Teni5: an abstract machine for portable environments

I.F. Currie, J.M. Foster, P.W.Core
Royal Signals and Radar Establishment
St Andrews Rd, Malvern
Worcestershire WR1k 3PS
England

Summary :

Ten15 is an abstract machine which is defined algebraically with strong typing
enforced throughout. The structure and operations of this machine are sufficiently
rich to allow the efficient implementation of a general purpose program-support
environment extending over networks. Since Ten15 is an abstraction of programming
languages rather than hardware, it also serves as a target in the compilation of
standard languages. As well as giving common addressing mechanisms, Teni5 provides a
common system of types which is enforced throughout the system whether in user’s
programs, system utilities or any other tools, alleviating many of the interfacing
difficulties encountered when independently written programs try to interact. Porting
an environment based on Tenl5 to a new machine consists of writing a translator of
Tenl5 programs for the new machine together with a relatively small part of the
system kernel mainly concerned with peripheral drivers; a normal bootstrap gives the
ported environment.. The resulting environment is one in which the type system ensures
the integrity of any data or program in it and is used as the basis to give both security
and privacy. In addition the algebraic nature of the machine helps one to do formal
reasoning about programs running in it.

1. Introduction

Strong typing is generally accepted to be a highly desirable property of 2 high order
language ; among other things, it improves programmer productivity, increases program
portability, and gives one greater confidence in the integrity and correctness of the
running program. Most modern languages are strongly typed so that one is reasonably
sure of the structural integrity of programs written in them, at least as far as the
particular typing model can describe one’s data and program structure. This typing
model delimits the class of program that one can write in the language. Stepping
outside this class forces one to cheat the type system to some degree, usually by
going outside the language into some system level which has a far more rudimentary
notion of the types of objects. Indeed there is usually no useful correspondence
between the types used by a programming language (like arrays,lists or procedures)
and those used by the underlying system (like files or commands). This contributes
handsomely to the problems encountered interfacing independently-written programs,
even when they are written in the same language. Usually the interface is reduced to a
least -common-denominator consisting of files of characters where all the typing
information of the results of the programs is lost. One cannot use the information
about the types of values gathered in compilation either to provide more efficient
interfaces or to give a basis for ensuring structural integrity across different
programs as well as within individual programs.

The extension of the use of a common type system to cover all the levels of the use
of a computer system immediately eases the interfacing problem. For example, user

139

programs, system utilities, commands in the command interface, general tools etc,
could all be described as being of type procedure. with some parameter and result
types. The interfacing of any of these programs together reduces to normal procedure
or function composition with the normal typing rules for procedure application. There
is no need to reduce an intermediate result to a character file or stream, thus losing
all the structure of the data, and necessitating restructuring and re-validation before
it can be used in further steps of the computation.

A common type system is only one facet of the interfacing problem, albeit an important
one. A even more important one is having common methods of accessing data. A common
"address-space” (as well as a common type system) in which the objects manipulated
can be addressed uniformly reduces the interfacing problem by an order of magnitude.
The particular methods of accessing these objects, together with the operations which
one can apply to them, are determined precisely by on the type of the object. Thus we
know that one can access the integer elements of an object of type vector of integer by
indexing in a perfectly standard manner throughout the system. Furthermore, this is
totally independent of how or where the vector was created; it could be the result of a
system command, user program or even a value found in the diagnosis of a failed
program. This unanticipated use of arbitrary values {including those which are, in
fact, program) is highly important in any support environment; one seldom knows
a priori just exactly what tools, programs and diagnostic aids one requires at any
time. If a value is bound into particular address-space (eg a failed program} so that
one cannot extract it in this unanticipated way, then the only tools that one can apply
to it are those those which were put into the address space when the program was
created. These tools could range from nothing to some fixed program to display some
kinds of values; they seldom include the possibility of applying some program of one’s
own to the value.

