
Tent5= an abstract machine For portable environments

I.F. Currie, J.M. Foster, P.W.Core
Royal Signals and Radar Establishment

St Andrews Rd, Malvern
Worcestershire WRI~ 3PS

England

Summary =
Tents is an abstract machine which Js defined algebraical ly wi th strong typing
enforced throughout. The structure and operations o£ th is machine are su f f i c ien t l y
r ich to al low the e f f i c i en t implementation o£ a general purpose program-support
environment extending over networks. Since Tenl5 is an abstract ion o£ programming
languages rather than hardware, i t also serves as a target in the compilat ion o£
standard languages. As wel l as giving common addressing mechanisms, Ten15 provides a
common system o9 types which is enforced throughout the system whether in user 's
programs, system u t i l i t i e s or any other tools, a l lev ia t ing many o£ the in ter fac ing
d i f f i c u l t i e s encountered when independently wr i t ten programs t ry to interact . Porting
an environment based on TenI5 to a new machine consists o£ wr i t ing a t ranslator o£
Ten15 programs For the new machine together with a re la t i ve ly small part of the
system kernel mainly concerned with peripheral d r ivers ; a normal bootstrap gives the
ported environment. The result ing environment is one in which the type system ensures
the in tegr i ty o£ any data or program in i t and is used as the basis to give both secur i ty
and privacy. [n addit ion the algebraic nature of the machine helps one to do formal
reasoning about programs running in i t .

l . Introduction

Strong typing is general ly accepted to be a highly desirable property of a high order
language; among other things, i t improves programmer product iv i ty , increases program
por tab i l i t y , and gives one greater confidence in the in tegr i t y and correctness o f the
running program. Most modern languages are strongly typed so that one is reasonably
sure of the structural in tegr i t y o f programs wr i t ten in them, at least as far as the
part icular typing model can describe one's data and program structure. This typing
model del imi ts the class of program that one can wr i te in the language. Stepping
outside th is class Forces one to cheat the type system to some degree, usually by
going outside the language into some system level which has a far more rudimentary
notion o£ the types o f objects. Indeed there is usually no useful correspondence
between the types used by a programming language (l i ke ar rays , l i s ts or procedures)
and those used by the underlying system (l i ke Files or commands). This contr ibutes
handsomely to the problems encountered inter fac ing independent ly-wri t ten programs,
even when they are wr i t ten in the same language. Usually the inter face is reduced to a
least-common-denominator consisting o£ f i l es o£ characters where a l l the typing
information of the results of the programs is lost. One cannot use the information
about the types o£ values gathered in compilat ion e i ther to provide more e f f i c i en t
inter faces or to give a basis For ensuring structural in tegr i t y across di££eren~
programs as wel l as wi th in individual programs.

The extension of the use o£ a common type system to cover al l the levels o£ the use
of a computer system immediately eases the inter fac ing problem. For example, user

139

programs, system u t i l i t i e s , commands in the command inter face, general tools etc,
could a l l be described as being o£ type procedure, wi th some parameter and resul t
types. The in ter fac ing of any of these programs together reduces to normal procedure
or function composit ion with the normal typing rules For procedure appl icat ion. There
is no need to reduce an intermediate result to a character Fi le or stream, thus losing
al l the structure of the data, and necessitat ing restructur ing and re-va l idat ion before
i t can be used in Further steps of the computation.

A common type system is only one facet of the inter facing problem, a lbei t an important
one. A even more important one is having common methods o£ accessing data. A common
"address-space" (as wel l as a common type system) in which the objects manipulated
can be addressed uniformly reduces the inter facing problem by an order of magnitude.
The part icular methods o£ accessing these objects, together with the operations which
one can apply to them, are determined precisely by on the type o£ the object. Thus we
know that one can access the integer elements of an object o£ type vector oF integer by
indexing in a per fec t ly standard manner throughout the system. Furthermore, th is is
to ta l l y independent of how or where the vector was created; i t could be the resul t of a
system command, user program or even a value Found in the diagnosis o f a fa i led
program. This unanticipated use o£ arb i t rary values (including those which are, in
fact, program) is highly important in any support environment; one seldom knows
a p r i o r i just exact ly what tools, programs and diagnostic aids one requires at any
time. I f a value is bound into part icular address-space (e g a fa i led program) so that
one cannot ext ract i t in th is unanticipated way, then the only too ls that one can apply
to i t are those those which were put into the address space when the program was
created. These tools could range from nothing to some f i xed program to display some
kinds of values; they seldom include the poss ib i l i t y of applying some program of one's
own to the value.

