
UNLIMITEDA.* ~6I <'

AD-A24 5 050

RSRE
MEMORANDUM No. 4545

QOYAL SIGNALS & RADAR
ESTABLISHMENT

' ,l TEN15 DEVELOPMENTS TO
SUPPORT PARALLELISM

Authors: P W Edwards, D J Tombs & 0 I Bruce

LTr
Ln PROCUREMENT EXECUTIVE,

MINISTRY OF DEFENCE,
*z RSRE MALVERN,

WORCS.

* 0

2

(-c

cc------ UNLIMITED 9-27

CONDITIONS OF RELEASE
0116324 307617

*...... DRIC U

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

............. * DRICY

Reports quoted are not necessarily available to members of the public or to commercial
organisations.

Defence Research Agency Electronics Division RSRE

Memorandum 4545

Title Ten 15 Developments to Support Parallelism

Authors P W Edwards, D J Tombs, D I Bruce

Date: November 1991

Summary

This paper summarises the work done at RSRE as part of the COOTS collaborative project
(IED3/1/1059, part funded by DTI/SERC) towards developing the Tenl5 abstract machine to
include facilities required for the expression of parallelism and techniques for implementation
on parallel machines. The paper also indicates why this development was never taken to
completion.

The content of this memorandum is reproduced from the COOTS project deliverable 2.1, June
1991.

This memorandum is for advance information. It is not necessarily to be regarded as a final or
official statement by the Defence Research Agency.

Copyright
©

Controller HMSO London

1991

INTENTIONALLY BLANK

Contents

1 Introduction ... 3
2 Background .. 3
3 The Potential for Tenl5 Evolution ... 4

4 Minimal enhancement required for Parallelism 6

5 Tenl5 Notation compiler .. 8

6 Typing algorithms .. 9
7 Conclusion .. 10

References .. 11

Accezion For-
NTIS A& - -

DTIC rA A
Unannouiced
Jiust ilc~tion.....

......................

BY

Distribution I.

1

J

INTENTIONALLY BLANK

1 Introduction

TenI5 [3] is an abstract machine founded on the use of strong typing for efficient integrity
enforcement, intended to support the implementation of complete systems. The type system
extends beyond the requirements of typical programming languages to support functions
appropriate to operating systems. The unified type system ensures consistency both within and
between separately compiled program modules, and between both static and dynamic
program constructions.

As Ten15 system programming involves types that cannot be expressed correctly in any
generally used language, a specially developed 'Tenl5 Notation' is used. This has high level
language features and provides an assembler for Ten 15. A special programming development
and demonstration environment is also required if the power and advantages of Ten 15 are to
be made easily apparent, though it is important that this environment should not be confused
with Ten15 itself.

This paper describes the work started on development of the Tenl5 abstract machine to
include facilities for the expression of parallelism and of the techniques for its implementation
on parallel machines. This work formed part of the COOTS (IED3/1/1059) collaborative
project to develop and compare a variety of object-oriented languages and environments on a
variety of MIMD parallel machines. Ten 15 with its Notation and demonstration environment
were to be developed and compared, for the support of parallel object oriented applications,
with alternative systems being developed by the project partners Harlequin Ltd. and
University College of London.

Continuation of the Ten 15 portion of the COOTS project has been replaced however, as its
completion was no longer sustainable within the project timescales - due to delays and
reduced priority concerning the RSRE background Ten 15 input still required for this work.

2 Background

The starting point for Ten 15 development was Version 0 of Ten 15 [1] with Notation [4], both
implemented within RSRE's Perq Flex programming environment, together with an
unimplemented extension for pseudo-parallelism, Version 0-P [2].

