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SUMMARY

Capabilities in Flex are first class data objects which allow one
to define and limit the right to access data or obey an action.
Their use extends from mainstores to filestores and across networks
of Flexes. This paper gives a general description of how Flex
capabilities are implemented, controlled and used. They are
classified into four varieties, mainstore, filestore, remote and

universal. Each of these varieties has its own range and lifetime
designed to combine consistency, integrity and utility with
implementability.
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1. Introduction

It is common in everyday life for the possession of an object. to
confer some rights or privileges on the holder. Examples of such
objects abound: an airline ticket gives one the right to travel on a
particular flight; a cash-point card gives one the right to use an
automatic cash-dispensing machine; and, of course, a sufficiency
of bank-notes gives the holder all that money can buy. These
objects can be regarded as "capabilities" for the rights they
confer. Often, the relation between capability and right is one to
one; in other words, one has the right if and only if one posseses
the capability. Clearly, a capability must be difficult to forge
otherwise the value of the right which it represents is debased.

In the computing context, a capability confers the right to obey
an action like reading or writing data or running a program. If
possessing a capability is necessary to perform an action, we have
a good basis for solving many problems associated with the
security, privacy and integrity of computer systems as well as a
solution to more mundane problems such as the detection and
diagnosis of program errors. Just as with non-computer
capabilities, the control of the creation and distribution of
capabilities is crucial; there is little point in trying to enforce a
discipline which is easy to circumvent either by accident or
design.

A paradigm for computer capabilities is given by a simple
example where the capability allows one to read and write to a
contiguous area of store; it might be implementing a vector in a
high level language. The data within this area would only be
accessible by instructions which made use of the capability to
this area. For example, using the notation given in figure 1, an
instruction to load the fourth word (say) of the area into a
register would have to include the capability cap and the
displacement 4 in its operands , perhaps something like:

loadreg 4,capword
4 where capword (perhaps a register) contains the actual capability

cap. Of course, this instruction is only legal if the size of the
area is greater than four words.

! capword:[ ~a

reference: cap

ji J rd 0 t lock of
- word 1 conti guous3ord 2o~et .wsords

subvector: cap wr

Figure 1 - a capability to a block of memory
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In most capability architectures [1,2,3) the control and storage
of capabilities to prevent misuse has usually been implemented by
making capabilities special objects; only very privileged programs
can create them and normal programs can only move them about in a
circumscribed manner. In these architectures, capabilities exist
in special registers or in special areas of memory; for example,
capword in figure 1 would have to be a special purpose register or a
word in a block of storage which contains nothing else but
capabilities. This implies that one cannot easily hold capabilities
and normal data in the same data structure.

Even at the lowest level of programming, one can be
embarrassed by this separation of "scalar" data from capabilities.
For example, the word-pair labelled reference in figure 1 could be
usefully interpreted as a pointer to word 4- of the block whose
capability is cap.The inability to store this object in contiguous
words places a heavy burden on the programmer in implementing
things like reference parameters to procedures. A similarly
inconvenient object is the word-triple labelled subvector which
might be a representation of a vector of three words starting
from word 2 of the block given by cap. Any particular solution to
this problem which gives special representations to references or
vectors is inadequate since almost any juxtaposition of
capabilities and scalars is required to create general data and
program structures; these cannot all be anticipated in the initial
design of the system.

This "apartheit" of scalars and capabilities is one of the reasons
for the lack of success of the above capability machines. The
difficulty of finding solutions to problems posed by the
representation of arbitrary data structures caused programmers to
flatten them out into a small number of blocks so that only a few
capabilities had to be handled. This obviates most of the
usefulness of capabilities by only giving very coarse-grained
discrimination and protection. In addition , the system programmer
finds that he cannot construct an object-oriented system because
the components of an object like the reference and vector objects
given above must be distributed across several blocks in store. In
other words, these machines could only be used as rather
inconvenient standard machines with few or none of the advantages
of capabilities showing through.

Another drawback of these machines was their assumptions about
how store was allocated. One assumption made was that compilers
would check local objects so that capabilities were only needed
for major objects. Thus the creation of new capabilities by
allocating new storage would be done in large chunks and would be
a fairly rare event, requiring a relatively expensive system call.
However, this overlooked the possibility of the transmission of
structured data between "programs" compiled independently. It
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also meant that compilers had to be correct, making the
development of new compilers more difficult. To reap the benefits
of a capability structure, one would like to use capabilities in as
fine grained and dynamic fashion as possible. For example, I wish
to implement lists as capabilities so that the cons function
produces a new capability to a newly allocated block of two words
containing the head and tail values; a long-winded system call to
allocate the new block would be intolerable.

The Flex architecture [tt, 5, 12] uses capabilities in a manner
which does not suffer from these limitations. Capabilities in Flex
are first class objects - they can be created by non-privileged
programs and can be loaded and stored in just the same way as one
loads or stores scalar objects without requiring specialised
registers or storage areas. Instead of recognising capabilities by
where they are stored, Flex capabilities are distinguishable data
objects. For example, in Flex mainstore, each word has an ext a
"tag" bit. Scalar words have their tag bits zero, and capabilities
are words with set tag bits.

The tag bits are not involved in the normal arithmetic or logical
operations in Flex; indeed these operations are only legal between
scalars. Otherwise, the tag bits are copied consistently in the
loading and storing operations in Flex. Thus, each word containing
cap in figure I has the tag bit set and each word containing an
integer has it cleared. When a word with a tag bit set is produced
ab initio, the interpretation of this word is always such that it
represents a new capability different from all others. In other
words, if you possess a capability, you either created it yourself
or else you were given it by somebody else via some other
capability - you cannot forge capabilities.

In the implementations of Flex up to the present (March 1986),
the capability rules in mainstore have been enforced by micro-
coding a Flex instruction set on a micro-proqrammable machine,
the most recent being the ICL Perq workstation [12]. In this
instruction set, a new mainstore capability can created by obeying
one of a set of unprivileged instructions to allocate the space and
set it up depending on the type required. Capabilities other than
mainstore ones exist in Flex; their access and creation rules are
enforced by a mixture of software (both privileged and
unprivileged) and firmware. These capabilities are represented in
mainstore by one particular kind of mainstore capability; in
addition they possess representations in other media like
filestore or networks.

