For example, a protocode which took a vector as a

parameter and delivered a trim of it as a result. In order not to
restrict the mode specification -of the protocode so that a new

protocode is required for every mode of vector which may be required
to be trimmed, Tenl5 has the notion of generic protoccde. The mode
specification of the protocode requires the form of the parameters,
and the protocode will again guarantee that no operator is applied to a
value of the wrong mode form. The mode of such a generic protocode
may be

poly(x, protocode(void, void, vec x, vec x)

where poly means polymorphic, and X is a formal mode to specify the
form of the protocode.

3.3 Exceptions and labels

Certain constructions in Teni5, the assertions, allow of two possible
outcomes. Either, like operators, they modify the state and continue,
or else they detect some condition. In the latter case they can be
thought of as having the effect of conditional jumps, though the
algebraic view uses different terminology. It thinks of labelled
statements as being equations. So the Algol68

lab: x := x + 1; IF x < 38 THEN GOTO lab FI
is thought of as the equation
lab = x :=x + 1; IF x < 38 THEN GOTO lab FI

that is, lab is defined to mean that particular state transformation,
which in turn involves lab. To give a meaning to this we have to solve
the equation. In terms of execution, this comes down to the normal
meaning. In Tenl5S, labels are introduced in a very constrained way,
which makes it clear what equations have to be solved. This rules out
the direct use of this construction for jumping out of procedures,
though an algebraic expression of this idea is included using different
means.

An alternative form of assertion allows the detected condition to
generate, not a jump to a label, but an exception. Once again an
algebraic understanding of this is needed, and is provided by the use of
exception wvalues (of mode trap). The exceptions produced by the
erroneous use of instructions which can only be detected at execution
time, are handled in the same way. This covers such errors as overflow
and index out of bounds. :

12



4. CONSTRUCTIONS IN THE TEN15 ALGEBRA AND THEIR TRANSLATION

The Ten15 algebra is a many sorted algebra and the translator is a
homomorphism from constructions in that algebra. To specify the
theory of the algebra we have to give the sorts involved and the arities
of the operations. These are tabulated in Appendix A. We will introduce
the more important operations gradually in this section, as well as the
more important sorts. Sorts are written in capital letters, and the most
important is LOAD, which is the sort roughly corresponding to the
notion of statement or expression. Ways of constructing LOADs are the
main concern of this section. The full list of LOADs is given in Appendix
B.

The translation of structures in the algebra of sort LOAD delivers
functions in the Tenl15 machine of the form

(NAME — VALUE) — (MEMORY — MEMORY x VALUE)

The function from NAME to VALUE will be called the environment. The
'execution’ of a load will mean the effect of executing a translated
load, the environment of execution being explicitly stated; and all
- changes in the memory from executing a load are compounded, that is if
one load is executed before another, the memory delivered from that
load is passed as a parameter to the other.

load_void

This is a primitive load. Its translation is independent of any external
values and hence of any name-value associations. It does not alter the
memory of the machine and on execution delivers a void. The translation

of load_void is

aenv., am. (m, void_value)

load_bool (BOOL b)

This load in constructed from a boolean constant. lts translation is
independent of any name-value associations, does not alter the memory
of the machine and on execution delivers b with mode bool.

load_name (NAME n)

This load is constructed from a name. Its translation does not alter the
memory, but is dependent on the environment. If n is in the
environment, then the value with which it is associated is delivered;
otherwise an exception is delivered. Since, in the construction of a
protocode, the names in the environment are known, it is possible to
determine from the Tenl15 structure, whether this type of error would
occur. For this reason only structures in the Tenl5 algebra, together

13




with sets of names, which do not produce this error are allowed in
formation of protocode.

identity_declaration(INTRODUCTION n, LOAD def, LOAD scope)

An INTRODUCTION consists of a name and a string. The string gives the

characters which are to be used to represent the name in printed form.
The intention is to use the name for quick comparisons, and to use the

string in pretty printing or structure editing. The execution of

identity_declaration in the context of its environment delivers the
value produced by first executing def in the same environment,
associating the value delivered with the name part of n, and then
executing scope in the context of the original environment with this
new association added, using the changed memory. The total change to
the memory is that produced by the change in the memory from
executing def followed by the change from executing scope.
Parallel Algol68 example:

(INT x = y+3; x+y)

x would be the INTRODUCTION n, y+3 would be the load def and x+y would
be the load scope. y+3 is evaluated in the context of some environment
including y. The INTRODUCTION x is then associated with this value, and
the value associated with it can be accessed via this name in x+)V, as
well as any other values in original environment.

A further example, involving assignment is

(INTX=(£ :=3;y+3);t+x)

in which the load ¢+x, the scope, is obeyed using the memory as changed
by (l: 2= 3; y + 3)

load_sequence (SEQLOADS seq)

The execution of load_sequence in the context of its environment
causes the execution of all the loads in seq in turn, the change to the
memory is the accumulation of the memory changes in each of the loads,
and the value delivered is the value delivered by the final load. Except
for the last load all the values delivered by the loads must deliver
void; an exception is delivered if any of these values is not void.

Parallel Algol68 example :
Yyi=lb; x:=IFy>cTHEN yELSECcFI; y
The value delivered by this series is y, but the memory changes of all
the expressions take place. Algol68 is different from Ten15 in that it

does not require that the intermediate expressions in a series should
deliver void.