Our approach is to define (algebraically) an abstract machine called Ten15. The
operations in Tenl5 follow strong-typing rules so that the correctness of the
application of an operator (say) depends only on the types of its operands. Much of the
motivation for inventing Ten15 was derived from its progenitor, the RSRE Flex system
[Currie B1,82,85, Foster 82] which used firmware, rather than type structure, to
enforce the correctness of the application of operations. The type system of Teni5 is
sufficiently rich to usefully describe all the operations required for a general purpose
program support environment (PSE) extending over a network; this, of course, covers
a large proportion of the spectrum of computing. Any program running in an
implementation of the Tenl5 machine on some host is fully type checked by a trusted
Ten15 translator. The type system,and the way that operations are defined within it, is
such that one can ensure the integrity of storage allocation and garbage collection in
mainstore as well filestore and ascross networks. In addition, it forms the basis of
very natural ways to implement privacy between different users or between different
areas of concern. Both the Flex system and Teni5 implementations are very similar in
these respects, differing only in the methods of ensuring that crucial type rules are
not broken. However, TenlS is not an abstraction of the Flex machine (or any other
concrete machine) but rather an abstraction of the concepts in programming languages
in general. Thus Tenl15 can be a target of a compiler for any standard programming
language; this compiler need not be trusted since the Teni5 rules will be checked by
the Ten15 translator.

The remainder of this paper is a sketch of the definition Ten15 with some indications
of how it is implemented and how the higher facilities of a portable program support
environment are built upon it.

140

2. Types and representations of Tenl5 values

2.1 General

The types of values in Ten15 are form a lattice under the relation "can be coerced to”
giving the automatic type changing rules. The form of this lattice is sketched in Figure
1. The lattice is designed so that an automatic type change of a value can only occcur
where there is no change in the representation of the value; the Tenl5 translator does
not need to produce any extra code for such a coercion. A large proportion of the types
and their corresponding operations in Tenl5 have familiar analogues in programming
languages and need little detailed description. The other less familiar types and

operations are described below.

Void

Mode and Moded (see 2.4%)

Exception (see 2.6)

Process, Processor , Flag etc (see 2.8)
Integer ranges - several representations
Ry s Ry iff same repr. and Ric R,

Reals - several representations

Ry < R, iff same repr. and included accuracy and range

Structures

(Tysees Tp) § (Stseees Sp) iff T, s 5, i=l.n

Dis joint union

(Tgleoel T,) s (Syleref Sp) ifE T; s S; i=ln

Assignable addresses < [Read-only addresses
egPtr T, Ref T, Vec T, Pervar T Ptr T s Ro_ptr Siff T < §

no coercions within these

Procedures and ions (see 2.2)

Persistents (see 2.3)
Persistent T s Persistent Siff T < S

Polymorphics {see 2.5)
My F(X) < My G(Y) iff F(X) < G(X) etc

Remotes (see 2.7)
Remote T s Remote Siff T s S

Formals - no coercions
used in defn of ADTs and polymorphics

Abstract data types (see 2.9)
eg Module T, List T, Lazy T
coercions consistent with concrete repr.

Figure 1 - The type lattice of Tenlb

2.2 Types for program values

As befits a system intended for program support, Tenlb values include several kinds
of program values. The most familiar are procedures which are first class objects in
Teni5; they can be assigned, held in data structures or delivered from other
procedures just like any other value. The representation of a procedure in mainstore is

141

basically pointers to blocks containing things like code and non-locals. Its type is
given by its parameter and result types; for example:
isin: ([1..1686888] - Bool) (1)
is a procedure with an integer parameter delivering a boolean. A call of a procedure is
Just the most dynamic way of binding new values (the parameters) to a piece of
program. Other binding times are possible and TenlS5 permits one to bind values to
other kinds of program values in a general fashion. The most basic program value in
Tenl15 is a "nucleus” consisting only of the code of the procedure. This code will, in
general, access some free variables and its correct operation will require some values
to be bound as non-locals to replace these free variables. These values can be bound in
stages producing "ions”, each different ion having additional non-local values until all
are bound giving a runnable procedure. The types of the non-local values (and the order
in which they will be bound) are all included in the type of the nucleus to ensure that
only the correct kind of values are operated on by the code of the procedure. For
example, the nucleus of the procedure isin in (1) might be an slgorithm expressed
roughly as:
Ax. vif(x)]
with type:
{{1..1668686] - [1..18]) ~ Vec Bool ~ ([1..168868] -» Bool)
by first binding f (a procedure of type ({1..166668]-(1..18]) } to give an ion of type:
Vec Bool ~ ([1..186688] - Bool)
and then, sometime later, binding v:Vec Bool to give isin. Note that the value isin is
independent of any scope restrictions; its existence does not depend on any contexts
of f or v. Indeed,it is easy to arrange matters so that a call of isin becomes the only
way to access f or v.

