AD=A108 731 ROYAL SIGNALS AND RAOAR ESTABLISHMENT MALVERN (ENGLAND) F/6 972
FLEX FIRMWARE: (V)
SEP 81 I F CURRIEr P W EDWARDS: J M FOSTER
UNCLASSIFIED RSRE=81009 DRIC-BR-81061
[

3

.

g ==

T
¢ . [59
—————J ™
e—— L

[

& [

-

L] I I [
“- .
. Cul

MICROCOPY RESOLUTION .llSl CHARI

NADIONAL BUREAD 0

it pe

|

I

il

Ll P
I

\!ANDl.NIm Do A) 1

e jﬂ

WAL087 S i

Title:
Authors:

Date:

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Peport lio 81009

FLEX FIRMWARE

September 1981

SUMMARY

I F Currie, P W Edwards and J M Foster

\ .
This report describes the instruction set and general firmware

architecture of the Flex computer.

This architecture was designed

by programmers, for programmers and represents a radically new
approach in computer designJW\\\

e ——————

Dist

A

Copyright
(o
Controller HMSO London

1981

NTIS GRAsI
DTIC TaB
Unannounceq tj
Just 1fication‘ﬁ.q_ ’
By

l{g;rib};tinn/
Avg}lability Codes

Aveil and/op”
Special

|

|

Flex firmware

Contents

Introduction

Data in Flex

Program in Flex
Procedures
Exceptions

Storage allocation
Interrupts

Data in filestore
Flex instruction set

Summaries

Firmware.?

T

0 lntroduction

This report describes the firmware architecture of the Flex
computer. This architecture has been implemented in micro-code on
various micro-programmable hardware configurations. The actual
hardware used and the details of the micro-programming are outwith
the scope of the report. :

One might ask why it was considered desirable to invent yet
another machine architecture. To answer this, the reader is invited
to make a mental survey of programming languages with the concepts
they embody and the standard machine architectures onto which they
are mapped. Except for minor cosmetic constructions, the degree of
mismatch in this mapping is usually astonishingly bad. This implies
that compilers and other software are awkward and expensive to
write. Even more serious, the limitations imposed by the
difficulties of their implementations become embedded in their
systems and in the minds of the programmers who use them. The c¢cycle
is completed when these same programmers design new languages and
build in the same limitations.

Where, then, does Flex improve this situation? One could say that
a quantitative improvement in technique has allowed us to make a
qualitative improvement. The quantitative improvement arises from
the use of micro-programming to implement a fast and efficient
storage allocation scheme. This has allowed us the qualitative
improvement of allowing the Flex machine to understand procedures, a
program construct occuring in virtually every programming language.
Further, these procedures are not limited by the artificial
restrictions of stack based implementations, allowing their
construction in a free and natural manner from within other
procedures. The freedom that this endows on the programmer has to
be experienced to be believed. The use of procedures to encapsulate
actions and data with complete generality is an extremely powerful
and easy to use technique. Programmers used to conventional
machines experience a considerable culture shock when they learn how
simply one can do things which could previously only be done by a
mixture of black magic, inside knowledge and a lot of tedious
programming.

The other significant advance in Flex is its use of file-store
where files of arbitrary structure (and mode) can be constructed.
The basis for this is the use of pointers which can exist equally
well on backing store as in main store and can be freely handled by
the programmer. The data that is pointed to by these pointers can
contain other pointers and can have modes analagous to those
existing in main-store e€.g. one can have procedures existing on
backing-store. Thus the programmer is freed from the tyranny of
having to structure and name his files in some extremely limjited
manner prescribed by most conventional systems.

Firmware.?2

The instruction set devised for Flex is intended to make easy the
compilation of high level languages. There is no assembly language
for Flex and there never has been. All programs for Flex have, and
will be, written in high level languages. In view of the above
remarks these languages will tend to be procedure oriented.

The contents of this document describe only that part of the Flex
machine which has been micro-coded i.e. the firmware. Clearly a
Flex system must also include a considerable amount of software
including operating systems, compilers etc. The inner core of this
software is called kernel and is the most primitive set of
procedures available to the non-priviledged user to allow him to
make use of the privileged instructions. Thus the normal user could
regard the kernel procedures as an extension of instruction set to
replace the privileged instructions which he cannot use directly.

Firmware.3

1 Data in Flex

Data in Flex can be handled in words, characters or booleans. Words
are either pointers or non-pointers with distinct representations so
that arithmetic cannot be performed on pointers and non-pointers
cannot be used in indirect addressing operations.

Pointers and non-pointers in main memory are distinguished by the
tag bits associated with the data. Each B-bit byte of memory has
one tag bit. A pointer is a 3~byte word with all three of its tag
bits set to one. Non-pointers have zero tag bits.

1.1 Non-pointers

The various instructicns which operate on non-pointers use the
following representations:

BOOL - 1 bit.

CHAR - B bits.

INT - 1 word , 24 pits 2's complement.

LONG INT- 2 words, 1st word is most significant and second is
positive.

REAL - 2 words, biased 9~bit 2's exponent in l1ls end of 2nd
word, 38-bit 2's complement abscissa, split 24, 14

between 18t and 2nd word, with second word positive.
Exact zero is represented by zero in both words and an
underflowed number by (0, 16r800000).

1.2 Pointers

Pointers always contain the address of a block. Each block has an
overhead word which gives the size of the block with the tags of
this word giving the type of the block. Existing pointers can be
copied freely but one cannot synthesize a pointer to an existing
block, and the contents of a block can only be accessed according to
rules defined by both the pointer and the type of the block. Even
given maximum access, a pointer only allows access within the limits
of its block, not including the overhead word. A pointer to a block
can exist in two forms - either locked or un-locked - the effect of
locking depending on the type of block.

Firmware.d

Y

1.2.1 Blocks
The tags of the overhead words distinguish 6 different types :
1 - Work-space block i.e. the locals of some call of a procedure.

The first four words of a work-space block are completely
inaccessible to everybody but the micro-code. They contain link
information for exiting from the procedure or for re-instating
this work-space as the current locals. The instructions which
access within a work-space block (e.g.0 or 3) will automatically
compensate for these extra invisible words so that, for example,
a zero displacement (a-field) will in fact give the S-th word of
the block. A locked pointer to a work-space block means that one
cannot use this pointer to assign or store to the block, ie a
locked pointer means that the block cannot be altered via this
pointer.

2 - Code block i.e. contains the code and constants of a procedure.

Code blocks have two invisible words, which contain information
on the size of work-space block required to run this code. The
next word (i.e. the first word of constants) gives the start of
code relative to the start of the block. A locked pointer means
that the code-block cannot be altered via this pointer.