Capabilities as data objects form the basis of the Flex system and
appear in many different guises and representations in mainstores,
in filestores and across networks. Since one can handle them quite
freely and create them to represent arbitrarily complicated
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objects, the Flex system is an "object oriented" system. It uses
and creates objects directly without the need for intermediaries
like names, directories or contexts.

Ideally one would wish that, once a unique capability has been
created, it should exist as long as is it is required; in other
words as long as it is referenced. Practically, this requirement
cannot be met - unexpected machine errors over a network are
likely to wreck any such scheme. This is not to say that one should
abandon the ideal, but rather that one should approach it as
closely as possible and ensure that if ever one does lose
capabilities by machine error, one always has a consistent
fall-back position. As a trivial example, a hardware error in a
single processor system would cause the loss of those
capabilities in the main store which are part of the currently
running program. This has no consequential inconsistencies if
these capabilities cannot exist outside the main store; however,
if they could have been written to file store, say, we would have
had references from file store to a non-existent mainstore, which
could be disastrous.

In order to control the consistent existence of capabilities, the
Flex system classifies them into four main groupings, each with
different rules for where they can exist and how, if at all, they
can be transmitted. These groups are:

1. Mainstore capabilities
2. Filestore capabilities
3. Remote capabilities
It. Universal capabilities

A mainstore capability exists only in one mainstore, cannot be
transmitted elsewhere and implements things like arrays and
procedures in running programs; it is obviously a rather temporary
thing, disappearing when the machine is switched off. A filestore
capability retains its meaning from session to session, can exist
in one filestore or in the mainstore of any processor which can
access that filestore directly, can be transmitted to and from this
one filestore or between these mainstores and is used to
implement things like files, modules, etc. A remote capability can
exist in any mainstore, can be transmitted between mainstores and
is a means of performing an action on some processor from another
processor on a network. A universal capability can exist anywhere
in the Flex world, in any Flex filestore, mainstore or memory and
represents a Flex object which is common across all Flex systems,
for example, some version of a commonly used compiler.

This classification of capabilities has been derived from
experience in the construction and use of various Flex systems.
These have included a system with several processors connected
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to a common file-store and one with disjoint file-stores
connected across a network. The remaining sections of the paper
highlight some of the important aspects of the varieties of
capabilities and their uses in the Flex system.
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2. Mainstore capabilities

A mainstore capability exists in only one mainstore and cannot be
transmitted elsewhere. If its machine is switched off it. will
disappear.

All capabilities accessible to a running Flex program are

represented by pointers to disjoint blocks of store. A pointer is
simply a word with its tag bit set to distinguish it from scalar
words. It contains the "address" of a block which contains the
size of the block and type of the capability in its first word as
shown in Figure 2. The quote symbols are used deliberately here
since this notion of an address does not enter further into the
Flex architecture. One can access the information in the block only
if one has the capability; the actual physical address of the block
can change and is both useless and irrelevant. These capabilities
are unforgeable in the sense that one cannot create a word with
the tag bit set which is the same as another except by copying
that. word. When one creates a new capability it is guaranteed to
be different from all others.

One of the most basic kinds of mainstore capability allows one to
read and write words into memory. There are several instructions
in the Flex repertoire which allow one to create new capabilities
of this memory type. For example, there is an instruction which
returns a capability to read and write a new block of given size;
another allows one to pack away a value consisting of some number
of words into a new block and deliver a capability to read and
write into that block. The read/write capability in figure 2 could
have been created by one of these instructions, and the read-only
capability could only have been created by another instruction
from this read/write capability. Other instructions allow one to
read or write words (any mixture of scalars and capabilities) in
the block via the read/write capability while only allowing reading
via the read-only capability.
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Read/rteRead-only 
capability

ov.erhead word: type = Mem I scze = N

N word, I either

scalars or capabilities

Figure 2 - memory capabilities

The access rules for memory blocks are just one example of the
kind of rights and restrictions conferred by capabilities. The
algorithms defining these rules are very simple - one can only
read and write within the bounds of block defined by a memory
capability. Clearly, one could imagine other algorithms defining
other access rules, and Flex does have other kinds of capabilities
with other fixed access rules. However, Flex also allows one to
create capabilities where the algorithm is chosen by the
programmer by using the most general kind of mainstore
capabi lity,the procedure.

Proc capabiem 
I size

I / M word*S'of" ;nstruct ,on
Itype = Proc I size = 2 1  codes and constants

ICode/const Capabili ty Y (capabii ties or

INon-locals Capabil ity / salori t nin

N words (scalars or
capabilities) giving
non-local values used
byx a l g o r i t h m

Figure 3 - a procedure capability

The procedures are just Landin's closures [6) , and using them,
any arbitrary set of rights or restrictions can be implemented.
Such a closure is created by an instruction which binds Flex code
with values which form the non-locals of the procedure; both code
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and non-locals being themselves capabilities 6s in figure 3. On
calling the procedure, the code in the code block can access the
non-locals implicitly; for example, there is an instruction to load

the nth word of the current non-local block without having to
extract the capability explicitly. Two other areas are similarly
accessible, namely the locals and the constants (in the code
block) of the procedure. The locals block contains the local
variables of the procedure and link information; it is produced by
the call instruction either by generating it afresh or else by
retrieving one which is finished with by a previous call. Note that
the same code capability can be shared between many procedures;
indeed code blocks are loaded in such a way so that there is never
any more than one copy of a code block at any time in mainstore
regardless of how many programs are using it.