The generalisation of this idea of hiding values behind the procedure interface is the
basis for implementation of the privacy and security aspects of the TeniS PSE. For
example, the ion corresponding to a user’s log-in procedure has a type something like:

(Dictionary, Password,) ~ {Void > Void)
where Dictionary and Password are some persistent data structures giving name
look-up and the password mechanism. Once the actual values of these data-structures
have been bound to this ion to produce the procedure, then the only way to access
these data structures could be a call of the procedure. Of course, if this is the case
the user had better not forget his password!

2.3 Types for database values
Database values are clearly required to allow one to keep data on persistent storage
media. These are represented by values which are effectively pointers to blocks on the
particular medium and whose type is made using a Persistent constructor. For example,
a page of text lines might have a representation whose type is:

Persistent Vec Vec Char
This value would have been the result of applying a Tenl5 operator (persist) to a
value of type Vec Vec Char which could then be retrieved at any time by applying an
un_persist operator to the persistent value. It is often very useful to have persistent
data structures which contain other persistent values thus producing tree-like
structures (strictly speaking, acyclic graphs) in a database. For example, a better
representation of a text file might be one which allows sub-files with circular type,
Txt, where:

Txt = Persistent Vec (Vec Char | Txt)
Note that there are no operators here for overwriting the data pointed at by a
persistent value. It is a write-once value, making it much easier toc ensure the
congistency of the data. Persistent variables are allowed with another type
constructor, Pervar. However, writing to one of these variables is considered to be a
unitary commit operation on the database and is more expensive to perform than the
simple persist-operation since it has to guard itself against unexpected failure. In the
present implementations, each database is garbage-collected separately off-line to

142

recover inaccessible space. This style of garbage collection means that cross-
database pointers are not allowed and any attempt to write a database pointer to a alien
database is trapped.

2.% Infinite Unions

The trusted TeniS5 translator will rigorously check all operations to ensure the
correct application of the type rules. There are many applications where one would like
to do similar type manipulations in other untrusted programs and still be sure that the
underlying integrity of the type system is maintained. An obvious example is a command
interpreter where one wishes to make sure that the correct type of parameters is used
with a command which is just some procedure value. It is clearly inappropriate to call
up the TeniS translator to produce the code to obey the procedure. Instead, what
happens is that the untrusted command interpreter inherits the type checking facility
by using various Tenl1S constructions and types; these were, of course, checked by the
Ten1S translator when it translated the command interpreter. At the core of this are
Ten15 values which are, in effect, the infinite union of all possible types; this type is
called for wvarious historical reasons, Moded. One can apply a TenlS operator
{(to_moded) to a value of any type to get a value of type Moded; this is represented by
a pair consisting of the original value together with a representation of its type.
Typically, a dictionary look~up would require the use of Moded values, except in the
unlikely case where the possible names all corresponded to values of the same type; a
procedure to find the meaning of some name encountered by a command interpreter
might have type (Vec Char -» Moded). A Ten15 control structure allows one to extract
the original value from the Moded value, provided that one knows the either the type
of this value or one which is greater than it in the lattice of types. Another operation
allows one to extract the type as a value of type Mode and further operations allow one
to explore its structure. In addition, all of the polymorphic Tenl5 operations (like
assigment or procedure application) are available with Moded operands. These
operations are effectively interpreted rather than compiled with the type checking
done dynamically.

2.5 Polymorphism

The use of infinite unions can be regarded as a kind of polymorphism in which the type
of an object is carried dynamically. Any other kind of polymorphism could be
implemented in terms of infinite unions; however, efficiency and convenience
considerations often dictate the use of more streamlined forms. For example,
efficient polymorphism is essential in the definition of the operations of some
abstract-data types. The treatment of Ten15 polymorphic types is just an extension of
the type changing rules of Ten15, where the representation of the value remaims
unchanged. Other examples exist where the same representation could have many
different types. For example, a polymorphic identity function, such as one might meet
in ML [Gordon 791, would have Tenl5 type:

Ny (X = X) (2)
This value could serve as a procedure with type (X-X) with any substitution of an
actual type for the formal type X; in a sense, the value is lower in the lattice of types
than any procedure (X-X). Similarly one often wants to have a value that is higher in
the lattice than some set of values of similar structure. An example would arise if one
wished to keep a vector of procedures of differing types togther suitable parameters:
Vec Uy y((Ptr X-Ptr Y), Ptr X) (3)

With some suitable consistent subtitutions, replacing actual types by the formals X and
¥, one can construct a procedure-parameter pair and assign it to an element of the
vector. It would be nice if this action of substitution in polymorphic types could be
included in the general coercion rules so that polymorphic types are indeed least upper
bounds and greatest lower bounds as implied by the U and /7 notations. Unfortunately
this cannot be done without introducing unacceptable restrictions in forming the
polymorphic types. Instead Tenl15 operations are provided to perform the substitutions

143

explicitly; any implicit type change of a polymorphic value always results in another
polymorphic value.

Not all polymorphic values can be created by untrusted programs in Tenl5; the rule
about not changing the representation in coercions together with efficiency criteria
limits one somewhat. These limitations can be summarised, in practice, by saying that
the size of the representation of any object accessed must be known at translate time.
This means that values of types like {3) can be constructed and used quite naturally. On
the other hand, the body of the identity function with type given by (2) cannot be
written by an untrusted program since the size of its parameter and result is unknown;
however, a related identity function with type:

iy (Ptr X > Ptr X)
can ke written trivially.

The use of polymorphism often sounds rather esoteric; however it has some very
mundane applications in the Teni5 PSE. Thus the procedure for linking and loading
independently compiled modules (represented by an abstract-data type with
constructor Module) has type:

Ny (Module X > Ptr X)
This linker was written as an untrusted program and its body contains the use of a
data-structure with type similar to (3) to remember which internal modules have
already been linked. Its analogue in the Flex PSE is described in [Currie 85a].

2.6 Exceptions
All the operations and constructions of Ten15 are fully defined. Many of them can give
error conditions (eg array indexing). Error conditions are usually trapped by means of
the trapply operation which is a modification of the normal procedure call operation
where:

trapply: ((P - R) » P} > (R | Exception | Void - 1)
The first possibility in the union result of trapply is the result of the procedure call
if it ends unexceptionally. The second, of type Exception is a value which is
characteristic of an error condition and can be queried to recover diagnostic values in
the failed call (or any inner ones). The third (a procedure value) will be the result of
doing any "long jump" out of the procedure; calling this procedure will complete the
long jump.

2.7 Remotes
Using the make_remote operation, one can construct a unique token for an arbitrary
value in a particular machine which can then be freely sent round a network where :
make_remote: X -» Remote X
The token can be used at any time to recover the original value in the machine which
constructed it. The most important kind of remote value is the remote procedure. The
remote_call operation can be used to apply appropriate parameters to a remote
procedure token to call its procedure value in the distant machine delivering its result
across the network. In Teni15, this is a very powerful operation since the process of
preparing the parameters for transmission will replace any procedure values in the
parameters by new remote tokens corresponding to the procédures which could be
called remotely by the distant machine. Similarly, procedures in the resuit value will
be new remote procedures in the calling machine. This allows one to construct very
general protocols, each one being characterised by the type of the initiating remote
procedure. For a more detailed description of this and related topics including the
garbage collection of remotes, see [Foster 87].

2.8 Processes

Multi-processing in the Ten15 machine is defined at quite a low level. This is mainly a
consequence of our desire to use Teni5 program as a general intermediate language for
existing languages; the conflicting requirements of these different languages drives
one to use very primitive constructs. Thus, an object of type Flag is used as the

144

operand of a simple unitary read-modify-write operation to be used as a primitive in
more complex constructions such as semaphores, channels, and the construction of
monitors. A Process is the result of a launch of a procedure as another pseudo-parallel
process; this value can be used as an operand of various operations such a run_process
or fail_process so that a user can write his own scheduler for his own processes. The
issue of the fairness of allocation of time between users is largely dealt with by the
kernel; however the user can allocate his own fraction of time how he pleases.