3 - As type 4 , but cannot contain pointers.
4 -~ Normal data block.

Normal data blocks have no invisible words. A locked pointer
means that the block cannot be altered via this pointer.

5 - Closure i.e. contains pointers to code and non-local blocks.

A pointer to 2 closure is a procedure. The only operations
allowed on procedures are calls i.e. the contents of the closure
are hidden. When a locked procedure is called, the resulting call
will be run in privileged state.

6 - Keyed block; access controlled by knowledge of first word in
block.

Access to a keyed block via an unlocked pointer makes it
identical to a normal data plock; access via a locked pointer is
barred. A locked pointer to a keyed block may be unlocked if one
knows the contents of the first word of the block using
instruction 160. Locked pointers to other types of blocks cannot
be unlocked.

Firmware.5

ol =

1.2.2 Shaky pointers

1n addition to the locked/unlocked property of pointers, pointers
are either firm or shaky. So long as a block is pointed at by a firm
pointer then any shaky pointer to that block remains valid; however,
if there are no firm pointers to a block, then the shaky pointers to
it will be replaced by 0, a non-pointer, in garbage collection, and
hence the block will vanish. This facility is largely intended to
provide easy aliasing between disc and main-store; it is also used
internally in the micro code in the procedure call mechanism.

1.2.3 References,vectors and arrays

Since pointers only refer to complete blocks, several of the
instructions make use of references i.e. (pointer, non-pointer)
pairs with the interpretation that the first word gives a block and
the second some kind of a displacement within it, subject to the
usual access constraints of the pointer. The kind of displacement is
defined by the first two bits of the second word:

0X - word displacement from logical start of block,
10 - char displacement from logical start of block,
11 - bit displacement from logical start of block.

A vector is defined as a triple consisting of (non-pointer,
reference) where the first word is the upper bound (implicit lower
bound = 1). This upper bound expresses the number of elements in the
vector; the element size will be defined by the instruction using
the vector and the type of its reference.

An N-dimensional array is a tuple of words consisting of N

non-pointer triples (lower bound, stride, upper bound) followed by a
reference.

Firmware.6

— g

2 Program in Fiex

While running program, Flex is always obeying the code of some
procedure, the current procedure.

2.1 Locals,non-locals,constants

The locals of this procedure,the current locals, are contained in a
work-space block (type 1); these locals are directly accesssible
using instructions such as load_1_word local (op code 0). Two other
areas are similarly accessible - the non~locals (eg op code 1) and
the constants (op code 2) of the current procedure. The non-locals
(if any) are in one of the blocks (type 4) pointed at in the closure
which forms the current procedure while the constants (together with
the code of the procedure) are in the other (type 2). The various
access rights posessed by these pointers at the time the closure was
formed, are carried over into the operation of instructions which
use them implicitly; for example, if the non-locals pointer was
locked at closure time, the store_into_non-locals instruction (op ,
code 41) will be in error if it is encountered in the procedure]
code.

2.2 The local stack ;

The locals operate as a stack entirely contained within the current
work-space block. The next free word on this stack is the
stack-front (sf). Clearly sf is always constrained to lie within
the limits of the current work-space; any attempt (either explicitly
or implicitly) to go outside its bounds will result in an error.

2.3 The U register and tos

There is only one general purpose register in Flex - the universal
register U. U may hold any number of words,characters or booleans, a
special illegal value transformable (using instruction 16%) to a
word pair, or void. The instructions which load U (op codes 0 - 37
etc) push the old value in U (provided it is not illegal) onto the
local stack (updating sf in multiples of words) before loading the
new value.

Most of the arithmetic instructions use a value on top of the stack
(tos) together with the value on U to produce results. The tos value
is removed and sf reduced by the operation of the instruction. The
numver of words in tos depends on the particular instruction, and
also sometimes on the value in U (eg equality, op code 114). Thus
the int_multiply instruction (op code 100) multiplies a 1-non-ptr U
to a l-non-ptr tos, giving the answer as a i1-non-ptr, reducing sf by
1 word. The real_multiply instruction works similarly removing 2
words from the stack while the equality instruction remcves the
number of words required to hold the value in U.

|
'l
' Firmware.7

2.4 Program control

The flow of control instructions only allow jumps within the current
procedure code and even then only in a restricted form in that
usually only forward jumps are allowed to carry a non-void U. The
only ways to escape from the current procedure code is to call
another procedure, exit from the current one, fail, or obey the goto
instruction (op code 71). The address of the instruction currently
being obeyed is held in the program control register pc ; clearly pc
is constrained to be within the limits of instructions within the
current codeblock.

2.5 Privilege

Some of the instructions are only allowed if the procedure code is
being run in privileged state. These instructions are mainly
concerned with peripheral transfers. This state is a property of the
procedure call and in general will follow the nested sequence of
procedure calls. Thus, if an unprivileged procedure is called from
within a privileged one, on exit from the inner call the outer will
remain privileged and similarly in the reverse sense. Clearly the
operation which makes a procedure privileged can only be obeyed in
privileged state.

2.5 Exception state

The action on a failure due to the illegal operation of an
instruction is controlled by another state, either T~ or D-state. In
this case, the state is set by instructions (op code 94 & 95) and
carried into inner procedure calls. On exit from a procedure the TD
state is reset to what it was on entry.

Firmware.8

3 Procedures

A procedure iz a pninter to a closure block:

] i pc somewhere in this
Ceeeane area
))

linstructns!zcode start rel to blk

Ceeeaes start
} !} «..i... iz word) of constants
...... .o icode starti= word 0 of constants
___ iword 0 nli | shaky ws | }
inon-locsi~>!_NORMAL | | ws size | }hidden parv of blk
| code |~>->=>=>->->->->|CODEBLOCK | }

!
proci->|CLOSURE |

The constants involved in the procedure are held in the codeblock
starting at the third word. The two words below are hidden, being
us2d in the call and exit instructions. Word 0 of the constants is a
pyte displacement from the block start giving the 18t instruction of
the procedure. This word cannct be altered, although it can be read
in program.

3.1 Work-spaces

The current work-space block is:

]
1
{ sf somewhere in this area
)
]

a2 00000

lword 1 loc!
iword 0 loci

}lown proc 1=>=>=>=>->-> CLOSURE of current proc
hidden part of 1} sf dump } only set up by inner call
]
S

]
block it pe dump |
}} last ws |}->-> WORKSPACE in which current proc
| WORK-SPACE} was called

The workspace chain given by the last ws chain in a work-space
is terminated by a zero word, in the first work-space of a process.