14



load_tuple(TUPLELODADS tuple)

The execution of Joad_tuple is almost identical to load_ sequence
except that instead of disregarding all but the last of the delivered
values, it delivers an n-tuple of them which has the mode struct (ma,

mb, .. m) where ma, mb, .. mn are the modes of the values delivered

by the execution of the loads in tuple.
Parallel Algol68 example:

(x=y,a>b,IF a>b THEN a ELSE b FI)

would deliver a struct(bool, bool, range(l, u)), if a and b are names
for values of mode range(l, u).

case_integer (LOAD control, CASEJ_LIMBS limbs, LOAD out)

The case_integer construction is designed to represent the selection
of an expression to be evaluated, dependent on the value of a
controlling integer. The execution of case_integer in its environment
causes the execution of control in the same environment. The value
delivered must be a range, otherwise an exception is delivered. Each
CASE_LIMB is constructed from range modes and a LOAD. The CASE_LIMB
containing the range in which control lies is determined and its load is
then executed in the same environment as control. The value delivered
from this load is the value delivered by case_integer. If the value
delivered by control does not lie in any of the ranges in limbs then out
it is executed in the same environment as control.

case_union(LOAD union, UNION_LIMBS limbs, LOAD out)

The case_union construction is designed to decompose a union type
value. The union type value in Ten15 is a disjoint sum, essentially
represented by a tag to determine in which field of the union the value
lies and the value itself. The case_union construction executes
different loads depending on the tag and makes the value in the union
available during the execution of that load. union is executed and if the
type delivered is not a union, then an exception is delivered. Suppose
that the value has tag, ¢, and that v is the value from which the union
value was made. Each UNION_LIMB is constructed from an INTEGER, an
INTRODUCTION and a LOAD. The UNION_LIMB owning the integer equal to ¢
is determined and its load is then executed in a new environment. This
consists of the original environment of case_union plus the name-value
pair which holds the name of the limb and v. If the tag of value
delivered by union does not match any of the integers in limbs then out
is executed in the same environment as wunion.

15




case_moded( MODEDS modeds, MODED_LIMBS limbs, LOAD out)

The case_moded construction is the means in Ten15 for handling modes
at execution time. For example in an operating system it may be
necessary to have a construction which allowed the application of a
procedure to some parameters, provided that they were of the correct
mode. The ability to do this does not exist in languages such as Algol68
where procedure application is only allowed when the mode of its
parameter and result is known. Nor is it available in ML. The
case_moded construction gives the ability to assert relations between
the modes of values whose modes are not known until execution time. To
apply a procedure to its parameters, it is only necessary that the mode
of the parameter and the parameter mode of the procedure are the
same. This can be expressed by saying that mode of the pair, (function,
value) has the form Ax,y. (proc(x,y),x). The asserted mode relationship
between two values holds if there exists a substitution of the formal
modes giving the modes of the values.

The modeds are executed in order in the context of the environment
of case_moded. If any one of them is not a moded then an exception is
delivered. A MODED_LIMB consists a mode relationship, a vector of
INTRODUCTION, and a LOAD. The set of modeds are compared with the
mode relationship in each limb in turn until one is found where there is
a substitution of formal modes to match the actual modes in the
modeds. The values in modeds are then made available during the
execution of that limb by associating them with the names of that limb
before execution. If the modes of the values delivered by modeds do
not match any of the mode relationships in limbs then out is executed
in the same environment as modeds.

An example is

case_moded proc, parameter in

(formal x: f|proc(x,bool), p|x) f£(p)
out

fail( "mis - match of parameter or procedure")
end_case_moded

proc and parameter are modeds. If proc is a procedure delivering a bool
and parameter has the mode of the parameters of that procedure then
the limb is executed, applying the procedure to the parameter,with the
procedure accessed via the name f and the parameters accessed via the
name p. If this match can not be made then the out case is executed
causing an explicit failure.

operate(OPERATOR operator, OPARGS operands)

operate is a means of creating new values from other wvalues, the
operands. The effect of operate is highly dependent on operator. For
example the operator '+’ is different from the operator ’generate
vector'. Each operator has a set of operands on which it can operate,

16



"+’, for example, can only operate on numerical types and the ability
for an operator to operate on a value is usually modal, '+’ can operate
on two ranges, but not vectors. Errors caused by the application of
operators to values of the wrong mode can usually be detected before
execution, however errors such as division by zero, in most cases,
cannot be detected until execution, when an exception is delivered. The
operands are executed in an order dependent on the particular
operator,but always in the environment in which operate is executed,
and the value delivered by operate is dependent on the values delivered
by operands.

solve(SOLVE_CLAUSES solve_clauses)

solve is one of the ways of repeatedly executing code and is intended to
model labels and gotos. This is not the only construction for handling
flow through a program, there are also constructions designed for the
representation of ’for constructions’, ’loops’ and ’conditionals’.
These could be implemented in terms of solve, and are described in the
Appendix. solve is very general and consequently can be difficult to
analyse. It is the requirements of languages such as Algol68, Pascal and
Ada to have a completely general flow control, and the ability to
eéxpress some programs more easily in this manner, that necessitates
the need for a solve construction.

Each SOLVE_CLAUSE is constructed from a set of LABELs, a BOOL and
a LOAD. All LOADs are executed in the same environment as solve. The
natural progression of load execution is to start with the LOAD of the
first limb and continue through the loads in order as long as the BOOL is
false, in much the same manner as load_sequence does. If the BOOL
belonging to the clause is true, then the result of the clause is the
result of the whole, and evaluation of the solve is complete. As with
load_sequence, all LOADs, except for the last, must deliver void unless

their BOOL is true. The last clause is always treated as if its BOOL is
true. This progression is interrupted when an exception is delivered. If
the exception corresponds to one of the LABELs in solve_clauses (see
assert), then the load of the clause in which it lies is executed and the
progression continues from there. There cannot be a duplication of any
of the labels in the limbs as this would lead to an ambiguity when
determining which load to execute. Either the program does not end, or
eventually a value is delivered.

assert (ASSERTION assertion, LABEL_PROCS Jumps, ASSARGS operands)

assert is a means of determining the flow of a program by the
determination of some property of the values given by operands: for
example, asserting whether a boolean value is true. If the assertion
about the value holds then a value is delivered dependent on the
assertion. Otherwise one of the jumps is selected, giving jump. If jump
is a procedure then it must be one that always delivers an exception,
and this is obeyed. If jump itself is an exception, then this is

17




delivered, and if it is a label, it is delivered as an exception to be
trapped by an enclosing solve clause.