For the sake of portability to conventional architectures, a prototype translator from Version 0
Ten 15 to VAX was written in Ten 15 Notation, prior to the COOTS project, and provisionally
(only partially tested) extended to Version 0-P. Development was also well under way towards
creating a TenI5 demonstration environment on the VAX, essentially modelled on the Flex
environment but written in Ten 15 Notation. The use of Ten 15 Notation throughout was to aid
portability to any machine given an appropriate Tenl5 translator. The VAX Tenl5
environment was also intended to provide the starting point for the parallel Ten l5
demonstration environment to be developed for COOTS. A major element still missing
however, was the Notation compiler itself, so that all program development still required Perq
Flex.

Ten 15 is a total system whose implementation needs to provide all required system functions,
and for which a high degree of integrity can be claimed. To use Tenl5 as an implementation

3

technology the external interface of a compiler must use only Ten15 primitives rather than
conventional operating system routines. The compiled program text can be used freely as an
object within the Ten 15 environment, but not outside. In particular for COOTS, parallel
processes and communication between them must be compiled through new primitives, which
must therefore be supplied with the demonstration environment.

A better engineered translator of Version 0 TenI5 was also underway, this time for a
Transputer. This was to provide background to the COOTS transputer array implementation
of TenI5 extended for full parallelism. The background single transputer translator was not
complete however by the start of the COOTS project. The possibility of completing it was
becoming uncertain under the tight physical resource limits imposed by Perq Flex, and it
could not be transferred to the larger resources of VAX while a portable version of the Ten 15
Notation compiler was still unavailable.

An early decision within the COOTS Ten 15 task was to contribute effort towards a new Ten 15
Notation compiler to be written in the Notation itself. This was required for COOTS for
completion of Tenl5 bootstrapping, to include bootstrapping the eventual parallel
demonstration environment onto the transputer array, and more urgently to enable completion
of the single transputer translator to be transferred to the VAX. The COOTS development of
Tenl5 also required the new compiler to be easily extensible, to enable easy development of
concrete representations to assist the derivation of the required abstract machine development.

COOTS effort was also found necessary to provide new portable implementations of type
checking and manipulation algorithms. These were required to cope with extensive
polymorphism efficiently, as assumed by the new Notation compiler, and they also had to be
designed for future extensions to the typing for expression of parallelism.

The additional COOTS effort expended on the new Notation compiler and type algorithms,
plus reduced background resources available to complete the VAX Tenl5 demonstration
environment, necessarily slowed development of the abstract machine itself. The envisaged
development was therefore restrained, eventually to the point that what could be achieved and
implemented within the COOTS resource limits would not provide a satisfactory result.

3 The Potential for Ten15 Evolution

A wide ranging review of Tenl5 was conducted at the start of the COOTS project and
reported in a working paper [5], to highlight all areas of compromise and perceived
deficiencies.

The review revealed most clearly that a huge amount of work still remained before Ten 15
could be considered properly complete. Partly, it was functionally incomplete: several
desirable features were absent, which could be incorporated into Tenl5 relatively
straightforwardly. A more refined definition of procedure closure is an example of such a
feature.

More significantly, the semantic basis of Tenl5 was very weakly defined. More research was
necessary before Ten15 program could be constructed with sufficient ease and integrity. In
particular, the type system displayed restrictions and machine dependencies in several places,

4

so impeding portability, extensibility and the use of algebraic techniques. In consequence it
was difficult to produce Ten 15 program and Ten 15 systems, or to demonstrate their integrity.
The latter is especially important when 'system' objects like memories and processors exist
within Ten 15, because the entire system is vulnerable to corrupted data in a single component.
Much of the functionality of present Ten 15 has been added on in a somewhat ad-hoc manner,
with inadequate thought for the uniformity of the system as a whole.

A wide-ranging research program, generally known as Ten 15 Version 2, was being undertaken
to devise an adequate semantic basis. This research was leading towards a more powerful type
system based on intuitionistic methods to provide a framework for Ten 15 program. With such
a framework better ways of constructing program, for example by homomorphic
transformation, would be feasible. More powerful systems could then be built in a trustworthy
manner using only a small set of kernel routines.