Our approach is to def ine (a lgebra ica l ly) an abstract machine cal led Ten15. The
operations in Tenl5 fo l low strong-typing rules so that the correctness of the
appl icat ion of an operator (say) depends only on the types of i ts operands. Much of the
motivat ion for inventing Ten15 was der ived From i ts progenitor, the RSRE Flex system
[Currie 81,82,85, Foster 82] which used f i rmware, rather than type structure, to
enforce the correctness of the appl icat ion of operations. The type system of Tenl5 is
su f f i c ien t l y r ich to useful ly describe a l l the operations required For a general purpose
program support environment (PSE) extending over a network; this, of course, covers
a large proport ion o f the spectrum of computing. Any program running in an
implementation o f the Tenl5 machine on some host is Fully type checked by a t rusted
Ten15 t ranslator . The type system,and the way that operations are def ined wi th in i t , is
such that one can ensure the in tegr i ty o£ storage al locat ion and garbage co l lec t ion in
mainstore as wel l F i lestore and across networks. In addit ion, i t forms the basis o f
very natural ways to implement privacy between d i f fe ren t users or between d i f f e ren t
areas o f concern. Both the Flex system and Ten15 implementations are very s imi lar in
these respects, d i f f e r i ng only in the methods o f ensuring that crucial type rules are
not broken. However, Ten15 is not an abstract ion o f the Flex machine (or any other
concrete machine) but rather an abstract ion of the concepts in programming languages
in general. Thus Tent5 can be a target of a compiler For any standard programming
language; th is compiler need not be trusted since the Ten15 rules w i l l be checked by
the Ten15 t ranslator .

The remainder o£ th is paper is a sketch of the def in i t ion Tenl5 with some indicat ions
o f how i t is implemented and how the higher f a c i l i t i e s of a portable program support
environment are bui l t upon i t .

140

2. Types and rep resen ta t i ons o f Ten15 values

2.1 General
The types o f va lues in TenlS are fo rm a l a t t i c e under the r e l a t i o n "can be coe rced to "

g i v i ng the automat ic type changing ru les . The f o rm o£ t h i s l a t t i c e i s ske tched in F igure
1. The l a t t i c e i s des igned so tha t an automat ic type change o£ a value can only occcur
where the re i s no change in the rep resen ta t i on o f the value~ the Ten15 t r a n s l a t o r does
not need to produce any e x t r a code f o r such a coerc ion . A la rge p r o p o r t i o n o£ the types
and t h e i r co r respond ing ope ra t i ons in Tenl5 have f a m i l i a r analogues in programming
languages and need l i t t l e d e t a i l e d d e s c r i p t i o n , The o the r less f a m i l i a r types and
o p e r a t i o n s a r e d e s c r i b e d below.

Void
Mode andModed (see 2 .~)
Exception (see 2 .6)
Process, P rocesso r , Flag e~c (see 2 .8)

in teger ranges - severa l r ep resen ta t i ons I
R ~ R i f f same repr a n d R l c R t Z • - z I

Reals - severa l r ep resen ta t i ons range
R 1 ~ R z i f £ same rep r . and inc luded accuracy and

Structures
(Y t Tn) ~ (S 1 S n) i f f T i ~ S i

Disjoint union
(rtt . . . I r n) ~ (Sl1...I S.) iC f r i ~ S i

Assignable addresses I <
e g P ~ r T, Re£ T, Vec T, Pervar T 1 no coe rc ions w i t h i n these

Procedures and ions (see 2.2)
(r t ~ S t) ~ (T z ~ s z) i f f (T z ~ T t) ^ (s t ,~,,,sz, !

P e r s i s t e n t s (see 2.3) S
Persis~en~ T ~ Pers is tent S i f f T

Po lymorph ics (see 2.5) e t c
O x F(X) ~ fly G(Y) i f f F(X) ~ G(X)

Rem'otes (s ee 2 .7) S
Remo~e T ~ Remo~e S i f f T

For'mals - no coerc ions po lymorph ics
used in defn o f ADTs and

A'bstract ' data types (see 2.9)
eg Module T, Lis~ T, Lazy T
coerc ions cons is ten t w i t h concre te rep r .

l= l , .n l

i= l . .n

Read-only addresses
I P~r T ~ Ro_p~r S i f f T ~ S

Figure 1 - The type l a t t i c e o f Tenl5

T

2 .2 Types f o r p rogram values
As b e f i t s a system in tended f o r program suppor t , Tenl5 values inc lude seve ra l k inds

o£ program values. The most f a m i l i a r are p rocedures wh ich are f i r s t c lass o b j e c t s in
Tenl5~ they can be ass igned, he ld in data s t r u c t u r e s o r d e l i v e r e d f r om o the r
p rocedures j us t l i ke any o the r value. The rep resen ta t i on o f a p rocedure in ma ins to re i s