Firmware.9

%.2 Procedure calls

The action of a procedure call (op codes 64-67) is as follows. The
current values of pc and sf relative to their respective blocks are
stored in the second and third words of the current workspace. The
privilege state and the TD state are also stored along with pc. The
codeblock derived from the procedure to be called is now examined.
1t contains, in its first two words, information to produce a
work-space block for the procedure being called. 1f the second word
{shaky_ws in diagram) is a pointer, then we Kknow (see exit) that
this is shaky pointer to a chain of work-spaces suitable for running
this procedure and hence we have the desired work-space by removing
it from this chain. If shaky_ws is not a pointer, then 3 new
work-space block is generated given its size in the first word in
the standard manner. This may involve one in a garbage collection
and so the procedure call instructions are arranged so that they can
be restarted after such a garbage collection.

Having produced a work-space suitable for the new procedure, a
pointer to the current work-space is put in its first word, and the
new procedure in its fourth. This new work-space now becomes
current, sf is set to its fifth word (word 0 of locals), pc to the
first instruction of the new codeblock, and the internal registers
set up so that the current locals, non-locals and constants come
from the new locals, nnn-local block and codeblock respectively. If
the procedure being called is locked, the code will run in
privileged state; otherwise it is unprivileged.

During all of this, the contents of U remain unchanged so that
parameters to a procedure are normally passed in U.

3.3 Exit from procedures

Exit from a procedure (op codes 68, 69) is essentially the reverse
process: if a pointer to the current work-space has not been loaded
while obeying the current procedure (ie instructions 34 or 168 have
not been encountered) then the current work-space is put on the
chain shaky_ws in the current codeblock. The previous work-space
(in 1st word of current work-space) is now made current, and sf, pc¢
and the two states are reset from their dump positions in this
work-space. The locals are made current in this work-space and
non-locals and constants are reset from the own_proc dumped within
it.

During exit, the contents of U remain unchanged so that results of
procedures are normally passed in U.

Firmware. 10

—'————'—'—-q-

-

—_——

3.4 Demand loading

A closure block can be somewhat different to that shown above. The
closure instruction (72) allows the operand relating to a codeblock
to be a keyed block. The firmware will interpolate a call of a
system procedure, load_proc, in the operation of a call instruction
whose closure contains a keyed block. Load_proc is rather similar to
the scavenge procedure, in that it can accept any parameter. 1t can
access the keyed blocks as non-locals, and the intention is that it
will use information from the keyed blocks to load the actual code
etc, from backing store into mainstore. Load_proc will then exit to
repeat the original call instruction that provoked it, ensuring that
this kind of closure is only fully loaded when it is actually
called.

Firmware. 11

4 Exceptions

An exception in Flex occurs when some attempt is made to break the
rules of the Flex instruction set. All exceptions have a
characteristic word-pair associated with them - those raised
directly by the micro code consist of zero followed by a small
integer.

4.1 Errors and failures

Exceptions arise in two slightly different ways, called, for want of
bpetter words, errors and failures.

An error occurs where any attempt to continue with the instruction
would compromise the access rules for blocks and pointers. Roughly
speaking,one could say that they are the compiler's fault. They
include attempts to access outside the limits of a block or applying
the wrong type of operands to instructions.

A failure tends to be more data-dependent and more likely to be the
program writer's fault. Typical failures are arithmetic overflow and
indices out of bounds. Also inciuded are the explicit exceptions
raised by the fail and exit_fail instructions (op codes 173, 69)
where the characteristic is given by the operand U.

4.2 Exceptions in T-state

The only difference between failures and errors occur when the
exception is raised in T-state. 1n this case, a failure produces an
illegal value in U which has an associated word-pair identical to
the characteristic of the exception. Any attempt to use an illegal
value in instructions other than those explicitly designed to deal
with them (op codes 92, 165 etc) will result in an error whose
characteristic is the same as that associated with the illegal
value. Of course, one can deal with failures like overflow in the
current procedure by using these illegal-handling instructions.

In T-state, an error results in the premature exit from the current
procedure with an illegal value in U whose word-pair is the
characteristic of the error. Since illegal values give errors unless
explicitly tested for, the net effect is that an entire chain of
procedure calls are exited from until one is encountered which is
prepared to accept an illegal result.

4.3 Exceptions in D-state

In D-state (Diagnostic state) all exceptions are treated
identically. In essence, a system procedure, fail_proc, is called in
place of the current procedure, so that, if an exit was obeyed in
fail_proc, it would exit to the same place as the current procedure.
The parameters of the call of fail_proc give access to the locals

Firmware.12

and codeblock of the failing procedure and the characteristic of the
exception is available as a non-local. The (softwared) action of
fail_proc is to construct a chain of failing environments. 1t does
this by constructing an element of the chain and then doing an
exit_fail with a reference to the element in U. Eventually, some
lower procedure will gather up the resulting illegal and use it to
construct visible diagnostics for the exception. As far as the
firmware is concerned, all that it does at an exception in D-state
is to find fail_proc in system_ block, dump the characterisic into
system_block, and call fail_proc with a four word parameter
consisting of a pointer to the current locals, relative values of pc
and sf, and a pointer to the local codeblock.

Firmware.13

5 Storage allocation

Only the micro-code regards Flex main store as a linear store
addressable from end to end. The macro-code which is the Flex
instruction set only understands blocks and pointers to them, so
that Flex program can only address those disjoint unrelated blocks
for which it has pointers of the right sort. Running programs will
involve new blocks being created to hold data, for ex-mple by using
the generate instructions (72-74 etc) or simply by calling a
procedure which requires a new work-space block. Thus the micro-code
which implements those instructions simply grabs a new empty block
from the top of a continually growing stack in the linear store,
putting in the appropriate overhead word and delivering a pointer as
result.

This linearly growing stack will eventually encompass the entire
physical store and at this stage garbage collection occurs. The
garbage collector notes all of blocks which are still "live", and
compacts all live blocks down to the bottom of store, updating all
pointers in them so that they still point to the same data. Thus the
space occupied by "dead" blocks is recovered and, hopefully, there
will be sufficient room in the linear store for the request for a
new block which provoked the garbage collection.

Clearly the address actually held in a pointer can change on each
garbage collection. However since all pointers to a given block are
changed consistently and since arithmetic is forbidden on pointers,
one can regard pointers as immutable objects in Flex programs.

A live block is either a unique block, system_blecck, or else is
pointed to from within another live block. System block is & block
known to the micro code and contains the interrupt procedures and
other goodies to keep alive all currently active processes.