The possession of a procedure capability does not allow one to
readt either its code or non-local values; one can only obey the
code with these non-local values bound to it. This means that the
code can control the kinds of access that are possible to the
non-local values without the user of the procedure being aware of
their representation or even of their existence. For example, it is
trivial to construct a pair of procedures, push and pop, which
implement the classical stack operations by sharing the same
non-locals as in figure #. Here the underlying data structure which
contains the values in tlte stack is in fact a list but is completely
hidden and is impossible to access in any way other than by calling
the procedures. Procedures defining abstract data types or other
kinds of packages are usually implemented in Flex sharing
non-locals like this.

lProc cap j uh Proc cap = POP]

pus -Coe ype C~oe sitipop Code sz

Non-locasl A.x:{nonlocal:= No n- oca s

A: {ans: =hd(non local) ;

type = Mem I size = I nonlocal:=

One word giving list tlnonlocal)

as capability to cons
paIr for non-empty
stack or zero for
empty stack

Figure 1+ - capabilities implementing the stack procedures

It is important to note that the creation of these procedures for
abstract data types is essentially a dynamic process. For example,
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the natural way in Flex to construct the stack procedures in figure
it would be to have another procedure makestack, say, which when
called would deliver a pair of procedures to implement a new
stack, different from all others. Each pair would have different
non-local blocks, but all of them would have the same code blocks
given by the capabilities push-Code and pop-Code ; these capabilities
would probably be found in the constants of the code block in the
procedure makestack which simply closes them with a newly
generated non-locals block to give the two stack procedures. Once
created, the push and pop procedure capabilities are completely
independent of makestack and can exist even when make-stack
disappears.

An interesting kind of procedure capability is one which has type:
(Key,Info) - (Key4Info)

and body:
A ki:{ Ax:{if x=k then t else FAIL fi} }

ie given a key and some information, it produces another procedure
which will give back the information if and only if the parameter
of its call is the same as the key. Since the key could be a
capability and since capabilities are unforgeable, this gives a
completely safe way of passing around sensitive information. Only
those procedures which possess the key (probably in their
non-locals) will be ableto get at the information. Thus, the
information can be transferred safely between trusted procedures
via an untrustworthy intermediary. This concept is used in
representing the other varieties of capabilities (namely
filestore, remote and universal) in mainstore, so that they can be
held by untrustworthy program without fear of compromising their
access rules.This use is so important that it has been
particularised to form another type of capability called a "keyed"
capability. This resembles a simple memory capability except that
it can be locked so that its contents of the corresponding block
are completely inaccessible. The only way to unlock the block is by
knowing the contents of the first word of the block; thus the
first word is the key and the remainder of the block is the
information.

To reap the maximum benefit from its use, the lifetime of a
mainstore capability is at least as long as it is required; i.e.,if
one possesses a capability, it must be alive. In turn, this implies
that a block of physical mainstore can only be reused if there is
no capability which points to it. To discover this, it is necessary
to do a general trace and garbage collection when the physical
limits of the mainstore are reached. In the current
implementatiens of Flex, this is done in the micro-code, as are all
the other manipulations of physical addresses to produce
capabilities. As mentioned before, a mainstore capability can only
exist in one mainstore; one cannot transmit mainstore capabilities
to other mainstores or filestores. This, together with the use of
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the tag bits to distinguish between scalars and capabilities,
allows the use of a fast garbage collection algorithm which is
linear in time in all of its variables.

The Flex instruction code which is interpreted by the micro-code
clearly takes full advantage of the properties of the capabilities
which it creates and manipulates. It has also been designed for
ease of use by high level languages. There is no primitive level
assembiler for Flex; all of the programs written for and running in
Flex have been compiled from some high level language. The
instruction set allows one to produce compact code; for example,
there are only 7 instructions (including the procedure-exit
instruction) occupying 13 bytes in a straightforward, unoptimised
translation of pop-Code given in figure '+. Leaving aside the
procedure-call and -exit instructions, the obeyed code would
involve about 12 memory accesses including the instruction
fetches in the Perq implementation of Flex, each access taking
75rns for a 32 bit word [the Perq is actually a 16 bit word
architecture, but 32 bit store access has no extra penalties on
even word boundaries). These accesses effectively define the
time required to obey the instructions, since other actions
required to be performed by these instructions (for example,
checking the access rules) are mostly hidden behind the operand
fetches. The code in push-Code is slightly smaller in size and also
in time, provided that the cons operation does not provoke a
garbage collection. The procedure-call instruction might also
provoke a garbage collection if there was no workspace available
for the locals of the procedure call. If workspace was available,
then it takes 10 to 12 memory accesses to obey this instruction
which deals with the link and sets up the new local areas; the
procedure-exit instruction taking much the same time to do the
inverse. In summary, the time taken by the pair of procedure calls
given by the somewhat nugatory expression, push(pop), is about 65
store accesses, provided no garbage collection takes place.

The time taken by garbage collection obviously depends on the
mix of blocks and capabilities in store at the time of garbage
collection. Some blocks never have capabilities in them (for
example, the block defining the raster display in the PerqFlex),
while others could be filled with them. The PerqFlex garbage
collector is a compacting one and all other Flex processing stops
while it is active; of course, some interrupt proccessing and data
transfers ,including keyboard interactions, continue at a lower
level. The time taken by this garbage collector is given
approximately by:

(2a(L-F) .V * S.C 4 2-B +4,-A) memory accesses
where L is the total number of live words, V is the number of
these which could be capabilities and C is the number which are
capabilities. B is the total number of blocks before garbage
collection and A the number of live blocks. F is the number of
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words which are not moved in the garbage collection, either
because they are always required at the bottom of memory (eg the
raster image) or simply because no free space is recovered below
them. In a 2 Mbyte Perq, the actual time taken by one garbage
collection averages out to about 1.3 ± 0.2 secs in typical use.
Such a use might be running two long Algol68 compilations in
parallel with normal text editing; in this case garbage collections
occur about once every 4-5 secs, each collection recovering an
average of 1.2 Mbyte of free store. These figures do not change
appreciably when running three or even four compilations in
parallel since the code is shared between the processes and this
compiler (not originally targetted for Flex) is profligate in its
use of temporary storage compared with the sizes of more
permanent tables that it needs to maintain in mainstore across one
compilation.
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3. Filestore capabilities

A filestore capability can exist in only one filestore, or in the
mainstore of any computer which directly accesses that filestore.
It can be transmitted between mainstores and the filestore. It
retains its meaning from session to session. The word "filestore"
is used here for want of a better term. Its use carries no
implication of the properties of existing filing systems, but
simply defines memory which persists in some permanent form.
Other terms such as "data-base'" or "persistent heap" might
equally well be used but would carry just as many unwanted
connotations.