5. REFERENCES

1 Currie I.F., Edwards P.W. and Foster J.M.
"Flex firmware" RSRE Report No. 81889 (1981

2 Currie I.F., Edwards P.W. and Foster J.M.
"PergFlex firmware" RSRE Report No. 85815
(1881)

3 Goguen J.A., Thatcher J.W., Wagner E.G. and Wright J.B.
"Some fundamentals of order algebra semantics"

Proc. Symp. on Mathematical foundations of Computer Science 1976
pp 153-168

¥+ P.J.Landin
"The mechanical evaluation of expressions”
Computer Journal Vol 6 No & pp 388 - 328 Jan 1964

18



Sorts

tOAD

INTEGER

BOOL

STRING

MODE
TUPLELOADS
SEQLOADS
NAME
INTRODUCTION
LABEL
SOLVE_CLAUSES
FALOADS
CASE_LIMBS
UNION_LIMBS
MCLOADS
MULT_UNION_LIMBS
MODEDS
MODED_t IMBS
OPERATOR
OPARGS
ASSERTION
LABEL_PROCS
ASSARGS
COMMENT
LIMIT
INTROTAGS
INTROMODES
LABELS
LIMITS
INTEGERS
MODES

Arities

load_void: LOAD
illegal_load: LOAD

APPENDIX A: THE TEN15 SIGNATURE

Statements, expressions, program

Group of loads for n-tuple

Group of loads for sequence

Tag for naming a value

Pair of a tag and a string

Label names

Labelled statements

Loads for a group of vectors or arrays
Branches of a case integer statement
Branches of a case union statement
Loads for a group of union values
Branches of a multiple case union
Loads for a group of moded values
Branches of a case moded

Loads for arguments of operator

Labels, loads for procedures or fail numbers

Loads for arguments of assertion
A comment (form not chosen yet )
Pair of integers for use in CASE

Group of pairs of introduction and union tags

Group of pairs of introduction and mode

load_name: NAME — LOAD

load_integer: INTEGER — LOAD

load_boolean: BOOLEAN — LOAD

load_sequence : SEQLOADS — LOAD

load_tuple: TUPLELOADS — LOAD

identity_declaration: INTRODUCTION x LOAD x LOAD — LOAD
variable_declaration: INTRODUCTION x LOAD x LOAD — LOAD
conditional: LABEL x LOAD x LOAD — LOAD

19



loop: LABEL x LOAD — LOAD
solve: SOLVE_CLAUSES — LOAD
operate: OPERATOR x OPARGS — LOAD
assert: ASSERTION x LABEL_PROCS x ASSARGS — LOAD
commented_load: COMMENT x LOAD — LOAD
for: LABEL x LABEL x INTRODUCTION x LOAD x LOAD x LOAD x LOAD x LOAD
— LOAD
forall: INTRODUCTION x FALDADS x LABEL x LABEL x LOAD x LOAD
— LOAD
case_integer: LOAD x CASE_LIMBS x LOAD — LOAD
case_union: LLOAD x UNION_LIMBS x LOAD — LOAD
multiple_case_union: MCLOADS x MULT_UNION_LIMBS x LOAD — LOAD
case_moded: MODEDS x MODED_LIMBS x LOAD — LOAD
marks: INTEGERS x LOAD — LOAD

no_seqloads: SEQLOADS
add_seqload: SEQLOADS x LOAD — SEQLOADS

no_tupleloads: TUPLELOADS
add_tupleload: TUPLELOADS x LOAD — TUPLELOADS

no_solve_clauses: SOLVE_CLAUSES
add_solve_clause: SOLVE_CLAUSES x LABELS x BOOL x
LOAD — SOLVE_CLAUSES

one_faload: INTRODUCTION x LOAD — FALOADS -
add_faload: FALOADS x INTRODUCTION x LOAD — FALOADS

no_case_limbs: CASE_LIMBS
add_case_limb: CASE_LIMBS x LIMITS x LOAD — CASE_LIMBS

no_union_limbs: UNION_LIMBS
add_union_limb: UNION_LIMBS x INTRODUCTION x INT x
LOAD — UNION_LIMBS

one_mcload: LOAD — MCLOADS
add_mcload: MCLOADS x LOAD — MCLOADS

no_mult_union_limbs: MULT_UNION_LIMBS
add_mult _union_limb: MULT_UNION_LIMBS x INTROTAGS x
LOAD — MULT_UNION_LIMBS

one_moded: LOAD — MODEDS
add_moded: MODEDS x LOAD — MODEDS

no_moded_limbs: MODED_LIMBS
add_moded_limb: MODED_LIMBS x MODES x INTROMODES x
LOAD — MODED_LIMBS

no_opargs: OPARGS

28



add_oparg: OPARGS x LOAD — OPARGS
no_assargs: ASSARGS
add_assarg: ASSARGS x LOAD — ASSARGS

no_label_procs: LABEL_PROCS

add_label_to_lp: LABEL_PROCS x LABEL —s LABEL_PROCS
add_proc_to_lp: LABEL_PROCS x LOAD — LABEL_PROCS
add_fail_no_to_lp: LABEL_PROCS x INTEGER —» LABEL_PROCS
make_introduction: NAME x STRING — INTRODUCTION

one_introtag: INTRODUCTION x INTEGER —s INTROTAGS
add_introtag: INTROTAGS x INTRODUCTION x INTEGER —» INTROTAGS

one_intromode: INTRODUCTION x MODE — INTROMODES
add_intromode : INTROMODES x INTRODUCTION x MODE
— INTROMGDES

no_labels: LABELS
add_label: LABELS x LABEL — LABELS

no_limits: LIMITS
add_limit: LIMITS x INTEGER x INTEGER — LIMITS

no_integers: INTEGERS
add_integer: INTEGERS x INTEGER — INTEGERS

no_modes: MODES
add_mode : MODES x MODE —; MODES

APPENDIX B: LOAD CONSTRUCTORS IN THE PROGRAM ALGEBRA

This appendix is a summary of the ways of constructing LOADs in the
Ten15 program algebra, and the effect of evaluating them.

illegal_load

This causes a standard exception.
load_void

This delivers the void value.

load_integer (INTEGER i)

This delivers the only value with mode range(i, i).