The actual sequence of events which happens in the micro code at 2
garbage collection is as follows. The micro code discovers that a
request for the generation of a block cannot be satisfied from the
linear store. 1t then interpolates the call of a procedure,
scavenge, before the current instruction. Scavenge (which is found
in system block) is a peculiar procedure in that one can guarantee
that there will always be a workspace available for it and that it
can accept any value in U as a parameter. This last is neccessary
since the instruction requiring the block could be a procedure call
which is meant to leave the value of U unchanged. The privileged
scavenge procedure dumps the value of U, obeys the garbage_collect
instruction, and then finds if the current store demand can be
satisfied; if it can then the dumped value of U is reinstated and
scavenge is exited - to repeat the store grabbing instruction. If it
cannot pe satisfied, then some process must be failed so that store
can be released to continue.

Firmware. 14

6 lnterrupts

interrupts do not occur when instructions are being obeyed in
privileged state.

An interrupt can only occur when U contains void; this sometimes
occurs in the middle of an instruction where repeating the
instruction would do no harm. This is the case in the load
instructions where U is void after it has been pushed but before the
pew value has been loaded into U; since pushing void is a null
operation, the instruction has the same effect whether or not it has
peen interrupted and restarted.

When an interrupt occurs, the effect is exactly the same as if a
parameterless procedure (delivering void) had been called in the
code being interrupted. This procedure depends on the type of
interrupt and is found in system_block. The call of an interrupt
procedure will not invoke garbage collection and is intended to be
run in privileged state.

The two main interrupts are the comflex channel and the timer. The
Flex hardware contains a milli-second clock, which the firmware uses
to make an interval timer. This timer can be set using the
privileged set_slot_time instruction (op code 216) and when the
interval specified is expired,the timer interrupts.

Firmware. 15

P~ sttt i

— —

7 Data in file store

The basic file store operations on Flex are create a2 new block on
disc, and read an existing block. Thus we may write away information
to a given file store, receiving back a disc pointer which we can
subsequently use to read back the information. The information
written to a filestore may include disc pointers to other blocks in
the filestore so that the file store can contain trees of arbitrary
complexity.

On disc, a disc pointer is represented by four bytes; in main memory
a disc pointer is a locked pointer to a keyed block containing these
bytes with a key which identifies the file store containing the data
pointed 3t by the disc pointer:

Tags Byte2 Bytel ByteO Word

XXX ! | i \ ; 4 Possible alias for disc value
1000}] | i i 3 Address for poiuter on disc
i000% | i LU VT 2 Tag for pointer on disc.
1111}] ; ' i 1 File store key.

11101 i l 151 0 Overhead word = block size.

Unly one such block will exist in main memory for given words 1, 2
and 3; the instructions which handle disc ptrs will identify it
uniquely via a hash taple in system_block.

The four byte representation on disc comes from the least
significant byte of word 2, and the remaining three from word 3. The
use of the filestore key in the instructions (op codes 225, 226,
233) which transput disc pointers will ensure that the only disc
pointers which can exist on a given filestore are pointers within
the filestore.

Unit number in filestore (0 <= U <= 15};
Type of value corresponding to disc pointer
(1 <= T <= 15)

U in word 2
T in word 2

Disc pointer types:

T =1 => Will always be aliased with existing value in main
memory.

T=2 => Block on disc is read in as code-block.

T=3 => " wow is read in as procedure with no

non-locals.

T =4 => As T=3 but procedure is locked.

T=5 => Block on disc is read as procedure.

T =06 => As T=5 but procedure is locked.

T=7 => Disc pointer is non-writeable disc reference.

T=28 => Disc pointer is disc reference.

T=9 => Block on disc is normal block which can contain
pointers.

T = 10 => Block on disc is normal block which carnot contain
pointers.

T = 11-15 => Unassigned and unused.

Firmware.16

The procedure d_to_b takes a disc pointer as a parameter and
delivers a main memory pointer as result, the type of block pointed
tc depending on T value above. The pointer delivered will be such
that the corresponding block cannot be written to. Word 4 will then
contain a shaky version of the pointer so that as long as a firm
version of that pointer exists subsequent calls of d_to_b on the
disc pointer will not require an interaction with disc. Type 1 disc
pointers will always have an existing alias and so never interact
with disc.

Disc pointers with types 9 and 10 may also be read using the
procedure from_disc which allows the data read to be scattered into
places defined by its parameters. In this case no aliassing takes
place.

Disc pointers of types 2 to 6 and 9 and 10 may be created by writing
data to a filestore using the appropriate system procedure depending
on the type.

Disc peinters of type B are called disc references; they are
peculiar in that they define the only words in a filestore which can
be overwritten. A disc reference is really a reference to one word;
usually, this one word will contain a disc pointer to some kind of a
dictionary which is updated from time to time. The contents of a
disc reference may be read using d_to_b as above; however, updating
it is slightly more compilcated. The disc system will update the
disc reference as a unitary operation and will only allow it to be
updated if the old value contained within it is presented at the
same time as the new one. Thus simultaneous updating of the same
disc reference can be detected and resolved in a reasonably
economical way.

Firmware. 17

T RS " e L TTTTTT e

- — — ,

8 Flex instruction set

Instructions are 1, 2 or 3 bytes long, the first defining the
operation code. The remaining bytes, if any, are denoted by a & sz
(1 byte quantities) or p (two byte quantity). The a-field generally
is a data displacement and the sz-field gives data size. The a and
sz fields can Dbe effectively extended by using the modify_next
instruction {(op code 76). A p-field is a byte displacement from the
peginning of the current procedure code.

A * in the description means that the instruction is interruptable
at that point.

Load 1 word

0, a : Push U # , U:= a~th word of locals.

1, a : Push U ® | U:= a~th word of non-locals.
2, a : Push U # | U:z a~-th word of constants.
3, a : U:= a-th word of block pointed at by U.

Load 2 words

4, a : Push U # | U:= word-pair starting at a-th word of
locals.
1 5, a : Push U ®# | U:z word-pair starting at a-th word of
' : non-locals.
6, a : Push U # | U:= word-pair starting at a-th word of
constants.
7, a : U:= word-pair at a-th word of block pointed at by U.

Load N words

8 ,a, sz :PushU® U
locals.

9,a, sz :PushU®*® U
non-locals.

sz+3 words starting at a-th word of

]

sz+3 words starting at a-th word of

10, a , sz : Push U * | U:= sz+3 words starting at a-th word of
constants.
1 11, a , sz : U:= sz+3 words at a-th word of block pointed at by U.

Load 1 character

12, a : Push U ® | U:z character in 1s byte of a-th word of
locals.