In analogy to mainstore capabilities, a filestore capability is a
pointer" to a block of data on a particular filestore. This data

can include any scalars, any universal capabilities, and any other
filestore capabilities belonging to the same filestore. Note that
cross-filestore capabilities are not allowed; any filestore
capability in a filestore "points" to another block in the same
filestore. In mainstore, the minimum size of a block is one word
(consisting of just the overhead word). On filestore the
granularity is bigger depending on the implementation involved; in
PerqFiex the minimum size of block is 32 bytes. Filestore
capabilities have types similar to mainstore capabilities; the
procedures which read the data corresponding to a filestore
capability do so by producing a mainstore capability of the same
type. In particular, filestore procedures can only be read to
produce mainstore procedures. This means that private
information can be safely hidden behind the interface of a filed
procedure; for example, logging on to Flex is done simply by
calling a filestore procedure which has things like passwords and
dictionaries safely hidden in its non-locals.

As mentioned previously, a filestore capability is represented in
mainstore by a keyed capability; its corresponding block contains
information on how to retrieve the data. The key to this locked
block is a characteristic of the filestore and the basic outputting
instructions and procedures will not allow it to be transferred to
an alien filestore. On the filestore itself, or in any transmission
medium in networks, non-mainstore capabilities are distinguished
from scalars in much the same way as mainstore capabilities,
using extra tag bits or bytes; in fact, the total size of a PerqFlex
filestore capability on filestore is 12 bytes which are
recognisably different from non-capabilities. When inputting
these capabilities into mainstore, care is taken that only one copy
of the block corresponding to a particular capability occurs in
each mainstore, that is, all the copies of a mainstore
representation of a non-mainstore capability point to the same
keyed block. The search to ensure this is fast and economic - it
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takes an average of 58 store cycles to establish that the
capability is a new one and obviously less to find it if it is not.
Filestore capabilities are not rare objects in the Flex mainstore;
on average there are about 2888 alive at any one time, a large
proportion arising from the fact that most mainstore code blocks
have an equivalent on filestore. The uniqueness property is used
mainly as an aid to short-circuit the traffic to and from filestore
in the case of filestore capabilities; the implementation and use
of remote and universal capabilities is more critically dependent
on it.

A standard filestore capability is created by writing data of
appropriate type to a filestore and receiving in return the
filestore capability to read that data. Note that there is no notion
here of writing to a particular place on filestore - it is a
"write-once" operation. Since the data written away can include
other capabilities, one can form non-circular tree structures
(strictly speaking, acyclic graphs) of arbitrary complexity on
filestore. This tends to mean that the system is quite economical
about the amount of traffic to and from the filestore. For
example, an editable file is implemented on Flex as an object of an
abstract data type called an Edfile; procedures associated with
this abstract type include an editor of type Edf le + Edf ile and a
lister of type Edf ie - Vo id. The representation of each Edf l le is a
single filestore capability to a block which contains other values,
including capabilities, as well as text. Figure 5 shows the screen
representation given by the editor to an important file in the
PerqFlex system. This particular example is rather short of plain
text; most of it displays non-textual values. Each of the boxes,
eg lathemat cal rout nes', is the screen representation of a
non-textual value in the file; the text in the box, namely
"Mathematical routines", is just a convenient label or banner for the
value. In fact, each of the non-textual values illustrated here
happens to be a disc capability which is an Edfile containing
further information, usually including yet more Edfiles and the
banners for them are indeed unique in this file [see the treatment
of this file as a universal capability). The contents of any inner
Edfile can be displayed by calling the editor recursively by
pointing at it and pressing the appropriate key. A listing of the
file shown in figure 5, including the expansion of its inner
Edfles covers 125 A'+ pages, yet any part of it can be usefully

reached by no more than five or six key-presses following the
tree structure of the Edfiles, transferring no more than the
equivalent of six pages from filestore.
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Documentation of common modules

'Compiers and modules, Coplr nd modulES: index':

Transput conversion ITransput conversions~indFe

Interaction with programs lInteraction with programs: index

Edfile utilities,

Peripheral transfers, Ieripheral transfers: index'

The mode system The ode sys{tem ndex'

Environments,dictionaries' n-vronments,dictionaries:in ex-

,Mathematical rout ines:

'Poesses

'Date and Time';

'Primitive f ieste Primitive filestore:index

Exception s and failuresi Vxceptions and failures: index

nts aonts:in~dex

'Miscellaneous modulesl

Transfer ing between Perqs! TasrinbeenPrs

Figure 5 - an example of an Edfile

BN- the same token, producing a new Edf ile only involves writing
away those inner EdfileS which actually change. When one exits
from a call of the editor which actually makes some changes to the
data rather than simply displaying it, the new data is written away
to create and deliver a new Edf ile; if it happened to be an inner
call (on riathemat ical ruis, say) then this Edfi le replaces the
old value in the display using the same banner. The original file
given by the parameter of the call has not been altered in any way;
it is still available by the same method as was used to get it in
the first place. Given the result of the outer call of an edit,
committing the change is usually done by giving a name to the
new Edf ile in some dictionary; it could be the same name as used
to get the parameter of the call to give a later version of the
file.