21



load_boolean(BOOL b)

This delivers either true, or false depending on b.

load_name (NAME n)

This delivers the value associated with the name in the environment.

load_sequence (SEQLOADS sequence)

Each of the loads in sequence is executed in order and all but the last
must deliver the void value. The value delivered by the whole is the
value delivered by the last load.

load_tuple( TUPLELOADS tuple)

Each of the loads in tuple is executed in order, and the n-tuple of the
values delivered by each of these loads is delivered as the value of
load_tuple. The type of the whole is the Cartesian product of the types
of the parts.

identity_declaration(INTRODUCTION n, LOAD value, scope)

n is associated with the value delivered by value, and then added to the
environment in which scope is executed.

variable_declaration( INTRODUCTION n, LOAD value, scope)

This is similar to identity_declaration except that a reference is
generated for the value delivered by value and it is this which is
associated with n in the execution of scope.

conditional (LABEL 1, LOAD cond, else)

cond is executed: if the wvalue delivered is not the exception
corresponding to I then it is delivered, otherwise else is executed.

loop(LABEL I, LOAD loop)

loop is repeatedly executed until a value which is not the exception
corresponding to ! is delivered. This is the value delivered by loop.

solve(SOLVE_CLAUSES clauses)

A SOLVE_CLAUSE consists of a set of LABELs, a BOOL and a LOAD. If the
BOOL is true, the result of that clause is the result of the whole. The
BOOL of the last clause is deemed to be true. The loads of each clause
are executed in turn until an exception occurs which is not for one of

22



the labels in the solve, or a clause is evaluated with a true BOOL. At
this point this exception or result is delivered. If the BOOL for the
clause is false, execution continues with the next clause, and the
result of that clause must be void. If the exception is for one of the
labels in the solve, execution continues with the labelled clause.

for(LABEL step, end,INTRODUCTION loopid,LOAD start, by, to, load, endl)

to, start and by are executed. They must all deliver ranges. The integer
delivered by start is associated with loopid and its mode is the
smallest range containing all the possible integers a value could take in
moveing from start to to in steps of by. load is then evaluated in the
context of this environment. If the value delivered is not an exception
corresponding to either step or end, then it is delivered, if end! is not
a load then this must be the void value. If the value delivered is an
exception corresponding to step then the value associated with loopid
is increased by by. If this value is now beyond to, then end! is executed
in the original environment, that is without loopid;if the value is not
beyond to, then load is executed again with the new value association
for loopid. If the value delivered is an exception corresponding to end,
then end! is executed.

forall (NAME Joopid, FALDADS vec_array,
LABEL step, end, LOAD load, endl)

forall is similar to for, except that the value associated with loopid is
determined by a set of vectors or arrays or a combination of both. The
FALOADS, vec_array, consists of a set of pairs of INTRODUCTIONs and
LOADs. The loads in vec_array are executed in turn. Each one must
deliver either a one dimensional array or a vector; further, all vectors
and arrays must be the same size. Before load is executed for the first
time, loopid is associated with the integer 1 and its mode is deduced
from the ranges of the bounds of the vectors and arrays. Each name
introduced in the INTRODUCTIONs in vec_array is associated with the
first reference of the corresponding vector or array (In the case of
array the first reference is given by the lower bound) . If the load
delivers the label corresponding to step then the value associated with
loopid is increased by 1. If this is larger than the size of the vectors
or arrays, end! is obeyed , otherwise each name is associated with the
next reference in the vec/array and Joad is re-executed.

case_integer (LOAD control, CASE_LIMBS limbs, LOAD out)

A CASE_LIMB consists of a list of INTEGER ranges and a LOAD. control is
obeyed, and the value delivered must be a range. Each of the limbs in
limbs is examined in order, until a limb is found where the value
delivered by control lies in one of its range. The LOAD in the limb is
then obeyed. If there is no such limb, then out is obeyed.

23



case_union(LOAD union, UNION_LIMBS Iimbs, LOAD out)

A UNION_LIMB consists of an INTEGER tag, an INTRODUCTION and a LOAD.
union is obeyed, and the value delivered must be a union. Each of the
limbs in limbs is examined in order, until a limb is found where the
union delivered by wnion has the same tag as the one specified in the
limb. The value in the field of the union is then associated with the
name in the limb and the load of the limb is obeyed in an environment
which has this value - name association added to it. If there is no such
limb, then out is obeyed.

multiple_case_union(MC union, MULT_UNION_LIMBS limbs, LOAD out)

multiple_case_union is a generalisation of case_union. Instead of
matching the tag of one union with a limb, associating a name with the
field of the union and obeying the load in this context, it matches the
tags of all the unions in wunion with all of a list of INTEGER tags in the
limb, associates the corresponding field of each union with a name from
a list of INTRODUCTIONs in the limb and obeys the load of the limb in the
context of this new environment. A MULT_UNION_LIMB consists of a set
of pairs of INTRODUCTIONs and INTEGER tags; and a LOAD, the load to be
obeyed. '

case_moded( MODEDS modeds, MODED_LIMBS limbs, LOAD out)

case_moded is similar to other case constructors in that it attempts to
match some incoming values, in this case modeds, with some of their
possible properties and on the basis of this evaluate a load in which
some part of the incoming values is made available to it. With
case_moded each limb is testing to determine mode relationships of the
modes of the incoming values, and makes the wvalue of the moded
available inside the load of the limb. A MODED_LIMB is constructed from
a list of formal modes; a list of pairs of an INTRODUCTION and a MODE
(written in terms of the formal modes) to associate with the values in
the modeds; and a LOAD to be evaluated if a match is made.

operate(OPERATOR operator, OPARGS operands)

operate obeys all of the operands in an order dependent on the
individual operator. Then a value is delivered dependent on the values
delivered by the operands and the operation.

assert (ASSERTION assertion, LABEL _PROCS labs, ASSARGS operands)

assert obeys all of the operands in an order dependent on the individual
assertion. Then if the values delivered by the operands have a certain
property, dependent on the ASSERTION, (e.g. Whether a boolean value is
TRUE ) then a value, determined by the assertion and the operand values,

24



is delivered; otherwise, one of the labs is selected. If it is a LOAD
delivering a procedure which when obeyed causes an exception, it is
obeyed, if it is a trap value then a failure exception is delivered and if
it is a label a label exception is delivered.

commented_load(COMMENT ¢ , LOAD /)

This for associating a comment with a load.

APPENDIX C: COERCION

The range of any value in Teni5 is taken to be the smallest possible one
which can be deduced. This gives the most information to the
translator, which can avoid the introduction of unnecessary checks.
However, the reverse is true of procedure parameters and references.
Here we normally want to define a range as wide as is reasonable, in
order that the procedure should be applicable to as many values as
possible. So when we are faced with the application of a procedure to a
range parameter, we are likely to find that the parameter has a smaller
range than that specified in procedure parameter. There is an operator
which changes the range of a value to a specified range. If the new
range includes the range of the value and occupies the same size, a
translator will not have to provide any code to effect this change. If
the new range is smaller, code will have to be provided to check that
the value lies in the range and give an exception otherwise. so we could
overcome the difficulty about proicedure parameters by putting a
change range operation in, which will usually not generate any code.