141

bas ica l ly po in t e r s to blocks containing th ings like code and non- loca l s . I t s type i s
given by i t s parameter and r e su l t types ; for example:

i s in: ([I . . 1 8 0 8 8 8] -~ Bool) (1)
i s a procedure with an in teger parameter de l iver ing a boolean. A cal l of a procedure is
just the most dynamic way o f binding new values (the parameters) to a piece o f
program. Other binding times are possible and TenI5 permits one to bind values to
other kinds o£ program values in a general fashion. The most basic program value in
Ten15 is a "nucleus" consist ing only of the code of the procedure. This code w i l l , in
general, access some f ree var iables and i t s correct operation w i l l require some values
to be bound as non-locals to replace these f ree var iables. These values can be bound in
stages producing " ions", each d i f f e ren t ion having addit ional non-local values unt i l a l l
are bound giv ing a runnable procedure. The types of the non-local values (and the order
in which they w i l l be bound) are al l included in the type of the nucleus to ensure that
only the correct kind o f values are operated on by the code of the procedure. For
example, the nucleus of the procedure is in in (1) might be an algor i thm expressed
roughly as :

Ax. v [£ (x)]
with type :

([I..188888] -~ [l..lS]) ~. Vec Boo] ~ ([I . . 1 8 e 8 8 8] e Boo])
by f i r s t binding £ (a procedure of type ([1 . .188888] -~ [1 . . I8J)) to give an ion of type:

Vec Bool ~. ([1 . .] e e e e e] ~ Boo])
and then, sometime later , binding v:Vec Bool to give isin. Note that the value is in is
independent of any scope res t r i c t ions ; i ts existence does not depend on any contexts
of £ or v. Indeed,i t is easy to arrange matters so that a ca l l o f isJn becomes the only
way to access £ or v.

The general isat ion 0£ th is idea of hiding values behind the procedure in ter face is the
basis for implementation of the privacy and securi ty aspects of the Tenl5 PSE. For
example, the ion corresponding to a user 's log- in procedure has a type something l ike;

(Dic t ionary, Password,) *~ (Vo id-~ Void)
where Dic t ionary and Password are some persistent data structures giving name
look-up and the password mechanism. Once the actual values o f these data-structures
have been bound to th is ion to produce the procedure, then the only way to access
these data structures could be a cal l o f the procedure. Of course, i f th is is the case
the user had bet ter not forget his password!

2.3 Types for database values
Database values are c lear ly required to al low one t o keep data on persistent storage

media. These are represented by values which are e f f ec t i ve l y pointers to blocks on the
part icular medium and whose type is made using a Pers is tent constructor. For example,
a page of tex t l ines might have a representat ion whose type is :

Persisten~ Vec Vec Char
This value would have been the result of applying a Tenl5 operator (pers is t) to a

value o£ type Vec Vec Char which could then be re t r ieved at any time by applying an
un_persist operator to the pers istent value. It is of ten very useful to have persistent
data structures which contain other persistent values thus producing t ree - l i ke
structures (s t r i c t l y speaking, acycl ic graphs) in a database. For example, a bet ter
representat ion of a tex t f i l e might be one which al lows sub- f i les wi th c i rcu lar type,
Txt, where :

Txt = Pers is ten t Vec (Vec Char / Txt)
Note that there are no operators here for overwr i t ing the data pointed at by a
persistent value. It is a wr i te-once value, making i t much easier to ensure the
consistency of the data. Persistent var iables are al lowed with another type
constructor, Pevvar. However, wr i t ing to one of these var iables is considered to be a
unitary commit operat ion on the database and is more expensive to perform than the
simple pers is t -operat ion since i t has to guard i t s e l f against unexpected fa i lu re . In the
present implementations, each database is garbage-col lected separately o f f - l i n e to

142

recover inaccessible space. This style o£ garbage co l lec t ion means that cross-
database pointers are not al lowed and any attempt to wr i te a database pointer to a al ien
database is trapped.

2.k- In£inite Unions
The t rusted TenI5 t ranslator w i l l r igorously check a l l operations to ensure the