The anticipated developments of Ten 15 were divided into three categories, according to how
they affected the COOTS programme.

1. Simple extensions to Ten15 Version 0-P and other work necessary to support an
implementation on parallel machines, but with lower than desired functionality and
integrity. This work was considered a necessary part of the COOTS project, and comprised
work on the following areas:

Analysis of procedure non-locals for shared variables.

Devise methods of debugging distributed Ten15.

Out of memory exceptions.

Develop memory modc!. for shared and distributed memory, including garbage collection and
atomic allocation and access of shared and distributed memory.

Possibly, parallel on-the-fly garbage collection.

Possibly, Ten15 on heterogeneous systems.

Distribution of Teni5 values across homogeneous close-coupled networks.

Possibly, unification of loose and close-coupled networks.

2. Work towards Tenl5 Version 2, with emphasis on semantic basis and type system. This
work is essential for the development of software using algebraic techniques, and would be
required to demonstrate the potential of Tenl5 software and so would have been useful
during the later stages of the COOTS project. It was expected to be covered in background
work, partly concurrent with COOTS:

Demonstrate algebraic constuction of Teni 5 by programs.

Demonstrate transformation of Ten15 to a homomorphic image.

Representation-independent semantics for equality, integer types etc.

Implement efficient algorithms to manipulate types.

New type system, incorporating intuitionistic ideas.

Methods for constructing general cyclic and polymorphic data, sharable between programs.

Static analysis to find various properties.

Consider functional power of command interpreter.

5

Write an interactive debugger.

Static subsets of Ten15.

Consider on-the-fly garbage collection, to eliminate embarrassing pauses.

Possibly, on-line datastore garbage collection.

Notation evolution to extend scope of language support.

Consider expressiveness of a new language.

3. A formally specified Ten 15, implemented as a full network-wide environment, with a
translator built using algebraic principles and therefore containing a very high degree of
trustworthiness. The issues relating to this were postponed for longer term consideration.

Demonstrate trustworthiness of translator.

Write an interpreter.

Consider granularity and breadth of scope of the type system.

Need for multiple binding times.

Consider level of data security.

Transfer of untransferable values.

Cross-store pointers.

Persistence of unpersistable values.

Cross-datastore pointers.

Trustworthiness of data.

4 Minimal enhancement required for Parallelism

As indicated above, only a minimal enhancement to Tenl5 could actively be considered. The

pseudo-parallelism of version 0-P [2],[3] was taken as the basis for full parallelism, with
consideration of both shared and distributed memory architectures.

Two ;,onstructions, Launch and Parallel, are available for the creation of new

(pseudo-parallel) threads of control. Launch is used to initiate a new thread which will run in
parallel with the thread that initiated it (similar to futures, or the creation of active objects),
whereas Parallel is used to initiate a set of new threads to run in parallel with each other but
which must all complete before the initiating thread may continue (similar to Occam PAR).
The use of Parallel when initiating just a single thread is thus very similar to a procedure call.
The unit used to provide the function for a new thread of control is a Task, which is a first
class Ten15 value similar to a Procedure but with the addition of a communications interface.
Unlike a parameter, available to a Task or Procedure alike, the communications interface is a
constructional concept, not a Ten 15 value.

Communication between pseudo-parallel threads may take place either implicitly through use
of shared variable data, or by explicit message passing. The explicit message passing is
achieved by a synchronising call/reply construct, whereby a calling thread calls for data to be
transferred through a communications interface channel to a receiving thread and waits for
data to be returned in reply. The receiving thread waits for the callers data and returns the

6

result of some operation on it. Further details and options may be found in [2] and [3].
Communication channels are created to be one-to-one between threads of control initiated by
the Parallel construct. Message passing with a thread initiated by the Launch construct is
achieved via special procedure values created when the new thread is launched. These
procedures are first class values, able to be passed to other threads to allow many-to-one
calling, the procedures incorporating mutual exclusion so that each call/reply synchronisation
is locally one-to-one.