This would be a perfectly viable solution, but a change range
operation would be necessary in almost every procedure application and
assignment to reference. So we have chosen to make this change range
operation implicit: the range of a value can always be widened to fit
such requirements. This may involve changing the size occupied by the
data, if it goes from single to double length.

There are other similar places. In a conditional, the overall value
is delivered from one of the two branches. If this result is a range,
the values in the two branches are likely to have different ranges,
again because we are keeping them as narrow as possible. The
translator could insert change range operations, so that we can give
the two results the same mode, but we have chosen to make this
implicit. This also has the effect that the result of the overall
conditional has the smallest range including the ranges of its branches.
Similar remarks apply to the case constructions.

The rule, then, is that implicit change range operations will be
applied to range values in these situations to make the values fit.
Similar changes are made to real numbers. But no other coercions are
provided.

25



APPENDIX D: OPERATORS IN TEN15

This is a list giving a brief description of all the operators in Teni5.
In the case where the operator is shown to have a parameter, this
indicates that the operator is dependent on some value in the TenlS
program algebra, that is some value which is known at translation as
opposed to execution.

In all operations delivering values whose mode is constructed from
range, unless explicitly stated, the range of the result is the smallest

range containing all possible results, given the modes of the operands.
There are three types of arithmetic on ranges, those that overflow
when the result can not be represented in one word, those that
overflow if the result cannot be represented in two words, and those
that do not overflow. It is appreciated that the first two forms are
machine dependent, but machine independence can be obtained from
using the latter. The first two forms are included for convenience and
the arithmetic can be thought of as parameterised by the word size of
the machine.

In all operations delivering values whose mode is constructed from
real, unless otherwise stated, the mode of the result is determined by

the real operands of the operator. The mantissa of the result mode is
the maximum of the mantissas of the modes of the real operands and the
exponent of the result mode is the maximum of the exponents of the
modes of the real operands. If it is not possible to express the result
with a value of such a mode, then an exception is delivered.

There are some modes which have read_only parallels, for example
vector, array, reference; unless explicitly stated, all operators
operating on such modes are assumed to also operate on the
corresponding read_only mode; in this case, where the value delivered
is such a mode it inherits the read only property from the operand.

On all operations that require the generation of space, even though the
description may say that there are no exceptions, in practice there may
space limitations on the machine causing a ’store full’ exception.

1. one_word_plus
This operates on two values whose modes are constructed from range.

Either their sum is delivered or, if there is a numeric overflow, an
exception. The overflow occurs if the result is too large for a one
word representation.

2. one_word_minus
This operates on two values whose modes are constructed from range.

Either their difference is delivered or, if there is a numeric overflow,
an exception. The overflow occurs if the result is too large for a one
word representation.

26



3. one_word_multiplication
This operates on two values whose modes are constructed from range.

Either their product is delivered or, if there is a numeric overflow, an
exception. The overflow occurs if the result is too large for a one
word representation.

4. one_word_division
This operates on two values whose modes are constructed from range.

Either their quotient is delivered or, if there is a numeric overflow,
an exception. The overflow occurs if the result is too large for a one
word representation.

5. maximum
This operates on two values whose modes are constructed from range.
Their maximum is delivered and there is no overflow.

6. minimum

= nmam

This operates on two values whose modes are constructed from range.
Their minimum is delivered and there is no overflow.

7. identity

This is the identity operation, operating on any value.

8. one_word_negate .
This operates on a value whose mode is constructed from range. Either

its negation is delivered or, if there is a numeric overflow, an
exception. The overflow occurs if the result is too large for a one
word representation.

9. one_word_abs
This operates on a value whose mode is constructed from range. Either

its absolute value is delivered or, if there is a numeric overflow, an
exception. The overflow occurs if the result is too large for a one
word representation.

16. change_range ( mode )

This operator changes the range of either an integer range or a real
range. mode must be either an integer range or a real range. It operates
on a single operand, if this operand is an integer range it converts it
to mode, making any checks that are necessary to insure that the
convertion is possible. If these checks fail, then an exception is
produced. If the operand is a real range, then it can be converted to
another real range, again with the necessary checks being made.

11. no_overflow plus
This operates on two values whose modes are constructed from range.
Their sum is delivered with no exception.

27



12. no_overflow_minus
This operates on two values whose modes are constructed from range.
Their difference is delivered with no exception.

13. no_overflow_multiplication
This operates on two values whose modes are constructed from range.
Their product is delivered with no exception.

1%. no_overflow_modulo/division
This operates on two values whose modes are constructed from range.

The range of the denominator must be positive. The Cartesian product
of the remainder and the quoitient are delivered, with no exception,
the remainder being non-negative.

15. entier(range)

range is a mode which must be an integer range. This operates on one
operand which must be a real range and delivers an integer with mode
range, the truncation of the real. If the integer delivered does not lie
in the range range, then an exception is produced.

16. round(range)

range is a mode must be an integer range. This operates on one operand
which must be a real range and delivers an integer with mode range, the
nearest integer to the real. If the integer delivered does not lie in the
range range, then an exception is produced.

17. real_power_int

This operates on a real range and an integer range, raising the real to
the power of the integer. An exception is delivered in the case of
overflow.

18. odd

This operates on any integer range delivering a boolean. There are no
exceptions.

19. two_word_plus
This operates on two values whose modes are constructed from range.

Either their sum is delivered or, if there is a numeric overflow, an
exception. The overflow occurs if the result is too large for a two
word representation.

28. two_word_minus
This operates on two values whose modes are constructed from range.

Either their difference is delivered or, if there is a numeric overflow,
an exception. The overflow occurs if the result is too large for a two
word representation.

28



21. two_word_multiplication
This operates on two values whose modes are constructed from range.

Either their product is delivered or, if there is a numeric overflow, an
exception. The overflow occurs if the result is too large for a two
word representation.

22, two_word_division
This operates on two values whose mode is constructed from range.

Either their quotient is delivered or, if there is a numeric overflow,
an exception. The overflow occurs if the result is too large for a two
word representation.