correct appl icat ion o£ the type rules. There are many appl icat ions where one would l ike
to do s imi lar type manipulations in other un~rusLed programs and s t i l l be sure that the
underlying in tegr i ty o£ the type system is maintained. An obvious example is a command
in terpre ter where one wishes to make sure that the correct type o£ parameters is used
with a command which is just some procedure value. It is c lear ly inappropriate to cal l
up the Tenl5 t ranslator to produce the code to obey the procedure. Instead, what
happens is that the untrusted command in terpre ter inher i ts the type checking £ac i l i ty
by using various Tenl5 constructions and types~ these were, o£ course, checked by the
Tenl5 t ranslator when i t t ranslated the command in terpreter . At the core o£ th is are
Tenl5 values which are, in e££ect, the in£ini te union o£ a l l possible types~ th is type is
cal led for various h is to r ica l reasons, Moded. One can apply a TenI5 operator
(to_moded) to a value o£ any type to get a value o£ type Moded~ th is is represented by
a pair consist ing of the or ig inal value together wi th a representat ion o£ i ts type.
Typically, a dict ionary look-up would require the use of Moded values, except in the
unl ikely case where the possible names al l corresponded to values o£ the same type~ a
procedure to f ind the meaning of some name encountered by a command in terpre ter
might have type (Vec Char -> Moded). A TenlS control structure al lows one to ext ract
the or ig ina l value £rom the Moded value, provided that one knows the e i ther the type
o£ th is value or one which is greater than i t in the la t t ice o£ types. Another operat ion
al lows one to extract the type as a value o£ type Mode and £urther operations al low one
to explore i ts structure. In addit ion, a l l o£ the polymorphic Tenl5 operations (l i ke
assigment or procedure appl icat ion) are avai lable with Moded operands. These
operations are e££ectively in terpreted rather than compiled with the type checking
done dynamically.

2,5 Polymorphism
The use of i n f i n i t e unions can be regarded as a kind o£ polymorphism in which the type

o£ an object is carr ied dynamically. Any other kind o£ polymorphism could be
implemented in terms o£ in£ini te unions~ however, e££iciency and convenience
considerations o£ten d ic tate the use o¢ more streamlined £orms. For example,
et£ ic ient polymorphism is essential in the de f in i t ion o£ the operations o¢ some
abstract-data types. The treatment o£ Tenl5 polymorphic types is just an extension o£
the type changing rules o£ Tenl5, where the representation o£ the value remaims
unchanged. Other examples exist where the same representation could have many
di¢£erent types. For example, a polymorphic ident i ty function, such as one might meet
in ML [Gordon 79], would have Tenl5 type:

R x (X ~ X) (2)
This value could serve as a procedure with type (X-~X) with any subst i tut ion o£ an
actual type £or the £ormal type X~ in a sense, the value is lower in the la t t ice o£ types
than any procedure (X-~X). Simi lar ly one o£ten wants to have a value that is higher in
the la t t i ce than some set o£ values o£ s imi lar structure. An example would ar ise i£ one
wished to keep a vector o£ procedures o£ di££ering types togther sui table parameters:

Vec Ux,y((PLr X-~PLr Y), P~r X) (3)
With some suitable consistent subti tut ions, replacing actual types by the £ormals X and
Y, one can construct a procedure-parameter pair and assign i t to an element o£ the
vector. It would be nice i£ th is action o£ subst i tut ion in polymorphic types could be
included in the general coercion rules so that polymorphic types are indeed least upper
bounds and greatest lower bounds as impl ied by the U and R notations. Un£ortunately
th is cannot be done without introducing unacceptable res t r i c t ions in £orming the
polymorphic types, instead Tenl5 operations are provided to per£orm the subst i tut ions

143

exp l i c i t l y ; any imp l ic i t type change of a polymorphic value always results in another
polymorphic value.
Not a l l polymorphic values can be created by untrusted programs in Tenl5~ the rule

about not changing the representat ion in coercions together wi th e f f i c iency c r i t e r i a
l imi ts one somewhat. These l imi ta t ions can be summarised, in pract ice, by saying that
the size o f the representat ion of any object accessed must be known at t ranslate time,
This means that values o f types l ike (3) can be constructed and used quite natural ly. On
the other hand, the body o£ the ident i ty function wi th type given by (2) cannot be
wr i t ten by an untrusted program since the size of i ts parameter and resul t is unknown;
however, a re lated ident i ty function with type:

n x (Ptr X -~ p~r X)
can be written trivially.

The use of polymorphism often sounds rather esoteric; however it has some very
mundane applications in the Tent5 PSE. Thus the procedure for linking and loading
independently compiled modules (represented by an abstract-data type with
constructor Module) has type=

D X (Module X ~ P6r X)
This linker was written as an untrusted program and its body contains the use of a
data-structure with type similar to (3) to remember which internal modules have
already been linked. Its analogue in the Flex PSE is described in [Currie 85a].

2.6 Exceptions
All the operations and constructions of Ten]5 are fu l l y defined. Many o f them can give

er ror condit ions (eg array indexing). Error condit ions are usually trapped by means of
the trapply operat ion which is a modi f icat ion of the normal procedure cal l operat ion
where =

t rapply : ((P .e R) ~ P) ~ (R / Exception / Void ~ .L)
The f i r s t possibility in the union result of t rapply is the result o£ the procedure cal l
i f i t ends unexceptionally. The second, o£ type Exception is a value which is
character is t ic o f an er ror condit ion and can be queried to recover diagnostic values in
the fa i l ed cal l (or any inner ones). The th i rd (a procedure value) w i l l be the resul t o£
doing any "long jump" out o¢ the procedure; cal l ing th is procedure w i l l complete the
long jump.