The non-textual values in an Edfile are not necessarily other
Edfiles; indeed the file illustrated in figure 5 is principally
intended to contain values (and descriptions) of another abstract
type called Module. For example, part of the internal file given by
Piat hemtaY1_rout nesj is shown in figure 6; the boxes here are
screen representations of these Module values. A module is, in fact,
several filestore capabilities which, when operated on by
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appropriate procedures, give the text (as an Edfile), interface
specification and compiled code of some program; eg ×p "module
gives the exponent routine as a procedure with a real parameter
and real result. As it happens this routine was written in Algol6B8;
however the Module is language independent and can be used by
other languages. To include the interface entities of a module
within a program, one usually puts the Module value itself into the
text of the program, rather than its name; ie a program text with
Fxxp :Modu-e in its "use-list" would be able to use the exponent
routine in the normal manner.The advantage of hay: g the module
value rather than its name here is that the program text now
effectively includes the texts of all of the modules which it uses,
independently of context, so it can be examined once again in a
tree-like fashion. Further, since the text and compiled code are
bound closely together in a Module, there is never any confusion
about the text of a compiled program, even at run time. There are
approximately 500 Module values in the file shown in figure 5 (with
a total of about S880 lines of text) accessible for reuse by any
programmer in any program. These range from the simple
mathematical routines given in figure 6 to things which form part
of the system like the compilers, editor and command interpreter.
The creator of a Module value has the capability to amend it (by
recompiling a corrected text, say). This is another committal
operation, this time expressed as an operation on a value rather
than by inserting a name in a dictionary.

Standard mathematical functions:

Module Possible fa,lures

arccos :Module i  (8000,3) if ABS parameter > 1.0
Result in range [0.0, p,]

arccosh :Module (8000,6) if parameter < 1.0
arccot :Module None. Result in range (0.0, pi]
arccoth :Module' (8000,8) if ABS parameter <= 1.0
arcsin :Module (8000,3) if ABS parameter > 1.0

Result in range [-pi/2, pl/ZI

arcsinh :Modui None
arctan :Module' None. Result in range [-pi/Z, pi/Z]
arctanh :Module' (OOO,?) if ABS parameter >= 1.0
ar9 :Module None. Result in range (-pi, pi]
cos :Module (8000,4) if ABS parameter > 2.0 ** 47
cosh :Module Real overflow (0,16) if AJ3S parameter

> 709.7 approx
cot :Module (0000.) if ABS parameter > 2.0 ** 47

Real overflow (0.16) if parameter is
near multiple of pi

coth :Module Real overflow (0,16) if ABS parameter
< 1.IZe-308 approx

exp :Modulej Real overflow (0,16) if exp too big
(ie if parameter > 709.0 approx)

Figure 6 - part of athematical routinesi
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The various committal actions for remembering changes to things
like files and modules clearly involves some way of overwriting
filestore; there has to be somewhere where we can record the
state of the filestore, at least when the machine is switched off.
This is done in a Flex filestore by having a small number of root
variables in the filestore which contain capabilities which allow
one to reach all of the accessible filestore. A root variable can
contain a single filestore capability; it can be read to give its
contents and its contents can be altered by a single unitary
operation. Otherwise, it can be used just like any other filestore
capability so far as transferring it to and from filestore is
concerned. The filestore is only considered to be different when a
root changes and a filestore capability remains alive between
sessions so long as it can be reached by some path in the tree
starting from a root. Thus, a root variable would usually contain a
pointer to some dictionary structures and set of modules for a
given operating environment; each different log-in operation is
likely to give access to a different root.

It is important that a filestore remains consistent within itself;
in other words that it is never left in some state of incomplete
updating. For example, let us consider how one updates a
dictionary derived by a path through the tree structure on
filestore starting from some root. One re-constructs a new
dictionary and all the tree structure leading to it on filestore
before updating this root. Since the process of updating the root
is an unitary operation, we know that the filestore is either in its
new state or, perhaps because of some failure on the way, in its
old state with the old dictionary. One thing is certain, the
dictionary is never part new and part old. Thus, provided that
different roots contain independent information, that is, tthe\
never require to be updated together, the filestore never glets
into an inconsistent state. Of course, this is just the most
primitive level of consistency control; higher level controls for
simultaneous updating and reading still require to be applied.
However, any solution of the higher level problems requires that
the lower level problem should be solved.

An extremely useful by-product of this method of organisin.
filestore is that a complete history of consistent states of the
filestore is potentially available. Since the only thin.l9 that is
being overwritten is a single filestore capability in the root, one
only has to arrange to remember the successive contents of the
root. In the general purpose computing context, complete
histories are seldom required and the Flex filestores are
generally garbage collected and tidied periodically simply to save
storage space. However, in the intervening periods, it is still a
great boon to be able trivially to reset a file to the value it had a
few days, hours or even minutes ago. On the other hand, in a
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project environment, the total history might be required for all
sorts of reasons to control the project and this could be done in
several ways with Flex filestore. Thus, it would be simplest if
the total on-line mass storage was big enough to contain all the
historical information; if not, one simply keeps off-line copies of
the filestore before each garbage collection. In all of the current
implementations of Flex the filestore garbage collection is done
off-line. The time taken for this garbage collection is roughly
proportional to the number of live capabilities in it which can lead
to other capabilities; the effect of the other variables is
swamped by the time taken to access the disc or discs on which
they reside. A PerqFlex filestore on a single 35Mbyte Winchester
disc containing about 25000 capabilities, including the standard
system, takes 20 minutes to garbage collect, freeing about half
the disc; it takes very heavy useage for this to be necessary more
than once a week. This is a non-compacting garbage-collector. To
compact it the live blocks are sent across a network to another
filestore; this takes marginally longer than the non-compacting
version.
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4. Remote capabilities

Remote capabilities can exist in any mainstore and can be
transmitted bet ween mainstores. Mainstore and fi lestore
capabilities allow access to data in local mainstores and
filestores respectively; remote capabilities allow access to
other mainstores and filestores across a network. Flex uses a
remote procedure call [9,10 mechanism for its network; it
differs from most other RPC networks in that the possible
procedures do not have to be agreed between the machines from
the start.