The rigorous maintenance of type integrity is a considerable problem where parallel
processes can have unguarded variables in common; this happens with dismaying
regularity in Ada programs, for example. Our current solution to this is to effectively
make assignment a unitary operation. The translated code of a Tenib program only
permits a change of process only when the translator knows that it is safe; certainly
not in the middle of the assignment of a union value, for example. A more radical
solutions will have to be adopted when we attempt to define Tenl5 for multiple
processors with common memory. For example, by examining the type of the nucleus of
a procedure, one could tell whether there are any external variables directly
accessible to'the procedure and hence make it inadmissable to launch as a process in
another processor.

2.9 Abstract -data types

The representations of values of the above types are effectively defined by the
operations that can be applied to them; these operations are all defined as part of
Ten15. The only operations applicable to a Tenl5 value of some abstract data type
(ADT) are all defined by the inventor of the type who chooses a representation for it
in terms of existing types. These operations are all expressed in Ten15 (in terms of
the representational type) to be applied either as a procedure call or as an open
substitution in the Tenl5 program. In both cases, the Ten15 translator replaces both
types and operations by their representational equivalents before translating so that
representational integrity is preserved. For example, linear lists in Ten15 might be
abstracted as a type List X whose representation is :-

L(X) = {Void | Ro_ptr L(X})
with operations:
cons:(X,List X) - List X
= A(x:X, 1:L(X)) -> unite_to_L ro_pack(x, 1)
hd: (List X} > X
= A(l:L(X)) » Either 1 Is field 2 z
Then field_1 deptr z
Or fail "nil list”
End
... etc

Both of the operators here would have to be implemented as open substitutions of
their Ten15 meanings since one cannot construct polymorphic procedures of the correct
type {see 2.5). The inventor of an ADT like List can prescribe some coercions between
different varieties of Lists provided that they are consistent with the permissable
coercions on its representation. Thus, with the representation above, the formal X
behaves in a covariant fashion with List X and so a List {1..18] could be coerced to a
List [6..99]. However if the Ro_ptr in the definition of L were replaced by Pir then no
non-trivial coercions would be allowed.

Most of the ADTs in the Tenl5 PSE are used to hide details of their representation and
limit their operations, rather than in their more classical role of giving
representational independence. It is easy to use them in this latter sense if their use
is limited to single programs; however, once values of a given ADT are spread across
databases and networks the problems of changing its representation become formidable
in the extreme. These problems have not been completely solved in Tenl5 although
tools exist to do transformations in limited cases.

145

3 Programming in Teni5

3.1 The Teni5 algebra
Various fragments of text have been included to describe Teni5 program and types

above. It must be emphasized that these are part of an informal textual notation for
Ten15 but are not themselves part of Tenl5 programs. Tenl5 programs are
data-structures, not text. These data-structures are abstract data types based on the
sorts of an algebra which form part of the formal definition of programs in the
abstract machine. This algebra, like any other, is defined in terms of sorts,
constructors and laws for the expansion of these constructors. In the Teni5 algebra,
the compound constructors give the control structure of the machine and various laws
give equivalences between different control structures; for example expressing a
for-loop in terms of labels and gotos. There are about 38 significant compound
constructors in the algebra with a other less significant ones defining various kinds of
grouping. The sorts of the Tenl5 algebra include Type, Load, Name, Operation etc; To
give a flavour of the kind of model intended here, a Load occupies the roughly same
niche as g statement or expression in a standard programming language and most
significant chunks of program would be represented by Loads. For example, the
equivalent of a declaration in the Ten15 machine as an element of the Tenl5 algebra
would be a Load constructed using:

identity_dec: Name * Load * Load -> Load (%)
with the interpretation that the first load is "evaluated"; its value is then used in
place of any occurrence of the Name in the second Load, thus defining the scope of the
name. A conditional would be:

cond: Load * Load » Load -> Load
where the evaluation of the first load to a Bool determine which of the others to
evaluate. Another familiar one would be the application of an operation:

operate: Operation = Load* -> Load
ie apply the Operation to the evaluation of the Loads as parameters. There are
approximately 288 of these operations defined ranging from arithmetic to remote
access.