2.7 Remotes
Using the make_remote operation, one can construct a unique token for an arb i t ra ry

value in a part icular machine which can then be f ree ly sent round a network where=
make_remote: X e Remote X

The token can be used at any time to recover the or ig ina l value in the machine which
constructed i t . The most important kind of remote value is the remote procedure. The
remote_call operation can be used to apply appropriate parameters to a remote
procedure token to ca l l i ts procedure value in the distant machine de l iver ing i t s resul t
across the network. In Ten15, th is is a very powerful operation since the process o f
preparing the parameters for transmission w i l l replace any procedure values in the
parameters by new remote tokens corresponding to the procedures which could be
cal led remotely by the distant machine, Simi lar ly, procedures in the resul t value w i l l
be new remote procedures in the cal l ing machine. This al lows one to construct very
general protocols, each one being character ised by the type of the in i t ia t ing remote
procedure. For a more deta i led descr ipt ion of th is and related topics including the
garbage co l lec t ion of remotes, see [Foster 87].

2.8 Processes
Mul t i -processing in the Tenl5 machine is defined at quite a low level . This is mainly a

consequence of our desire to use Tenl5 program as a general intermediate language for
ex is t ing languages; the conf l i c t ing requirements o£ these d i f f e ren t languages dr ives
one to use very p r im i t i ve constructs. Thus, an object o£ type Flag is used as the

144

operand o£ a simple unitary read -mod i f y -wr i t e operat ion to be used as a p r im i t i ve in
more complex construct ions such as semaphores, channels, and the construct ion of
monitors. A Process is the resu l t o f a launch o f a procedure as another pseudo-para l le l
process ; th i s value can be used as an operand o{" various operat ions such a run_process
or Tai l_process so that a user can w r i t e his own scheduler fo r his own processes. The
issue o£ the fa i rness o£ a l locat ion o£ t ime between users is largely dealt w i th by the
kernel ; however the user can a l locate his own f rac t ion of t ime how he pleases.
The r igorous maintenance o£ type in teg r i t y is a considerable problem where para l le l

processes can have unguarded var iables in common~ th is happens w i th dismaying
regu lar i ty in Ada programs, fo r example. Our current solut ion to t h i s i s to e f f e c t i v e l y
make assignment a unitary operat ion. The t rans la ted code o f a Tenl5 program only
permi ts a change o£ process only when the t rans la to r knows that i t i s safe~ cer ta in ly
not in the middle o£ the assignment o£ a union value, fo r example. A more radical
solut ions w i l l have to be adopted when we attempt to def ine Tenl5 fo r mul t ip le
processors w i th common memory. For example, by examining the type o f the nucleus o£
a procedure, i one could t e l l whether there are any external var iab les d i r e c t l y
accessible t o the procedure and hence make i t inadrnissable to launch as a process in
another processor.

2.9 Abstract data types
The representat ions o£ values o£ the above types are e f f e c t i v e l y def ined by the

operat ions that can be appl ied to them~ these operat ions are a l l def ined as part o£
TentS. The only operat ions appl icable to a Tenl5 value o f some abst rac t data type
(ADT) are a l l def ined by the inventor o£ the type who chooses a representat ion fo r i t
in terms o£ ex is t ing types. These operat ions are a l l expressed in Tenl5 (in terms o£
the representat ional type) to be appl ied e i ther as a procedure ca l l or as an open
subst i tu t ion in the Tenl5 program. In both cases, the Tenl5 t rans la to r replaces both
types and operat ions by the i r representat ional equivalents before t rans la t ing so that
representat ional i n teg r i t y is preserved. For example, l inear l i s t s in Tenl5 might be
abstracted as a type List X whose representat ion is :

L(X) = (Void / Ro_p~r L(X))
wi th operat ions :

cons :(X,List; X) -~ List X
= A(x:X,] :L(X)) -> unite__to_L ro_pack(×,])

hd: (Lisl; X) -~ X
= A(hL(X)) -~ E i t he r] Is f ie ld_2 z

Then f i e l d _ l deptr z
Or fa i l "n i l l i s t "
End

. . . etc
Both of the operators here would have to be implemented as open subst i tu t ions o£

the i r Tenl5 meanings since one cannot construct polymorphic procedures o£ the co r rec t
type (see 2 .5) . The inventor o£ an ADT l ike Lis~ can prescr ibe some coercions between
d i f f e ren t va r i e t i es o£ Lis~s provided that they are consistent w i th the permissable
coercions on i t s representat ion. Thus, w i th the representat ion above, the formal X
behaves in a covariant fashion w i th List X and so a List [1..18] could be coerced to a
Lisf; [8 .o99] . However i£ the RO_l~cr in the de f in i t i on o£ L were replaced by PLr then no
non - t r i v i a l coerc ions would be al lowed.