In the current implementations of Flex, the particular type of
data held in a mainstore or filestore block associated with a
capability is largely irrelevant to its access rules. For example,
the access rules for a block containing integers is the same as for
one containing floating point numbers; also the type of the
parameters and results of a procedure do not effect the kind of
checks that are done to ensure that the rules for procedures are
obeyed. That is not to say that such checks are never done, but
just that they can be done at a higher level of abstraction, for
example, within compilers or command interpreters. Even if these
checks are done wrongly (because of a bug in a compiler,say) then
the integrity and security of the system is not compromised . Thus
a small number of different types of capabilities (eg memory,
procedure, keyed etc) suffices for mainstore and filestore
capabilities. On the other hand, both remote and universal
capabilities require to be described and implemented in a much
more fine-grained manner using the kind of types found in
strongly-typed programming languages. At a primitive level, one
can see that a good type description is highly desirable for
transfers between computers which use different representations
of data (eg in changing floating point format). This use of types
arises in the Courier protocol (11). However, the Flex type
structure is much more powerful and allows the transfer of
capabilities for dynamically created objects, including
procedures. The types of these procedures describe how their
parameters and results are to be handled and also makes explicit
the high-level protocol of the transactions involved in their
calls.

Some of the notation for the high-level type structure in use in
Flex has already been introduced. Aside from various primitive
types like Real, Int, Char and Void, the ".. symbol indicates a
procedure type separating its parameter and result type (eg sin
has type Realheal ); structures or records are given by Cartesian
products represented by parentheses and commas (eg a complex
number might have type (Real,Real)); disjoint Cartesian sums
giving unions or variants are represented by the prefix Union on a



list of their possibilities. There are other constructors for
concrete types which give representations of various'otler wa s
of structuring data in an orthogonal manner; the only one of these
usetd here is Vec to describe a vector (eq a st.ring of chatacters
has t.pe Vec Char). The representations given by abstract data
tkpes like Edfle and Module mentioned above are defined by the
procedures which operate on them and chosen by the inventors of
these abstract types. Flex types were originally conceived as part
of the F lex command language [7) and were based on the type
structure of ML [8].

A remote capability can be constructed to give a unique, token
for a value of any type. This token can be transmitted anywhere in
the network and always be decoded to give the original value in the
node which created it.ln practice, most remote capabilities are
remote procedures, since the only generally available operation on
remote capabilities is the remote procedure call. Access to any
data in a remote machine can always be expressed by calling a
procedure in that machine; no extra penalties are really involved
since there is no question of a network directly "addressing" a
mainstore in analogy to local access. For example, suppose that
machine A wished to generate a stack in the mainstore of B to
allow A to push and pop integers. Expressed in procedural terms
this means that A must have a capability to call a makestack
procedure in B which can create two further capabilities, like
those in figure 4, which it can give to A; these two new
capabilities will themselves to allow calls of push and pop
procedures for the new stack. In fact the makestack procedure in B
has type:

Void * Int * Void, Void * Int)

The first procedure of the result pair is the push for the stack
and the second is its pop. In order to call this procedure in B,
processor A must possess a remote capability which B associated
with make_stack. This remote capability has type:

Remote(Void + (Int Void, Void * Int))

At the remote call, the two result procedures will be sent to A as
further remote capabilities and these will be transformed in A
into procedures of type:

((Int -& Void), (Void -# Int))

which themselves do remote calls for the push and pop operations.

The transformation of procedures to remote capabilities and back
illustrated above is part of the mechanism of how the parameters
and results of a remote call are treated. This mechanism is called
"flattening"; it transforms structured data into a vector of bytes
suitable for transmission across a network. On receipt of this
vector, the inverse "unflattening" operation is carried out to
reconstruct the data in the remote machine. Some flattening
operations will involve the creation of new remote capabilities;
these will be transmitted across the network as distinct tokens
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recoqnisahlk different from scalar data in the vector of bytes.
This discussion is to a large extent independent of the .particular
lower level protocols required to send these vectors of bytes
around the net wok. However, it. will be seen that the security and
illteqrity of' the remote capal)ility mechanism depends on that of
the lower level protocols. If the protocols are illsecure, logically
or physically, then remot.e capabilities can be forged either by
accident or design by. sendinq a suitably constructed vector of
b\tes. Exti'a safeguards can be built in at. the higher level, but
these onlN call reLu(e the prohal)ility of forgery without actuall\
making it impossible.

The action of calling a remote procedure, rem say in A, consists
of flatterring the parameter, par, of the call, sending the resulting
vector of bytes togqether with the remote capabilit.\ as a remote
call to the originator of rem, B say, and then waiting for the
result. The remote machine B will unflatten the parameter to
reconstruct par and apply the local procedure associated with rem

to it. The result of this local call will then be flattened and sent
back to the waiting caller in A which unflattens it to give the
result of the remote call. Thus A does something like this:
unflatten ans[rem](remote_call(rem,flattenpar[rem](par)))

where the answer to the call remote call is evaluated in B as:
flatten-ans[rem](associatedproc(rem](par))

The remote capability rem must have been invented in B by calling a
procedure called new remote. A call of newremote with parameters
consisting of a procedure capability and its type will create a new
remote capability, different from all others; this procedure will
the one given by associated~proc above. The type will be used to
define the various flattens and unflatLens like flattenans and
unflatten-ans used above. This is a simplification of what actually
happens since Flex also has a system of trapping and analysing
exceptions in local programming which is extended over the
network to allow remote diagnosis of errors.

It is clear from the above that types must be treated as data to
determine how one does the flattening and unf'lattening operations.
This is provided for in Flex types by a new kind of value of type
Moded; one can construct a value of type Moded from a combination
of any other value and its type. This notion is used all over the
Flex system; for example the type of the procedure which finds
the meaning of a name in a user dictionary is:

Vec Char 4 Moded

where the result includes both thre value and type corresponding to
the name given by the parameter. The type of the procedure
newremote given above is:

Moded * Moded
where the type given in the answer Moded will always be that in the
parameter Moded prefixed by Remote. This is similar to expressing
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the type of newremote po!ymorphically as:
ANYTYPE 4 Remote ANYTYPE

although the usual interpretation of polymorphism (see [8) ) is
that. the procedure is independent of the type of its parameter
rather than that it uses the type as data.