13, a * Push U ® | U:z character in ls byte of a-th word of
non-locals.

1, a : Push U ® | U:=z character in ls byte of a-th word of
constants.

15, A : U:=z character in 1s byte of a-th word of block pointed
2t by U,

Firmware. 18

Load 1 boolean

16, a : Push U ® | U=

17, a : Push U * |, Uiz
non-locals.

18, a : Push U # , U:=
constants.

19, a t Ut= bool in 1s
by U.

Load N characters

20, a , 8z : Push U * | U:=

2%, a , 82 : Push U % | U:=

22, a , 82 : PushU ®* U::=z

23, a 4 82 : U:= sz+2 chars

Load N booleans

24, a , s2 : Push U % . .
25, a , s2 : Push U ®* | u:
24, a , sz : Push U ¥* |
27, a , 82 : Uiz sz#2 Diw.
Load ptr to current areas
28 : Push U # | U:
29 : Push U ® | U:
Load literally

30, a : Push U * , U:
31, a : Push U & | U:
32, a : Push U * |, U:
33 : Push U * | U:
Load ptr to locals

34 : Push U #® |, U:
Load times

35 : Push U * | U:
36 : Push U * , U:
Push and take

37, sz : Push U ®* | U:

bool in 1ls bit of a~-th word of locals.
bool in 1ls bit of a~-th word of

bool in 1s bit of a-th word of

bit of a-th word of block pointed at

sz+2 chars at a-th word of locals.

sz+2 chars at a-th word of non-locals.
sz+2 chars at a-th word of constants.
at a~th word of block pointed at by U.

sz+2 bools at a-th word of locals.
3z+2 bools at a-th word of non-locals.
sz+2 bools at a-th word of locals.
2t a-th word of block pointed at by U.

ptr to non-locals block.
ptr to constants block.

a (CHAR).
a (BOOL)
a (INT).
void.

ptr to locals block.

time of day (LONG INT milli-secs).
unexpired slot-time (INT milli-secs).

sz words on tos.

Firmware. 19

Select ref

Push to byte and bit posivsons

38, a : Pusb cpars in U te wvyte pusition sf-a , U:=void * .

39, a : Push bocls in Y “o Lit position sf-a , U:=zvoid *

Store U

40 , a ostaren Lo .. % subh word of locals ,
U:=void ¥* .

b1 , a : Stores % tanv -value) a% a-tir word of non-locals,
Tr=void ¥

42 , a : Steren U 0 opy walvrr 0 4o th yord of constants,
Uizvord

43 |, a : Stores U (.vy valve® at ..th word of block pointed
av by Loe. Wo. o

Select from U

By , a2, sz : Y.z sz wovrd. cii-tine at a-th of U,

45 , a , sz : U.x sz civrs stu-ning 2% a-%h of U.

b6 , a , sz ¢ Uiz 52 v’ s 5 4 uing % a-th of U

47 , 2 : Select ref i.e. xdl 4 to last word of U.
Derefs
48 , a , sz : Deref word vecter in U i.e.
U:=(UPB vector * a + sz) words pointed at by vector.
49 | sz ¢ Deref word ref in U i.e. U:= sz words pointed
at by ref.
50 , a , sz : Deref char vector in U 1i.e.
U:=(UPB vector * a + sz) chars pointed at by vector.
51 , s2 : Deref char ref in U i.e. U:= sz chars pointed
at by ref.
52 , a , sz : Deref bool vecter in U i.e.
U:=(UPB vector t* a + sz) bools pointed at by vector.
53 , s2 : Deref bool ref ir U i.e. U:=z sz bools pointed
at oy ref.
Pack & Unpack
54 : Unpack 1. . %.: weC¢ contents of block pointed
at by u.
55 : Pack i, Liz pti tu biock (type 4) containing
copy of U.

Firmware.20

Vector operations

56 , sz
57 , sz
58

: Index vector in U with element size sz by index on

tos giving ref to element in U;
Given U = (b,p,d) and tos = i,
Ut=(p,d+(i-1)*sz) where 1 <= i <= b.
: Trim vector on tos with element size sz by int pair
in U giving trimmed vector in U;
Given U = (i,j) and tos = (b,p,d),
U:= (j-i+1,p,d+(i-1)%sz) where i>=1 and j<=zb.

¢ If UPB vector on tos /= UPB vector in U then

fail (0,2).

Array operations

59 , a

60 , a

61 , a

Unite

62 , a, sz :

Assign
63

¢ Index a+1 dimensional array in U by a+1 indices on
tos giving ref to element in U;
Given U = (1b0,s0,ub0, ...,lba,sa,uba, p,d)
and tos = (i0,i1,... ia),
Us=(p,d + sO*(i0-1b0) + ... + sa¥(ia-1ba))
where 1bn <= in <= ubn for 0 <= n <= a.
: Trim a+1 dimensional array on tos by integer triple
in U, giving a+1 dimensional array in U;
Given U = (f,t,nldb)
and tos = (1b0,s0,up0, ...,lba,sa,uba,p,d),
U:=(nlb,s0,nib+t-f, 1bi,si,udbl,..., lba,sa,uba,

p, d+(f-10)%#30) where f >= 1b0 and t <z ub0,.

: Slice a+1 dimensional array on tos by index in U,
giving a dimensional array in U.
Given U = i
and tos = (1b0,s0,up0, ...,lba,sa,uba,p,d),
U:= (1b1,s1,ubt, ..., lba,sa,uba,p, d+ sO*(i0~1b0))
where 1b0 <z i <= ub0

Unite U with a and make it a sz word object, i.e.
U:= (a,U.., 0,...).

¢ Assign wvalue in U to position given by ref on tos,
and let U := ref;

Words in U cannot pe assigned to a CHAR- or BOOL-ref;

Chars in U cannot ve assigned to a BOOL-ref.

Firmware.21

Procedure calls & exits

64 , a : Call the procedure given at a-th word of locals.
65 , a : Call the procedure given at a-th word of non-locals.
66 , a : Call the procedure given at a-th word of constants.
67 : Call the procedure given on tos.
68 : Exit from current procedure.
. 69 : Exit from current procedure and fail U .
70
Goto
A : Goto label given in U, where label is pair (pointer

to destination workspace, p~displacement in
corresponding codeblock).

Generate new blocks

72 : U:= ptr to new closure (type 5) formed from ptr to
code (type 2 or 6) in U and ptr to non-locals (type %)
or zero on tos; (PTR,WORD) -> PROC.

73 : Us= ptr to new normal array block (type 4) of size in
words given by U.

T4 : U:= ptr to new block (type 3) of size given by U.