Most of the ADTs in the Tenl5 PSE are used to hide deta i ls o£ the i r representat ion and
l im i t t he i r operat ions, rather than in the i r more c lass ica l ro le of g iv ing
representat ional independence. I t is easy to use them in th i s l a t t e r sense i f t he i r use
is l im i ted to single programs; however, once values o£ a given ADT are spread across
databases and networks the problems o£ changing i t s representat ion become formidable
in the extreme. These problems have not been completely solved in TenlS although
too ls ex is t to do trans£ormations in l im i ted cases.

t45

3 Programming in Ten15

3. l The Ten]5 algebra
Various fragments o£ tex t have been included to descr ibe Tenl5 program and types

above. I t must be emphasized that these are part o f an informal textua l notat ion fo r
Ten15 but are not themselves part o£ Tenl5 programs. Ten15 programs are
da ta -s t ruc tu res , not; t ex t . These da ta-s t ruc tu res are abst ract data types based on the
so r t s of an algebra which £orm part o f the formal de f in i t i on o£ programs in the
abst ract machine. This algebra, f ike any other , i s def ined in terms o£ sor ts ,
const ruc tors and laws fo r the expansion of these const ructors . In the Ten15 algebra,
the compound const ructors give the contro l s t ruc ture o f the machine and various laws
give equivalences between d i f f e ren t cont ro l s t ruc tu res ; £or example expressing a
f o r - l o o p in terms of labels and gotos. There are about 38 s ign i f i can t compound
const ruc tors in the algebra w i th a other less s ign i f i can t ones def in ing various kinds of
grouping. The so r t s of the Ten15 algebra include Type, Load, Name, Operation e tc ; To
g ive a £1avour o£ the kind o£ model intended here, a Load occupies the roughly same
niche as a statement or expression in a standard programming language and most
s ign i f i can t chunks o£ program would be represented by Loads. For example, the
equivalent of a declarat ion in the Tenl5 machine as an element o£ the Tenl5 algebra
would be a Load constructed using :

identitw.~dec: Name • Load • Load -> Load (~)
w i th the i n te rp re ta t i on that the f i r s t Load is "evaluated"~ i t s value is then used in
place o£ any occurrence o£ the Name in the second Load, thus def in ing the scope o£ the
name. A condi t ional would be =

cond; Load • Load • Load -> Load
where the evaluation o£ the f i r s t load to a Bool determine which o f the others to
evaluate. Another fami l ia r one would be the appl icat ion of an operat ion:

operate: Operation • Load* -> Load
ie apply the Operation to the evaluation o£ the Loads as parameters. There are
approximately 2Be o¢ these operat ions def ined ranging f rom a r i t hmet i c to remote
access.

3.2 Homomorphisms
One reason fo r basing Tenl5 on an algebra is the d isc ip l ine that i t imposes on any

program which i t s e l f analyses a Tenl5 program~ most such analysis programs can be
w r i t t en very convenient ly as though they were homomorphisms on the or ig ina l Tenl5
algebra. One example which w i l l a r ise in any por t ing o£ a Tenl5 PSE is the Tenl5
t rans la to r i t s e l f . In the current implementat ions, the Tenl5 t rans la to r is a
homomorphism {Prom the Tenl5 program data s t ruc ture expressed as abst rac t data types
to a funct ion s t ruc tu re whose appl icat ion gives the t rans la ted program fo r the ta rge t
in question. L i t t l e more than a sketch can be given here o£ the domains involved. For
example, the image of a Load is a funct ion o£ Tenl5 type :

Load = Con¢ex~ -~ Translat ion
where Con~ex~ i s some type which w i l l contain inher i ted in format ion l i ke the names in
scope and "£ransla¢ion w i l l contain the resu l t o£ t rans la t ing code fo r the ob jec t
machine. The image of a const ruc tor l ike ident i ty_dec in (~) fo r example would be:

,~denti~¥_dec: (Name, Load, Load) -~ Load
where the f i r s t two parameters, together wi th the parameter o£ the answer Load, w i l l
be used to construct a new Con~ex~ wi th which to evaluate the t h i r d parameter.
The use o£ homomorphisms in the t rans la to r i l l u s t r a t e s t rongly the advantages of th is

method. The mapping of each construct ion is independent and is also independent of the
order that mappings are appl ied. This makes maintenance of the t rans la to r more
t rac tab le and i t s cor rectness much easier to determine. I t also means that a t rans la to r
fo r one ta rge t host machine serves as a very good example fo r w r i t i ng one fo r a new
host.