23. two_word_negate
This operates on a value whose modes are constructed from range.

Either its negation is delivered or, if _there is a numeric overflow, an
exception. The overflow occurs if the result is too large for a two
word representation.

24. two_word_abs
This operates on a value whose modes are constructed from range.

Either its absolute value is delivered or, if there is a numeric
overflow, an exception. The overflow occurs if the result is too large
for a two word representation.

25. no_overflow_division
This operates on two values whose modes are constructed from range.

The range of the denominator must not contain 8. The quoitient is
delivered, with no exception.

26. no_overflow_negate

This operates on a value whose mode is an integer range. Its negation is
delivered with no exception.

27. no_overflow_abs
This operates on a value whose mode is constructed from range. Either

its absolute value is delivered or, if there is a numeric overflow, an
exception. The overflow occurs if the result is too large for a two
word representation.

28. real _plus

This operates between two real ranges, delivering their sum with a
possible overflow exception.

29. real_minus

This operates between two real ranges, delivering their difference
with a possible overflow exception.

28




38. real_multiplication

This operates between two real ranges, delivering their product with a
possible overflow exception.

31. real_division

This operates between two real ranges, delivering their quotient with a
possible overflow exception.

32. real_abs

This operates on a real range, dehvermg its absolute value with a
possible overflow exception.

33. real_negate

This operates on a real range, delivering its negation with a possible
overflow exception.

3%. no_overflow_modulo
This operates on two values whose modes are constructed from range.

The range of the denominator must be positive. The remainder, which is
non-negative, is delivered, with no exception.

36. real_maximum

This operates between two real ranges, the maximum is delivered with
no exception.

37. real_minimum

This operates between two real ranges, the minimum is delivered with
no exception.

38. vector_content_equality
This operates on two vectors. It delivers true if their contents are
equal. An exception is produced if the vectors are of differing size.

38. vector_content_inequality
This operates on two vectors. It delivers true if their contents are not
equal. An exception is produced if the vectors are of differing size.

48. equality
This operates on two ranges or two other values of the same mode,
delivering true if they are equal. There are no exceptions.

41. inequality

This operates on two ranges or two other values of the same mode,
delivering true if they are unequal. There are no exceptions.

38



42. greater_than

This operates on two integer ranges, delivering true if the first is
greater than the second. There are no exceptions.

+3. greater_than_or_equal_to
This operates on two integer ranges, delivering true if the first is
greater than or equal to the second. There are no exceptions.

k4. less_than
This operates on two integer ranges, delivering true if the first is
less than the second. There are no exceptions.

45. less_than_or_equal_to
This operates on two integer ranges, delivering true if the first is less
than or equal to the second. There are no exceptions.

46, static_range_check(range)

This operates on an integer range, delivering true if the value lies in
range. There are no exceptions.

47. dynamic_range_check

This operates on three integer ranges, delivering the value of the first
operand if it lies between the second and third; otherwise an exception
is delivered.

48. and

This operates on two booleans, delivering a boolean; there are no
exceptions.

49. or

‘This operates on two booleans, delivering a boolean; there are no
exceptions.

568. xor

This operates on two booleans, delivering a boolean; there are no
exceptions.

51. not

This operates on a boolean, delivering a boolean; there are no
exceptions.

52. real_greater_than

This operates on two real ranges, delivering true if the first is greater
than the second. There are no exceptions.

31



53. real_greater_than_or_equal_to
This operates on two real ranges, delivering true if the first is greater
than or equal to the second. There are no exceptions.

St réal;less__than

This operates on two real ranges, delivering true if the first is less
than the second. There are no exceptions.

55. real_less_than_or_equal_to
This operates on two real ranges, delivering true if the first is less
than or equal to the second. There are no exceptions.

56. dynamic_upb_array

This takes two operands, the first of which is an array and the second
an integer range. The second operand specifies the dimension of the
array, and its upper bound is delivered. An exception is delivered if
the second parameter does not lie between 1 and the dimension of the
array. '

57. dynamic_lwb_array

This takes two operands, the first of which is an array and the second
an integer range. The second operand specifies the dimension of the
array, and its lower bound is delivered. An exception is delivered if
the second parameter does not lie between 1 and the dimension of the
array.

68. index_vector

This operates on a vector and an integer range. The vector is indexed
by the range, delivering a reference.

61. trim___abové

This operates on a vector and an integer range. The vector referencing
the set of values above the one indexed by the integer is delivered.
There are no exceptions.

62. trim_upwards_from

This operates on a vector and an integer range. The vector referencing
the set of values above and including the one indexed by the integer is
delivered. There are no exceptions.

63. trim_below

This operates on a vector and an integer range. The vector referencing
the set of values below the one indexed by the integer is delivered.
There are no exceptions.

32



64%. trim_downwards_from

This operates on a vector and an integer range. The vector referencing
the set of values below and including the one indexed by the integer is
delivered. There are no exceptions.

65. index_array

The number of operands of this operator depends on the dimension of
the array. There are one greater than the dimension of the array. The
first must be an array, the remainder are integer ranges used to index
the array. the value delivered is a reference. An exception is delivered
if any of the integers are out of the bounds of their respective
dimensions.

66. trim/slice array

The number of operands of this operator depends on the dimension of
the array; there are one greater than the dimension of the array. The
first must be an array, the remainder are trimscripts, one for each
dimension. Trimscripts consist of either void, which does not alter the
dimension, an integer range, which slices the array in that dimension,
or a tuple of three ranges causing a trim in the dimension of the form
[i:j AT k] where the tuple is (i, j,k). If the number of slices is equal
to the dimension of the array, a reference is delivered; otherwise an
array is delivered. An exception is delivered if the indices are outside
the bounds of their dimension.

67. upb_array(dim)

This takes one operand, which must be an array. It delivers the upper
bound of dimension dim. There are no exceptions.

68. Iwb_array(dim)

This takes one operand, which must be an array. It delivers the lower
bound of dimension dim. There are no exceptions.

78. vector_size

This takes one operand which must be a vector. The size of the vector
is delivered. There are no exceptions.

71. select_from_st ruct( field)

field is an integer identifying a component of a structure. There is one
operand, which must be a structure and the component field of the
structure is delivered. There are no exceptions.