The representation of types in mainstore has gone though many
metamorphoses; originally they were represented b\ a simple
vector of integers. Now, they are represented by a natural graph
structure of' capabilities, each different type being represented
by a unique keyed capability which gives the constructors and
constituent types. This uniqueness is maintained in much the same
way as for filestore capabilities and their representation allows
efficient means of short-circuiting their translation to and from a
filestore representation. The filestore representation of a type
is just a pair consisting of a filestore capability and an integer;
the integer just indexes one of the types coded in the block
corresonding to the capability. This representation is not
unique; different filestore representations can give the same
type.

The flattened representation of a remote capability in the
network must per-force be as some sequence of bytes; it is
(list inguishable from scalar data in the unflattening operation
using the usual bit or byte tags. This sequence of bytes must
iderntif v the processor which created the capability in the first
place and (ive a unique identification within tir at processor. The
Ib\te sequence will be used on input into a processor from the
network to find (or create if it is not already there) the
mainstore representation of the capability. In mainstore, a remote
capal)ility is represented as a capability to a keyed block
containinq, among other things, the identification information. As
mentioCrned above, the inpLtting mechanism will ensure t hat there
will onl\. be at most one such block for each remote capability in
each mainstore. Besides the identification information, the
nainstore representation also contains an associated value
definin(I the meaning of the capability. If the processor is the one
which created the value in the first place by applying new remote to
some procedure, then the associated value will be this p)ocedUre.
If the processor is some other one, then the associated value will
be the type of the capability (which formed part of the flattened
value sent to the processor). Thus, finding the correspondence
between the capability and its meaning is a fast and economic
process.

It is clear that it is fairly easy to find suitable flattened
representations for values whose types are primitive or
constructed f{rom arrays or structures of other f{lattenable values.
What might be less clear is how one can flatten any procedure
values involved in the parameters or result of' a remote call. To
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flatten a procedure value, one constructs a new remote capability
by applying newremote to the procedure being flattened. The
flattened representation of this new capability in now the
representation of the procedure. To unflatten this procedure
representation one merely constructs a new procedure of the same
type as the original which does a remote call on the capability as
above. This is the way that the push and pop procedures in the
remote call of make-,stack above are sent from B to A. Sending
procedures to and fro like this completely hides the remote
capabilities and remote calls involved so that the network is quite
transparent.

Such transparency is not always desirable; often one wishes to
deal with the remote capabilities directly. For example, modifying
the example above slightly, one could write a procedure in B which
calls mate stack and applies newremote to its resulting push and pop

to give the result of the procedure; this procedure would have
type:

Void 4 (Remote(Int 4 Void), Remote(Void • Int))
A remote capability to this procedure in A would have type:

Remote(Void 4 (Remote(Int • Void). Remote(Void 4 Int)))

A remote call of this would result in a pair of capabilities of
type:

(Remote(Int • Void). Remote(Void • Int))

which would have to be explicitly called remotely to give the
stack operations. However, processor A could send one of them to
processor C and the other to processor D, thus creating a channel
of information from C to D via B which is totally independent of A.

Given that one possesses a remote procedure capability it is
easy to see how others can be generated from its parameters or
results. One way that has been chosen in Flex to start off the
process is by means of the procedure f irst_funct ion of type:

Compterld 4(Vec Char 4 Moded)

which allows one to ask a remote node, identified by ComputerId,
for a value associated with a name given by the Vec Char. Provided
that the remote node allows it, this could give access to any of
the facilities available in the remote node. For example, a
possil)le example of the Moded value delivered mi glt be a command
line interpreter for the remote machine of type:

((Void 4 Vec Char). (Vec Char 4 Void)) 4 Void

whose first parameter is a procedure to give the command
interpreter a line to interpret and the second is one to deal with
the response to that. comnanld. Similar'ly, a serial file transf"er
mi(ht l)e a procedure of type

Vec Char 4 (Void 4 Union(Vec CharEndOfFile))

where the Vec Char parameter is some namne to identify the file and
the resulting procedure will give successive lines of time file on
successive calls.
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The lifetime of some remote capabilities can sometimes be
deduced by their own actions; for example the capability involved
in the serial transfer of a file become meaningless when the end
of the file is reached. In these cases the originating processor
can discard the capability, safe in the knowledge that any further
calls on the capability are mistakes on the part of the remote
processor. However, this is not sufficient to provide for the
freeing of the resources associated with a remote capability;
even in the case of serial transfer a failure in the remote
processor niqht mean that the end of the file is never reached.
For this reason, the principal method of freeing these resources
once again depends on another kind of garbage collection. In
general, a processor which creates a remote capability remembers
it so long as another processor possesses it. Every time a remote
capahility is sent to another node in the network, then this fact is
noted by the originating node, either because it sent it itself or
else the sending node informed the originator. The originating
node can then periodically enquire of these processors whether
theN still have it; if they do not, then the original processor can
forget about it. The method of making this enquiry depends both on
the uniqueness property of the mainstore representation of remote
capailities and the storage allocation for mainstores. The remote
capahility is sent to each remote processor. If there is no longer
a copy of" it there (ie it has been freed by a mainstore garbage
collection), the inputting process will have to re-create the
capability ; this fact can be recognised and sent to the enquirer.
Both these enquiries and the primitive remote calls depend on
some lower level of protocol to determine whether the remote
processor is still active so that the communication can degrade
gracefully when it is not.
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5. Universal capabilities

A universal capability is one which can exist anywhere in the Flex
world in mainstores, filestores or on networks. It will be used to
represent a commonly used object like a compiler, editor, or
common module or even a type. The data or program corresponding
to a universal capability can exist in many copies "istributed
throug(hout the Flex world, usually in local filestores. This
description would seem to imply that such an object would have to
be constant through time, though we know that compilers, editors
and such values are amended from time to time as errors are
removed and improvements are made. We therefore choose to think
of the value corresponding to a universal capability as an
approximation to a Platonic ideal, and to say that these
approximations are ordered in the sense that later ones are better
than earlier ones. So every operation that can be done with an
earlier value must be able to be done with a later one, with a
result which is a better approximation than the result of the
earlier operation. It is unfortunately impossible to check this
property, we merely state that the mechanisms will work if it
obtains. This same idea of approximation is applicable not only to
objects like programs, where the idea is of a more accurate or
less erroneous program or one which applies to more arguments,
but also to such values as bank accounts, where tomorrow's
statement contains the same information as today's, together with
extra iriformation arid the only operations allowed are those which
specifN a date, rather than work in terms of "now".