The Ten]5 translator is an extreme example of the use o£ a homomorphism to deduce

146

propert ies of a Tents program~ however, the same simple homomorphic framework can
be used to evaluate other propert ies. For example a t r i v i a l homomorphism al lows one
to evaluate, say', the set o f names declared but not used~ a tess t r i v i a l one could give
a function which is a p re t ty -p r in te r {`or the program. Also o£ considerable in terest are
those homomorphisms which are transformations o f Ten]S, eg those which apply some
o£ the laws o£ the algebra such as replacing a l l {`or-loops by the i r expansions in terms
of labels and gotos. We see th is kind of program transformation as the {`irst step in
more general program proving; however th is requires other tools l ike theorem provers
which we do not possess as yet.

3.3 Propert ies o£ Ten15 programs
Tents programs are intended to be translated into the code o£ some host computer and

run in a Tents run-time system. This run-t ime system could be implemented on a bare
host~ more usually i t w i l t be embedded in some ex is t ing operating system on the host.
In the la t ter case the security- and integrity" o£ the Tent5 system is only as good as that
o£ the host system; however the p rac t i ca l i t i es o£ producing things l ike device dr ivers
make i t a v i r tua l necessity.

The in tegr i ty o{` the Tent5 run-t ime system (and hence the secur i ty o£ anything bu i l t
upon i t) depends on the typing rules never being v io lated. In other words, a value in
store must have the structure impl ied by i t s type; {'or example a P~r type must always
point to a real block in mainstore. Any mis-alignment o£ th is structure could result in
mayhem; anything from the garbage co l lec tor going into an endless loop to a database
being corrupted. This has considerable e£{`ect on the kind o£ control structures and
operations in Tent5. At a t r i v i a l level , one can see that a var iable rnust; be i n i t i a l i sed
to a value o£ the required type, so that any {`act that the t ranslator might deduce {`rom
i ts type is correct . In fact, a l l declarat ions in Tent5 fo l low the pattern shown by
ident i ty_dec in (~). The type o£ most constructions (a notable exception being
procedure bodies) is not exp l i c i t but is deduced by the translator~ fo r example the
type o£ a condit ional expression is the least upper bound o£ the types o£ i t s arms.
Every operat ion is def ined completely e i ther by del iver ing a value o£ some type
depending only on the types o£ i ts operands or by causing some defined except ion;
there are no "unde£ineds" in TentS. Indeed, th is applies to a l l constructions since the
underlying bias o£ Tents is towards expression evaluation rather than state changes.
As wel l as being a programming mechanism in i ts own r ight , Tent5 is also the target

{'or a l l compilers {'or standard languages used in the system. This means that Tent5
must be able to cope wi th al l constructions l ikely to be found in those languages, not
just some common subset eg exception and process handling operations are de{'ined.
Simi lar ly, labels, branches and jumps a l l {'orm part o{' various Tents constructions wi th
rules for scoping rather l ike those {'or value and var iable names. The use o£ labels is,
in fact, essential to implement e{` f ic ient ly the many s l igh t ly d i f f e ren t var iat ions in
s imi lar control structures in d i f fe ren t languages. The e{`£iciency o£ programs wr i t ten
in standard languages compiled via the Tents route is an important factor . We hope that
i t is comparable to those produced by compilers native to the host machlne~ however
we have not yet done any extensive r igorous comparisons.

3.$ Implementation
In the current implementations, mainstore is al located l inear ly in blocks with a

garbage co l lec tor applied when some l imi t is reached to compact l ive blocks. Most o£
these blocks w i l l correspond to the construction o£ some Tents value. A pointer is
such a value; a value o£ type P~r X is implemented as an address of a block containing
a value o£ type X. To be able to carry out a garbage col lect ion, words in the host
machine which contain these block addresses are dist inguishable from those containing
non-addresses by using a b i t or two o£ the words as tags. Thus, on the Vax
implementation, the least two s igni f icant bi, ts in each 32-bi t word are used for various
tag purposes. This has some consequences on the representation of scalar data~ for
example, integer ranges representable in one word are l imi ted to 38 b i ts . The type

147

rules o£ TenlS w i l l ensure that any translated program w i l l never con£use addresses
and scalars or misuse these tag b i ts in any way. The time taken £or one garbage
co l lec t ion depends, o£ course, on the mix o£ data present. However, i t operates in a
time which is l inear wi th respect to each o£ variables o¢ this mix, eg, the number o£
l ive blocks or the to ta l area o£ store avai lable. With a typical mix on a s ingle-user
Vax-stat ion, i t takes just over a second £or a area o£ 2 megabytes.