3.2 Homomorphisms

One reason for basing Tenl5 on an algebra is the discipline that it imposes on any
program which itself analyses a TenlS program; most such analysis programs can be
written very conveniently as though they were homomorphisms on the original Tenl5
algebra. One example which will arise in any porting of a Teni5 PSE is the TeniS
translator itself. In the current implementations, the Tenl5 translator is a
homomorphism from the Tenl5 program data structure expressed as abstract data types
to a function structure whose application gives the translated program for the target
in question. Little more than a sketch can be given here of the domains involved. For
example, the image of a Load is a function of Tenl5 type :

Load = Context - Translation

where Context is some type which will contain inherited information like the names in
scope and Transiation will contain the result of translating code for the object
machine. The image of a constructor like identity_dec in (&} for example would be :

identity_dec: (Name, Load, Load) - Load

where the first two parameters, together with the parameter of the answer Load, will
be used to construct a new Context with which to evaluate the third parameter.

The use of homomorphisms in the translator illustrate strongly the advantages of this
method. The mapping of each construction is independent and is also independent of the
order that mappings are applied. This makes maintenance of the translator more
tractable and its correctness much easier to determine. It also means that a transiator
for one target host machine serves as a very good example for writing one for a new
host.

The Ten1S translator is an extreme example of the use of a homomorphism to deduce

146

properties of a Tenl15 program; however, the same simple homomorphic framework can
be used to evaluate other properties. For example a trivial homomorphism allows one
to evaluate, say, the set of names declared but not used; a less trivial one could give
a function which is a pretty-printer for the program. Also of considerable interest are
those homomorphisms which are transformations of Teni5, eg those which apply some
of the laws of the algebra such as replacing all for-loops by their expansions in terms
of labels and gotos. We see this kind of program transformation as the first step in
more general program proving; however this requires other tools like theorem provers
which we do not possess as yet.

3.3 Properties of Tenl15 programs

Ten15 programs are intended to be translated into the code of some host computer and
run in a Ten15 run-time system. This run-time system could be implemented on a bare
host; more usually it will be embedded in some existing operating system on the host.
In the latter case the security and integrity of the Teni5 system is only as good as that
of the host system; however the practicalities of producing things like device drivers
make it a virtual necessity.

The integrity of the Ten!5 run-time system (and hence the security of anything built
upon it) depends on the typing rules never being violated. In other words, a value in
store must have the structure implied by its type; for example a Ptr type must always
point to a real block in mainstore. Any mis-alignment of this structure could result in
mayhem; anything from the garbage collector going into an endless loop to a database
being corrupted. This has considerable effect on the kind of control structures and
operations in Ten1S. At a trivial level, one can see that a variable must be initialised
to a value of the required type, so that any fact that the translator might deduce from
its type is correct. In fact, all declarations in Tenl5 follow the pattern shown by
identity_dec in (%). The type of most constructions {(a notable exception being
procedure bodies) is not explicit but is deduced by the translator; for example the
type of a conditional expression is the least upper bound of the types of its arms.
Every operation is defined completely either by delivering a value of some type
depending only on the types of its operands or by causing some defined exception;
there are no "undefineds” in Ten15. Indeed, this applies to all constructions since the
underlying bias of Ten15 is towards expression evaluation rather than state changes.

As well as being a programming mechanism in its own right, Teni15 is also the target
for all compilers for standard languages used in the system. This means that Ten1b
must be able to cope with all constructions likely to be found in those languages, not
just some common subset eg exception and process handling operations are defined.
Similarly, labels, branches and jumps all form part of various Tenl15 constructions with
rules for scoping rather like those for value and variable names. The use of labels is,
in fact, essential to implement efficiently the many slightly different variations in
similar control structures in different languages. The efficiency of programs written
in standard languages compiled via the Ten15 route is an important factor. We hope that
it is comparable to those produced by compilers native to the host machine; however
we have not yet done any extensive rigorous comparisons.

3.4 Implementation

In the current implementations, mainstore is allocated linearly in blocks with a
garbage collector applied when some limit is reached to compact live blocks. Most of
these blocks will correspond to the construction of some Tenl5 value. A pointer is
such a value; a value of type Ptr X is implemented as an address of a block containing
a value of type X. To be able to carry out a garbage collection, words in the host
machine which contain these block addresses are distinguishable from those containing
non-addresses by using a bit or two of the words as tags. Thus, on the Vax
implementation, the least two significant bits in each 32-bit word are used for various
tag purposes. This has some consequences on the representation of scalar data; for
example, integer ranges representable in one word are limited to 38 bits. The type

147

rules of Ten15 will ensure that any translated program will never confuse addresses
and scalars or misuse these tag bits in any way. The time tsken for one garbage
collection depends, of course, on the mix of data present. However, it operates in a
time which is linear with respect to each of variables of this mix, eg, the number of
live blocks or the total area of store available. With a typical mix on a single-user
Vax-station, it takes just over a second for a area of 2 megabytes.