72. select_from_ref/ ptr_struct(field)

field is an integer identifying a component of a structure. There is one
operand, which must be a reference or pointer to a structure and a
reference to the component field of the structure is delivered. There
are no exceptions.

33




73. replace_field(field)

field is an integer identifying a component of a structure. There are
two operands, a structure and a value with a mode the same as the
component field of the structure. The value delivered is a structure of
the first operand with field replaced by the second operand. There are
no exceptions.

7%. select_from_vec/array_struct(field)

field is an integer identifying a component of a structure. There is one
operand, which must be a vector/array to a structure and an array
referencing the component field of the structure is delivered. There
are no exceptions.

86. assign_to_pointer

This has two operands, a pointer which cannot be read_only and a value
with a mode the same as that from which the pointer is constructed.
The value is assigned to the pointer and void is delivered. There are no
exceptions. ‘

81. assign_to_reference

This has two operands, a reference which cannot be read_only and a
value with a mode the same as that from which the reference is
constructed. The value is assigned to the reference and void is
delivered. There are no exceptions.

82. assign_to_vector

This has two operands, a vector which cannot be read_only and another
vector of the same mode which can either be read_only or not. The
contents of the second operand are assigned to the first and void is
delivered. If the vectors are not of the same size, an exception is
delivered.

83. generate_pointer

This has one operand which can be of any mode. A pointer to the operand
is generated and delivered. There are no exceptions.

84. pack_to_vector .

This has one operand which is a structure of values of the same mode. A
vector containing the components of the structure is generated and
delivered. There are no exceptions.

85. generate vector

This has two operands. The first is an integer range and the second a
value of any mode. A vector is generated, containing the value of the
first operand copies of the second operand, and is delivered. There are
no exceptions.

3



86. generate_array

The number of operands of this operator is one greater than twice the
dimension of the array to be generated. The first operand can be of any
mode and the remaining operands must be integer ranges. The integer
ranges are taken in pairs and they specify the bounds of each dimension
of the array. An array of this size is then generated and filled with
copies of the first operand. The array is delivered. An exception is
delivered if any of the values of the ranges give unsuitable bounds,
that is if the lower bound is more than one greater than the upper bound
for any dimension.

87. de_pointer

This operates on a pointer and delivers the value pointed at by it.
There are no exceptions.

88. de_reference

This operates on a reference and delivers the value referenced by it.
There are no exceptions.

88. pointer_to_reference

This operates on a pointer to a value and delivers a reference to the
same memory space. There are no exceptions.

96. to_moded

This operates on a value of any mode and delivers its moded form, that
is the value bound with its mode. There are no exceptions.

91. unite_to_mode(mode, tag)

mode is a union and tag identifies one of its fields. The operand is a
value with a mode identical to the tagged field. This value is united to
the mode mode and delivered. There are no exceptions.

92. vector_to_array

The number of operands of this operator is one greater than twice the
dimension of the array to be generated. The first operand is a vector
and the remaining operands must be integer ranges. The integer ranges
are taken in pairs and they specif y the bounds of each dimension of the
array. An array of this size is then created accessing the same memory
space as the vector. The array is delivered. An exception is delivered
if the size of the array specified by the bounds is not equal to the size
of the vector or if any of the values of the ranges give unsuitable
bounds, that is if the lower bound is more than one greater than the
upper bound for any dimension.

93. array_to_vector

This operates on an array and delivers a vector of the same size as the
array accessing the same memory space. This produces an exception if
the array is not contiguous.

35




9. is_in_union_field(tag)

This operates on a union and delivers the boolean true if the f‘xeld of the
union is tag. There are no exceptions.

95. boolean_dynamic_range_check
This operates on three integer ranges delivering the boolean true iff

the first operand lies between the second and third. There are no
exceptions.

97. discard

This operates on a value of any mode and delivers void. There are no
exceptions.

166. apply
This operates on a procedure and its parameters. It applies the
procedure to its parameters and delivers the result.

181. trap_apply

This operates on a procedure and its parameters. It applies the
procedure to its parameters and delivers a union which is either the
result or a trapped exception. There are no exceptions.

182. close

This operates on the non-local to a package of order one and the
package to deliver its closure as a procedure. There are no exceptions.

v 183. trap_to_moded

This operates on a trap value and delivers the moded value from which
it was created - see fail. There are no exceptions.

16%. close_package

This operates on the non-local to a package and the package to deliver
its closure as a structure of procedures. There are no exceptions.

185. close_recursive

This operates on the non-local to a recursive and the recursive to
deliver its closure as a structure of procedures. There are no
exceptions.

186. close protocode

This operates on the constants of a protocode and the protocode to
deliver its closure as a package. There are no exceptions.

118. fail

This operates on a value of any mode. If it is a trap value then the
exception of the trap is delivered, otherwise the value is moded, made
into a trap value and its exception is delivered.

36



111. launch_process

This operates on a procedure and its parameters. It launches the
procedure applied to its parameters as a process. A structure of two
procedures is delivered. The first is a proc(moded->()) which will
cause the process to abort with a trap value formed from the moded
parameter supplied. The second is a proc(( )->union(result,trap,())),
which delivers the trap if the process has failed else if has not
finished then void, else the result . ‘

112. create empty_vector

This creates an empty vector of an unspecified mode. There are no
exceptions.

113. generate_value( mode)
This generates a value of mode mode.

114, to_choice

This operates on any value to deliver the non-void choice of that value.
There are no exceptions.

115. am_i_me
This operates on void to deliver a procedure(void,bool ) which when

called delivers true iff it is obeyed in the same process as the one in
which this operator was obeyed. There are no exceptions.

116. make_unabortableable

This operates on a procedure to deliver a procedure of the same mode
which cannot be aborted using the abort procedure delivered by launch
process.

117. permit_abortable

This operates on a procedure and its parameters in the same way as
trap_apply. It allows an abortable procedure to be called from within an
unabortable procedure, trapping resulting failures.

118. make_barrier(mode) :

This operates on a boolean value, the position of the barrier, and
delivers a structure of three procedures. The first and last are of
mode proc(void,void) for passing and raising the barrier; the second
is a proc(mode,bool). mode is a non-negative range, When this
procedure is called with the value specifies a time, some time after
which the queue at the barrier is left. The boolean value delivered is
dependent on whether the barrier was passed or not.