One aim with universal capabilities is to provide a mechanism to
allow better versions of program or data to be transmitted in a
fairly passive way. By this is meant there is no need for the
originator of the change to tell everybody about some change all at
once; the change can be passed from processor to processor
independently of the originator. All that is required is that a
processor hears about a change from some other processor and it
sets in train the actions to ask the other processor exactly what
the change was.

The representation of a universal capability consists of an
identification which is unique over the Flex world and a version
number defining the approximation. Both of these parts are
transmitted os the network or filestore representation of the
capability. In addition, a processor which knows a meaning for the
capability will associate this meaning (usually as some other kind
of capability or capabilities) with its mainstore representation in
much the same way as the meanings of remote capabilities are
held. Clearly it must be possible to change this association if a
later version of the capability is encountered, for example, as
part of a remote transmission. In general, if a later version is
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found as part of a transmission, then the receiver will ask the
sender to give the more up-to-date version. Thus, later versions
of a capability will diffuse through a network so long as the
various nodes of the network hear about them from any source.

The possession of a universal capability implies that one has the
right to demand that another processor gives one its current
meaning for the capability. Conversely, one has the obligation to
provide a meaning that one possesses to anyone who demands it.
Leaving aside the problem of how one introduces a universal
capability in the first place, the updating from one version to a
later one is achieved using remote capabilities. If a remote
processor sends a universal capability with a later version than
the local one, the local processor makes a remote call to get its
version updated. The parameters of this remote call are simply
the universal capability and a procedure to update its meaning in
the local processor. For example, if the universal capability was
a simple serial text file then the updating procedure could have
type:

Remote((Universal, Union(Vec Char,EndofFile) 4 Void) - Void)

where the Union(Vec Char,EndofFile) -o Void parameter will be called
by the remote processor with the successive lines of the new text
file as parameter to recreate it in the local processor and update
the universal.

This is an unrealistically simple example, since most important
objects in Flex are much more highly structured than simple serial
text files. For example, the documentation file shown in figure 5
is an important universal capability which is an Edf le. Its updater
is much more complicated; it admits of the possibility of
transferring other values besides lines of characters. Since the
documentation file is structured so that each of its constituent
Edfiles is small enough to be displayed in roughly a screenful, the
protocol for its transfer can be expressed so that each Edfile is
transferred in a single transaction in one block rather than
serialising the file as in the previous example. The type of its
updatercan be expressed as:

Remote( (Universal, Block 4 Void) + Void)
where

Block = Union(PlainText,
Line, Pa9e
InnerEdf ile,
..... (with about 15 other possibilities}

and
PlainText = Vec Char;
Line = Page = Vec Block;
InnerEdfile = (Vec Char, Date, Void 4 Block)

Each Edfile encountered as part of the file is transferred an an
InnerEdfile. For example, rathem-- routines, is transferred as a
triple consisting of the string "Mathematical routines*, the date and
time at which it was created and a procedure which, if called, will
deliver the Block corresponding to the contents of the inner Edfile.
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If the local processor already has this Edf le created at this date
in its copy of the documentation file, the pr'ocetlirue need never be
called. Once again, only that part of the tree which has actuallv
changled need be transferred. The other possibilities in the wlioll
given by Block include structures defininq how to transfer modules;
this miqht involve transferring program text for compilat ;,n to
amend the Module.

Just as the universal capability itself is an approximat ion to
some constant, its updating procedure must also be a constant.
since it must be capable of being called remotel\ b\ some
independent processor and hence the type and actions of its
parameters must be known to both processors. There clearl\ has

to be no possibility of disagreement in the updatin process -

once a universal capability has been created its updater Must lha\e
the same properties of approximation to some ideal as the
capabilt\ itself. In particular, the type of updater will never
changqe.

In principle, one could introduce an arbit rars updater with each
new univt-rsal capahility. However, in order to transfer it to a new
processor, the updater would have to be expressed in terms of
existing universal capabilities, otherwise it could not be
generally transferred. In practice, there are relatively few
different kinds of values represented b universal capabilities,
procedLure modules, types and and various kinds of files like the
documentation file above being the most important. Clearly all
capabilities whose values are constructed in the same wa\ can
have the same updating procedure. Thus, one can start with one
universal capability in every processor which allows one to
introduce a new universal capability of one of these common kinds
to a remote processor. In this way, most of' the problem is solved
provided that this initiating capability allows one to update its
action by introducing new kinds of updaters.

Universal capabilities do not solve the problems involved with
preventing simultaneous changes to the same object; somehow or
other there has to be a controller for each capability to ensure
that the versions are strictly ordered. Usually this controller is a
human one, namely the originator (or inheritor) of the capability.
However, on a Flex network, the controller can produce a new
version from any of the most recent copies regardless of its
physical location. Thus there need be no dependence on a single
filestore, for example, to be the "master" copy, with all its
attendant dangers of data loss.
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6. Conclusion

The varieties of capabilities described here have been arrived at
b); the experience of implementing and using various Flex
configurations using networked machines with both local and
shared filestores. Once one accepts the notion of capabilities as
first class data objects in the mainstore of a computer, then the
extension to allow similar objects to exist in filestores and
networks is inevitable. The particular classification given here is
a consequence of the often conflicting aims of keeping
capabilities as long as they are required while trying to preserve
consistency in the sense that if one possesses a capauility it
should be meaningful. Storage limitations will dictate that, in
general, this requires some kind of a trace of the capabilities
being used with subsequent garbage collection. The classification
given here of mainstore, filestore, remote and universal
capabilities defines properties of their use and lifetimes so that
this task remains manageable.
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