75 : Change block (type 4) pointed at by U into codeblock
(type 2).

Modify next

76 ,al,sz1 : Modify the a & sz fields of next instruction
(if present) by a1%256 & sz1%256.

Stack front operations ;
77 , a : Set sf to start of locals + a words.
78 , a : If sf /= start of locals + a then fail (0,5)
Discard
- 79 : Ur=void % .
Operations on pointers
1 80 : U:= shake U; PTR -> PTR.
81 : Us= firm U; WORD -> WORD .
82 : Ur= U is a ptr; WORD -> BOOL.
83 : Us= block type of ptr in U; PTR -> INT.
84 : U:= byte block size of ptr in U; PTR -> INT.
4
1
Firmware.22

e - - - e et . s

. e s afiua

Ref changes

85 : Make ref in U into char ref; REF WORD -> REF CHAR.
86 : Make ref in U into bool ref.
(REF WORD or REF CHAR) -> REF BOOL.

Modify next dynamically

87 : Modify the a & sz fields of next instruction by
int pair on tos.

Jumps & branches

88 , p : IF U then jump to p FI , U:=z void ®* .

89 , p : IF not U then jump to p F1 , U:= void % .

90 , p : IF U then jump forward to p ELSE U:= void #* FI.

91 , p : IF not U then jump forward to p ELSE U:= void * FI.
92 , p : 1IF U is illegal then jump to p, U:=void # FI,

93 , p : Jump to p (if U not void then jump must be forward).

Set failure state

94 : Set D-state.
95 : Set T-state.

FOR instructions

96 , p : For test; (FOR,BY) in U , TO on stack ;
IF (TO-FOR)#BY < 0
THEN U:=void, Pull TO , jump to p * FI.

97 , p : For step; * (FOR,BY) on tos , U:=(FOR+BY,BY),
jump to p.

Switches

98 , a : Case switch; jump to next + (1<= U <= a | 3% | 0).

99 : Associative switceh;

Followed by (bi,p1)or(x1+128,y1,p1)...(bn=0,pn},
b1<128 and x1<128;
FOR i DO
IF U=bi (single byte) OR U>=xi AND U<=yi THEN
jump to pn, U:=void
ELIF bi = O THEN jump forward to pn Fl
0OD.

Integer arithmetic

100 : Us=tos+U; (INT,INT)->INT
or ((INT,0),LONG INT)->LONG INT.
101 1 U:=tos-U; (INT,INT)->INT
or ((INT,0),LONG INT)-D>LONG INT.
102 : U:=tos®U; (INT,INT)->INT.
103 : U:z(remainder,tos/U); (INT,INT)->(INT,INT).
Firmware.23

Integer tests

104 : Ur=tos>=U; (INT,INT)-> BOOL.
105 : U:=tos<U; (INT,INT)-> BOOL.
106 : U:s=tos<=U; (INT,INT)-> BOOL.
107 : U:=tos>U; (INT,INT)-> BOOL.

Monadic operations

108 : Us= ABS U; INT->INT.

109 : Uiz <U; INT->INT.

110 : U:= ABS U; (CHAR or BOOL or WORD) -> INT.
111 : Ut= U is illegal; ANY or illegal -> BOOL.
112 : Ut= REPR U; INT->CHAR.

113 : U:= ODD U INT->BOOL.

Equality

114 : U= toszU (ANY, ANY)->BOOL.

115 :+ U= tos/=U (ANY, ANY)->BOOL.

Logical operations

116 : U:= tos OR U; (n-BOOL,n-BOOL) -> n~BOOL
or (INT,INT)->INT,.

7 : U:= tos AND U; (n-BOOL,n~-BOOL) -> n-BOOL
or (INT,INT)->INT.

118 : U:= tos EXOR U (n-BOOL,n-BOOL) -> n-BOOL
or (INT,INT)->INT.

119 : U= tos EQUIV U; (n-BOOL,n-BOOL) -> n-BOOL
or (INT,INT)->INT.

120 : U:= NOT tos AND U; (n-BOOL,n-BOCL) -> n-BOOL
or (INT,INT)->INT.

121 : U:= NOT U; n~BOOL -> n-BOOL or INT->INT.

String equality

122 : U:=(string in vector on tos = string in vector in U);
(VECTOR[JCHAR, VECTOR[JCHAR)->BOOL.
123 : U:=(string in vector on tos /= string in vector in U);

(VECTOR{ JCHAR, VECTOR[JCHAR)->BOOL.

Real arithmetic

124 : U:= tos+U; (REAL,REAL)->REAL.
[P : U:= tos-U; (REAL,REAL)->REAL.
126 : U:= tos®U; (REAL,REAL)->REAL.
127 : U:= tos/U; (REAL,REAL)->REAL.

Firmware.2U

ST TR R T

Real tests

128
129
130
131

cccocca
"W oHouwu

tos>zU; (REAL,REAL)->BOOL.
tos<U; (REAL,REAL)->BOOL.
tos<=U; (REAL,REAL)->BOOL.
tos>U; (REAL,REAL)->BOOL.

Real monadic operations

132
133
134
135
136
137
138
139

coacaocTaac

Long arithmetic

140
141

142
143

= ABS U; REAL -> REAL.
:= - U; REAL -> REAL.
:=ENTIER U; REAL -> INT.
:=ROUND U; REAL -> INT.
= widen U; INT -> REAL.
= widen U; LONG INT -> REAL.
= ENTIER U; REAL -> LONG INT.
= ROUND U; REAL -> LONG INT.
: Ur=tos+U ; (INT, INT)->LONG INT

or (INT,LONG INT)->LONG INT.

: Ui=tos~-U ; (INT,INT)->LONG INT

or (INT,LONG INT)->LONG INT.

: U:=tos®U ; (INT,INT)->LONG INT.
: U:=(remainder,tos/U); (LONG INT,INT)->(INT,INT).

Long to decimal

144

Long monadics

145
146

: U
: U

: U:z(remainder,U/10)}; LONG INT -> (INT,LONG INT).

LENGTHEN U; INT -> LONG INT.
SHORTEN U; LGNG INT -> INT.

nu

Decimal to long

147

Long tests

148
149
150
151

ccacaca
LU T I 1}

: Uiz U0 +(U>=0 | tos } -tos);

(INT,LONG INT) -> LONG INT.

tos>=U; (LONG INT,LONG INT)~>BOOL.
tos<U; (LONG INT,LONG INT)->BOOL.
tos<zU; (LONG INT,LONG INT)->BOOL.
tos>U; (LONG INT,LONG INT)->BOOL.