As mentioned before, the Tenlb transiator is itself expressed in TenlS. It relies on
the existence of a run-time system to run the code that it produces. This runtime
system, often called the kernel, is in three more or less distinct parts. The first part
is the set of run-time routines required by Teni5S to implement things like the
mainstore storage allocation and garbage collector. Code produced by Teni5 translator
will access routines in this part directly at the level of the host computer’s
instruction set and all of this part is written using some tools of the host eg the code
assembler of the host. The second part is entirely written in Tenl5 with a few
privileged operations to cheat the type rules. This part includes the routines which
handle the run time representations of types themselves; also in this part are the
various "flattening” procedures for preparing data structures to be kept in a database
as a Persistent object or sent across a network as a remote object. The third part is
only accessed by other routines in kernel and consists of device drivers; usually they
will be implemented by making primitive calls on some host operating system. On
current implementations, the total size of the kernel is less than 180 kilobytes and the
amount not written in Ten15 just a few kilobytes. The size of the mainstore garbage
collector, for example, on Vax is about 288 MACRQ instructions.

Porting a TenlS system to 3 new host will require work to create a new TeniS
translator together with that part of the kernel not expressed in Teni5; the rest
consists of re-translating the Teni5 part of the kernel and the various programs and
tools of Ten15 PSE. These latter programs and tools have beeh written in a variety of
languages and translated to Tenli5.

Y. Conclusion
Two different implementations of Tenl5% are in progress at present. One is a
prototype running on the Flex system and the other is on Vax running VMS. Compilers,

using the Ten15 route, for Ada'™ [Ichbiah 83], Algol68 RS [Woodward 821 , Pascal [BSI
821 and a notation for Ten15 are more or less complete while others including one for
ML [Gordon 791 are projected.

Many of the properties of any PSE running in a Ten15 machine can be inferred from
the broad overview given above and some of the more important ones have been
highlighted in the text. The current implementations of TenlS PSEs are largely based
on the Flex PSE; the type structure of TenlS taking the place of the capability
structure of Flex. Some aspects of the Flex PSE are detailed in [Currie 85al. Probably
the most important feature of both is the way that one can use values and program in
ways that were unanticipated when they were created. This is largely a consequence of
having first class procedure values and a common addressing space across all
programs; the integrity and security of those facilities being enforced by the type
structure in Tenl5 and the capability structure in Flex.

References

[BSI 821 “"Specification for the computer programming language,
Pascal” BS 6192:1982 British Standards Institution
[Currie 81] 1.F.Currie, P.W.Edwards and J.M.Foster: Flex firmware,
RSRE Report No. 81669, 1981.
[Currie 821 1.F.Currie and J.M.Foster: Curt: the command language

for Flex RSRE memorandum No. 3522, 1982

148

[Currie 851 1.F.Currie, P.W.Edwards and J.M.Foster: PergFlex
firmware RSRE Report No. 85815, 1985,
[Currie 85a] 1.F.Currie: Some IPSE aspects of the Flex project
“Integrated project environments” J. McDermid (Ed).
Peter Peregrinus 1985
[Foster 821 J.M.Foster, I.F.Currie and P.W.Edwards:
Flex: a working computer base on procedure values
Proc. of international workshop on high-level architecture, pp
181 185, Fort Lauderdale, Florida (Dec 1982)
[Foster 871 J.M.Foster, 1.F.Currie: Remote Capabilities
to appear Computer Journal 1987
{Gordon 78] M.J.Gordon, A.J.Milner, C.P.Wadsworth "Edinburgh LCF"
Springer-Verlag {Berlin 1979}
{Ichbiah83] J. Ichbiah et al. “Reference Manual for the Ada
programming Language” U.S Dept Of Defence 1983.
Ada is a registered trade mark of the US DOD
[Woodward 82] Edward Arnold(London 82) P.M.Woodward,S.G.Bond, "Guide to ALGOL 68"