119. make generic_table(mode)

This is an operater which delivers two procedures a finder and a table
constructor. The table can be thought of as a set of pairs of values and

37




the finder takes a value searches through the table and attempts to find
a pair whose first element is the same as the parameter of the finder.
If such a pair is found, the second element of the pair is delivered as
the first field of a union; otherwise the second field of the union is
delivered, which is void. The finder delivered by the operator delivers
the second element of the union with any parameter. The table
constructor takes a pair as a parameter and delivers a new table
constructor and finder for adding a pair to the new table and finding
elements in the new table. mode determines the form of the values that
can be added to the table. '

128. anything_to_words
This is a machine dependent operation which takes any wvalue and
delivers a structure consisting of the representing words.

121. persist

This operates on a value and makes a persistent value holding the value.

122. unpersist

This operates on a persistent value and makes a copy of the value held
by it. There are no exceptions.

123. make_persistent_variable

This operates on a persistent value making a reference to it. There are
no exceptions.

12%. make_void_choice(mode )
This makes the void choice of a mode. There are no exceptions.

125. make_read_only

This operates on values with read_only parallels and delivers the
read_only value accessing the same memory. There are no exceptions.

126. delay

This operates on a numeric value and causes a delay in the process in
which the operation is obeyed by at least the value of its operand.

127. assign_to_persistent_variable

This operates on a persistent_variable and a persistent wvalue,
assigning the value to the variable and delivering void. There are no
exceptions.

128. deref_persistent_variable

This operates on a persistent variable to deliver the persistent value
referenced by it. There are no exceptions.

129. cycle array dimensions(il, i2, . . , in)
This operates on an array. n is the dimension of the array and

38



(il, i2, .. in) is a permutation of the integers 1..n. The dimensions of
the array are permuted corresponding to this permutation and the new
array is delivered. :

- 138. abs on bool
This operates on a boolean value. A range(8,1) is delivered. 1 is
delivered if the value is true otherwise ) is delivered.

131. generate block

This has two operands. The first is an integer range and the second a
value of any mode. A block is generated, containing the value of the
first operand copies of the second operand, and is delivered. There are
no exceptions.

132. pack_to_block

This has one operand which is a structure of values of the same mode. A
block containing the components of the structure is generated and
delivered. There are no exceptions.

133. andth

This has two operands which must be booleans. If the first is true then

the second is evaluated and delivered, otherwise it is not evaluated.
There are no exceptions.

13%. orel
This has two operands which must be booleans. If the first is false then

the second is evaluated and delivered, otherwise it is not evaluated.
There are no exceptions.

13S. block_to_vec

This operates on a block of values and delivers a vector referencing
the values in the block.

136. assign_to_array

This has two operands, an array which cannot be read_only and another
array of the same mode which can either be read_only or not. The
contents of the second operand are assigned to the first and void 1s

delivered. If the arrays do not have the same bounds, an exception is
delivered.

137. increase_array_dimensionality( dim, bound)

This operates on an array and adds an extra dimension with one index.
dim is the new dimension which must lje between one and one greater
than the old dimension and bound is the lower and upper bound of that
dimension. There are no exceptions.

39






APPENDIX E: ASSERTIONS IN TEN15

This list is a brief description of all the assertions in TeniS5. In the
case where the assertion is shown to have a parameter, this indicates
that the operator is dependent on some value in the Ten15 program
algebra, that is some value which is known at translation as opposed to
execution.

Assertions always require a LABEL_PROC. Assertions assert a property
of their operands. If the assertion is correct then a value is
delivered: if the assertion is incorrect then depending on the
LABEL _PROC either a failure exception is delivered, a label exception is
delivered or a procedure delivering an exception is called.

1. jump

This is an assertion which is never correct, it operates on void.

2. is_false

This operates on a boolean value, asserting that it is false and
delivering void.

3. is_true

This operates on a boolean value, asserting that it is true and delivering
void.

k. is_in_union( field)

This operates on a union asserting that the tag of the union is field.
The value delivered is the field of the union.

S. is_moded(m)

This operates on a moded value, asserting that its mode is m. The value
delivered is the value bound in the moded.

6. in_range (mode)

mode is a mode which must be an integer range.This operates on a range
and asserts that the operand lies in the range of mode. The value
delivered is the operand with its mode changed to mode.

7. label_to_proc

This is an assertion which is always correct. It delivers a procedure
which when obeyed causes the effect of having produced the exception
in the assertion.

8. choice_not_void

This operates on a choice, asserting that it is not the void choice,
delivering the non-void choice.

40






in filling your order.
ice@ntis.gov
1-888-584-8332 or (703)605-6050

customerserv

P Phone

f we have made an error
P E-ma

ive or 1l

Please contact us for a replacement within 30 days if the item you receive
defect

NTIS strives to provide quality products, reliable service, and fast delivery.

ALL SALES ARE FINAL

| °
Reproduced by NTIS

National Technical Information Service
Springfield, VA 22161

This report was printed specifically for your order
from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its
vast collection of technical reports. Rather, most documents are
custom reproduced for each order. Documents that are not in
electronic format are reproduced from master archival copies
and are the best possible reproductions available.

If you have questions concerning this document or any order
you have placed with NTIS, please call our Customer Service
Department at 1-888-584-8332 or (703) 605-6050.

About NTIS

NTIS collects scientific, technical, engineering, and related
business information — then organizes, maintains, and
disseminates that information in a variety of formats — including
electronic download, online access, DVD, CD-ROM, magnetic
tape, diskette, multimedia, microfiche and paper.

The NTIS collection of nearly 3 million titles includes reports
describing research conducted or sponsored by federal
agencies and their contractors; statistical and business
information; U.S. military publications; multimedia training
products; computer software and electronic databases
developed by federal agencies; and technical reports prepared
by research organizations worldwide.

For more information about NTIS, visit our Web site
at http://www.ntis.gov.

NTIS

Ensuring Permanent, Easy Access to
U.S. Government Information Assets



55?
¢
1
U.S. DEPARTMENT OF COMMERCE
National Technical Information Service
Alexandria, VA 22312 703-605-6000
P
£ ¥

T

*ADAT 76693

M

XBAxX

BiN: M1 12-21-10
INVOICE: 1828692

SHIPTO: 1xF%WS1336561
PAYMENT : CSHxVORNG