Firmware.25

|

R A A e e t e

Keyed block operations

158 : U:= open ptr to new keyed plock of size U words;
INT -> PTR.

159 : U:z locked version of pointer in U;
PTR or REF -> PTR or REF.

160 : Ut= open ptr to keyed block in U with key on tos;
(WORD,PTR or REF) ~> PTR or REF.

161 ¢ Change normal block pointed to by U into keyed block;

PTR or REF -> PTR or REF.
Load d_to_b
162 : Push U ® , U:= d_to_b (in 16th word of system block).

Decimal exponent conversions

163 : U
164 . Ut

(e,1) where 1%*10"e = U ; REAL -> (INT,LONG INT).
U #10"tos; (INT,LONG INT) -> REAL.

Unite with illegal

165, sz : Unite illegal i.e.
U:=IF U isnt illegal THEN (1,U,..,0,...)
ELSE (2,characteristic word pair of U,..0..,)
F1;
(ANY or ILLEGAL) -> sz~WORD.

Vector pack and unpack

166 : Pack U into new vector ;
n-WORDs ,n-CHARs ¢3 n-BOOLs
-> VECTOR[JWORD, CHAR or BOOL.
167 : Unpack vector in U to prduce n-words,n-chars
or n-bools in U;
VECTOR[JWORD, CHAR or BOOL
-> n-WORDs,n-CHARs or n-BOOL.

Load vector of characters

168, a , sz : Push U # |, U:=zvector(sz,locals,a+16r800000).
169, a , sz : Push U ¥ | U:zvector(sz,non-locals,a+16r800000).
170, a , sz : Push U % , U:=vector(sz,constants,a+16r800000).

Fail
17

s

: U:= illegal formed from word-pair in U;
(WORD,WORD) -> illegal.

Disable and enable

200 : If U = systemblock (PTR or REF) then set privileged
state elsc fail (0,11).
201 : Set non-privileged state.

Firmware.26

'"""""”“""""""‘"'""'“'NH--H--ilqrq

Privileged instructions

Append

153 : U := tos Append U ,where tos = ref to block whose
1st word is chain ending in zero.
(REF , WORD or REF) -> REF

Scavenge

204 : Do a garbzge ccllection, delivering thé‘ﬁquer of
bytes recovered 1. U as an INT. .

.

Dump and reset U '

256 : Dump U (in interna. fort) to the first 5 werds of the
current work-space,lc¢aving U void.

207 : Reset U from dumped value in first 5 words of the
current work-space.

Peripheral processor channel

208 : Write character to peripheral processor, by back-door
channel.

209 : Send current pc to peripheral processor and return
control of microcode to peripheral processor.

210 : U := character read from peripheral processor.

Timing

215 : Set time (ms) from LONG INT in U; U:=void.

216 : Set interval timer (ms) from INT in U; U:=void.

Leoad system_block

217 : U:= REF to U'th word of system_block; INT -> REF.

Find

219 : Find PTR in system hash-table whose first 3 words are

equal to U; If not there create 4 word keyed block
containing (U,0), insert locked pointer in hash table
and deliver it;

(PTR, INT,1NT) -> PTR.

Firmware.27

Comflex output

220 : Write comflex header (dest,source,size) given in U
‘ to comflex, U:=void.

221 : Write INT in U to comflex as 1 byte; U:=void.

222 : Write INT in U to comflex as 2 bytes; U:=void.
. 223 ¢ Write INT in U to comflex as 3 bytes; U:=void.

224 : Write vector of chars to comflex; U:=void.

225 : Write word in U to comflex as 4 bytes; 1f U is a

pointer, then then the first word in its block must be

identical to the word on tos or else the first word is

system_block and the second word is 1, and the bytes

written will be derived from the contents of the

] block; if U is not a pointer, then the word on tos is

irrelevant and the bytes written are 0 , followed by

k the byte representation of the integer in U.
(WORD,WORD) -> void.

226 : Write vector of words in U to comflex; Each word is
treated as in instruction 225.
(WORD, VECTOR{ JWORD) ~> void.

227 : Complete packet (by sending U as a byte repeatedly,if
necessary), delivering comflex status in U (fail if
status shows error). INT -> INT.

" d Comflex input
228 ¢ Push U ; U := comflex header as integer triple.
. 229 : Push U ; U := 1 byte from comflex as integer.
230 : Push U ; U := 2 bytes from comflex as integer.
23 : Push U ; U := 3 bytes from comflex as integer.
232 : Read bytes from comflex into vector of chars in U.
{ 233 : Let b = next byte from comflex, a = next 3 bytes

: from comflex;

? IF b = 0 THEN U:= a

| ELIF b = 1 THEN U:= FIND (system_block,1,a)
ELSE U := FIND (U,b,a) FI; FIND = Op code 219;
PTR -> WORD.

235 : Push U; Clear comflex buffer by reading bytes if

necessary delivering status in U (fail if status
shows error).

Comflex control

236 : Push U; U:z comflex status as INT.
237 : U as INT is sent to comflex command channel,
U:= void.

Make and break blocks

239 : U :z word-pair in first two words of block pointed
at oy U;
. PTR -> WORDPAIR.
240 ¢ Assign word pair in U to block pointed at by tos;

(PTR,WORDPAIR) -> void.

Firmware.28

9 Summaries

9.1 Data in store

9.1.1 Integers
Tags Byte2 Bytel ByteO

1000} isi ! i H 24 bits 2's complement
] 1
1 \
) i_bit O
|_ bit 23 = Sign bit
9.1.2 Long integers
Tags Byte2 Bytel Byted
{000f {0 | Word 1 47 bits 2's complement
1000} IS | Word 0
9.1.3 Reals
Tags Byte2 Bytel Byte0
j000! {0} : exp__| Word 1
1000} isi] i i Word O

Exp is a biassed 9-bit binary exponent ie. True exponent is exp-256.

Firmware. 29

9.2 Pointers

Tags Byte2 Bytel ByteO

HEEEN LS} | 1 | 22 bit byte-address of block.

—
%2}

_ S (pit22) =0 <> firm pointer; =1 -> shaky pointer.

_ L (bit23) =0 -> open pointer; =1 -> locked pointer.

9.2.1 References

Tags Byte2 Bytel Byte0

10007 1PQI | Word 1 22 bit displacement from:
1111} LS| { Word 0 22 bit byte-address of dlock
PQ (2 bits) = 0X -> word displacement '

10 => byte displacement
11 -> bit displacement.

9.2.2 Vectors

Tags Byte2 Bytel Byte0

1000} iPQ ! Word 2 22 bit displacement from:
1111 LS | Word 1 22 bit byte-address of block
10001 H i Word 0 Integer upper bound.