As mentioned be£ore, the Tenl5 t ranslator is i tse l£ expressed in Tenl5. i t re l ies on
the existence o£ a run-t ime system to run the code that i t produces. This runtime
system, o£ten cal led the kernel, is in three more or less d is t inct parts. The £irst part
is the set o£ run-t ime routines required by Tenl5 to implement things l ike the
mainstore storage al locat ion and garbage co l lec tor . Code produced by Ten15 t ranslator
w i l l access routines in th is part d i rec t l y at the level o£ the host computer 's
instruct ion set and a l l o£ th is part is wr i t ten using some too ls o£ the host eg the code
assembler o£ the host. The second part is ent i re ly wr i t ten in Tenl5 with a £ew
pr iv i leged operations to cheat the type rules. This part includes the routines which
handle the run time representat ions o£ types themselves; also in th is part are the
various "£lattening" procedures £or preparing data structures to be kept in a database
as a Persis~en~ object or sent across a network as a remote object. The th i rd part is
only accessed by other routines in kernel and consists o£ device d r i ve rs ; u~ually they
w i l l be implemented by making pr im i t i ve cal ls on some host operating system. On
current implementations, the to ta l size o£ the kernel is less than 188 ki lobytes and the
amount not wr i t ten in Tenl5 just a £ew ki lobytes. The size o£ the mainstore garbage
co l lec tor , £or example, on Vax is about 288 MACRO instruct ions.

Porting a Tenl5 system to a new host w i l l require work to create a new Tenl5
t rans lator together wi th that part o£ the kernel not expressed in Tenl5~ the res~
consists o£ re- t rans la t ing the Tenl5 part o£ the kernel and the various programs and
toots o£ Tenl5 PSE. These la t ter programs and tools have beer wr i t ten in a var iety o£
languages and translated to Tenl5.

~. Conclusion
Two diFFerent implementations o£ TenlS are in progress at present. One is a

prototype running on the Flex system and the other is on Vax running VMS. Compilers,
using the Tenl5 route, £or Ada TM [Ichbiah 83], Algol68 RS [Woodward 82] , Pascal[BS]
82] and a notation £or Tenl5 are more or less complete whi le others including one £or
ML [Gordon 79] are projected.

Many o£ the propert ies o£ any PSE running in a Tenl5 machine can be in£erred £rom
the broad overview given above and some o£ the more important ones have been
h ighl ighted in the text . The current implementations o£ Tenl5 PSEs are largely based
on the Flex PSE; the type structure o£ Tenl5 taking the place o£ the capabi l i ty
structure o£ Flex, Some aspects o£ the Flex PSE are deta i led in [Currie 85a]. Probably
the most important £eature o£ both is the way that one can use values and program in
ways that were unanticipated when they were created. This is largely a consequence o£
having £irst class procedure values and a common addressing space across a l l
programs; the in tegr i t y and secur i ty o£ those £ac i l i t ies being en£orced by the type
structure in Tenl5 and the capabi l i ty structure in Flex.

References

[8SI 82] "Speci f icat ion for the computer programming language,
Pascal" BS 6192=1982 Br i t ish Standards Inst i tut ion

[Currie 81] I .F.Currie, P.W.Edwards and J.M.Foster: Flex £irmware,
RSRE Report No. 81889, 1981.

[Currie 82] I .F.Curr ie and J.M.Foster : Curt = the command language
£or Flex RSRE memorandum No. 3522, 1982

148

[Curr ie 85] [.F.Curr ie, P.W.Edwards and J.M.Foster : PerqFlex
Firmware RSI~E Report No. 8S815,]985,

[Curr ie 85a] [.F.Curr ie : Some IPSE aspects o£ the Flex project
"Integrated project environments" J. McDermid (Ed).
Peter Peregrinus]985

[Foster 82] J.M.Foster, t ,F.Curr ie and P.W.Edwards:
F lex: a working computer base on procedure values
Proc. of internat ional workshop on h igh- leve l arch i tecture, pp
t8 ! 185, Fort Lauderdale, Flor ida (Dec 1982)

[Foster 87] J.M.Foster, I .F.Curr ie : Remote Capabi l i t ies
to appear Computer Journal]987

[Gordon 793 M.J.Gordon, A.J .Mi lner , C.P.Wadsworth "Edinburgh LCF"
Springer-Verlag (Ber l in 1979)

[Ichbiah83] J. Ichbiah et al. "Re£erence Manual £or the Ada
programming Language" U.S Dept 0£ De£ence]983.
Ada is a reg is tered trade mark o£ the US DOD

[Woodward 82] Edward Arnold(London 82) P.M.Woodward,S.G.Bond, "Guide to ALGOL 68"