9.2.3 Arrays

Tags Byte2 Bytel Byte0

|

1000} JPQ; | ! Word 4 22 bit displacement from:
1111} LS| ! Word 3 22 bit byte-address of block
1000 H : { Word 2 Integer upper bound.
1000 : ! Word 1 Integer stride.
b 1000} H | { Word 0 Integer lower bound. 4

1-dimensional array.

Firmware.30

9.3 Blocks

9.3.1 Work spaces

Tags Byte2 Bytel Bytel

|

1)] 1 t

1 ']] [}

VXXX H ! Word 5 Logical start of block.
L i i Word 4 Current procedure.

1900: ; \ Word 3 Sf dump rel to current ws.
10000 1ITH : | Word 2 Pc dump rel to current code
a1 R i { Word 1 Pointer to last ws.

10011 i i | Word 0 Overhead word = block size

(with overhead)in bytes.

R (bit 23) =1 => current ws has been loaded.

1 (bit 23) =1 -> current code runs in privileged state.
T (bit 22) =1 -> current code runs in T-state.

Word 1 may be zero (with zero tags) for 1st ws of process.

9.3.2 Code blocks

Tags Byte2 Bytel Byted

(XXX | : i

10001 | i \ ! Word 3 Logical start of block
v | ; | Word 2 Zero or shaky ptr to ws
10001 i ! | Word ' Byte size for work space.
0101 | i i | Word 0 Overhead word = block size.

Word 3 is zero-th constant, cannot be written to, and is the byte
displacement from word 0 of the start of the code within this block

If word 2 is a2 pointer it is a shaky one to a workspace suitable
for this code block; this chain of shaky pointers is continued
through word 1 of the workspace.

9.3.3 Type 3 blocks

Tags Byte2 Bytel Bytel

)]

] 1

) i Word 1 Logical start of block.

i ! Word 0 Overhead word = block size.

! .
1000 |}
y011Y

Pointers will not be preserved in type 2 blocks.

Firmware. 31

9.3.4 Normal blocks

S
4

|
|
|

Tags Byte2 Bytel Bytud
XXX i i i
VXXX i \ ! Word 1 Logical start of block.
1100} | i \ " “Word 0 Overhead word = block size.
9.3.5 Closures
Tags Byte2 Bytel Rytel
R i T ! Word 2 Zero or ptr to non-locals.
11110 L) i [77{ word 1 Pointer to code.
1101 I %4 ord 0 Ovechead word=blocksize=9.
9.3.6 Keyed blocks
Tags Byte2 Bytel Byted §
IXXX) : ; 1
1XXX1) \ \ ! Word 1 Logical start of block. :
11100 | ! | T “Word 2 Overhead word = block size.

|

Firmware.32

R S

9.4 Disc pointers

A disc pointer in main memory is a locked pointer to a keyed
block (type 6):

Tags Byte2 Bytel ByteO

TXXX1 1) ! Word 4 Possible alias for disc value
10001 i \ \ Word 3 Address for pointer on disc
10007 | i U T) Word 2 Tag for pointer on disc.
111 i i | Word 1 File store key.

11101 | | i 15 Word 0 Overhead word = block size.

On disc a disc pointer is represented by 4 bytes, the first coming
from the least significant byte of word 2, and the remaining three
from word 3.

U in word 2 = Unit number in filestore (0 <= U <=z 15);
T in word 2 = Type of value corresponding to disc pointer
{1 <= T <= 15)

Disc pointer types:

T =1 => Will always be aliased with existing value
in main memory.

T=2 => Block on disc is read in as code-block.

T=23 =) " L is read in as procedure with
no non-locals.

T =4 => As T=3 but procedure is locked.

T=25 => Block on disc is read as procedure,.

T=6 As T=5 but procedure is locked.

T =7 > Disc pointer is non-writeable disc reference.

T=28 Disc pointer is disc reference.

T=29 => Block on disc is normal block which can contain
pointers.

T = 10 => Block on disc is normal block which cannot contain
pointers.

T = 11-15 => Unassigned and unused.

Firmware.33
)

e ————

R S

)

9.5 System block

Word 1 } Error vwords at failure; Word 1 also has proc during
Word 2 } load_int and current work_space during scavenge.
Word 3 - Size in bytes of last demand for store during garbage
collection.
Word 4 - Procedure invoked by failure;
PROC(4 WORD) VOID fail_proc.
Word 5 - Procedure called when demand for space is not
satisfied;
PROC(ANY)ANY scavenge.
Word 6 - Procedure invoked by comflex interrupt;
PROC VOID com _int.
Word 7 - Procedure invoked by sbc data interupt;
PROC VOID.
Word 8 - Procedure invoked by sbc channel free interupt;
PROC VOID.
Word 9 - Procedure invoked by expiry of interval timer;

PROC VOID timer.
Word 10 - Procedure invoked by interrupt 0;

PROC VOID.
Word 1 - Procedure invoked by interrupt 1;
PROC VOID.
Word 12 - Procedure called when exiting from proc with zero
link; ﬂ
PROC VOID endprocess.
Word 13 - Procedure called when calling a proc with disc ptr

for code_block
PROC VOID load_proc.

Word 14 } REF to hash table containing all disc ptrs in main

} memory;
Word 15 } REF 256 PAIR where PAIR = (shaky disc ptr,

PTR PAIR or zero).

Word 16 - Procedure d_to_b accessible by op code 162.
Word 17 - Word accesible by op code 171.

Firmware.34

9.6 Exception values

Error(0,0)

Fail(o0,1)
Error(0,2)
Fail(o,3)
Error(0,4)

Error(0,5)

Error(0,6)
Error(0,7)
Error(0,8)
Error(0,9)

Error(0,10)

Error(0,11)

Error(0,12)
Error(0,13)
Error(0,14)
Error(0,15)

Fail(0,16)

Error(0,17)

wrong type

of value in U ; If the value in U is

illegal, then the exception value will come from
the illegal.

index out of bounds.

vector check fail (op code 58).

integer arithmetic overflow.

wrong type

of block.

a or sz displacements wrong in some way,
usually too big

stack overflow in current work space.

stack underflow in current work space.

attempt to
attempt to

attempt to

access outside a block.
jump outside code block.

use a pointer of the wrong sort in

accessing disec.

attempt to
privilege.

operand on
attempt to
attempt to

attempt to

use a privileged instruction without

tos is of wrong type.
open keyed block with wrong key.
access locked block.

dereference nil.

real arithmetic overflow.

illegal op

code.

Firmware.35

e

I END

DATE
- FILMED

| - 82

- DTIQ