Extending the constructs above to true parallelism requires consideration of data sharing
constraints. The type integrity required of Ten 15 implementations requires absence of
interference between reading and writing any Tenl5 variable - i.e. reads and writes must be
atomic. Within pseudo-parallel implementations this is achieved by cooperative scheduling
between active threads of control, with rescheduling points avoiding the reads and writes.

In the case of a shared memory multiprocessor, the only simple and efficient solution to ensure
atomic reads and writes, is to limit each variable such that access is only conceivable from a
single thread of control. This is to avoid the need for mutual exclusion surrounding every
variable access or sequence of accesses, or for the sophisticated analysis needed to reduce the
inefficiency that would imply. With this limitation, the requirements of shared and distributed
multiprocessors become identical, though advantage can still be made of shared memory for
the implementation of message passing, and memory optimisation is possible for data known
to be constanL

Data can be transferred from one thread of control to another either by explicit
communication, or as parameter or non-locals bound into a task when a new thread is
initiated, or as result when a thread completes. The required limitation on variable access can
be achieved either by prohibiting all pointers within any data to be transferred, including any
procedures with pointers within their bound non-locals, or else by including in the transfer a
copy of all the data accessible through those pointers. The latter technique is less restrictive
and is already adopted in Tenl5 for transfer to and from persistent store, including full
maintenance of cyclic data, though it does imply a semantic change as successive transfers of
common data to one thread would produce separate copies of it.

The concept of a Ten 15 Virtual Processor was emerging, with the idea that each thread of
control belongs to a single V'rual Processor. Separate threads within a single Virtual
Processor would be pseudo-parallel with unlimited data sharing, whereas full copying would
be implemented for transfer of data between threads in distinct Virtual Processors. Separate
Vurtual Processors can run pseudo-parallel on a single physical processor or fully parallel on a
multi-processor. A complete V'utual Processor would be the unit to consider for load
balancing. Identification of Vutual Processor, and possibly its mapping to physical processor,
would be specified at the Launch and Parallel constructs.

A number of implementation techniques required remained open for consideration, including
the control of load balancing, and garbage collection of distributed memory systems. Further
consideration was also required concerning object model implementation and characteristics
of the proposed demonstration environment, which were likely to influence decisions on these
techniques.

7

5 Tenl5 Notation compiler

The previous Notation compiler [4] had been written in Algol68 and made use of numerous
PerqFlex-specific operations. Since the PerqFlex operations are a priori not portable, and
Algol68 was not yet available for the Ten15 system, a full re-write was necessary.

Given that the compiler had to be rewritten, it was opportune to improve a number of areas.

Some of these improvements were to the language itself:

The functionality was extended to cover the whole of Ten 15. The major extension was, of course,
the new constructs developed for pseudo-parallelism; though there were a few other, more minor,
areas for which the functionality could not be expressed in the old Notation.

Several aspects of the syntax were unified, leading to a cleaner but also more expressive language.
For example, by introducing fully general pattern matching, three constructs (Case, Deunite and
most uses of When) become special cases of a new, more powerful facility.

Declarations were unified into a more general concept, which includes modules. In addition, by
allowing patterns in the left-hand-side of some declarations, much of the notational convenience of
functional languages was obtained at no extra effort.

The whole module system was radically revised. The previous system was unsatisfactory, in that
the interfaces between modules were rather inflexible. Also, they were unacceptably limited by
only allowing values to be kept, despite there being many other things of interest. (In particular,
types could not be defined in modules, but had to come from a separate source, called a MoModule.
This has proven clumsy in practice, especially since only one can be included in any module text.
Furthermore, if we had decided to keep these MoModules, considerable extra effort would have
been required to implement them for the Vax system.)

Other improvements involved the way in which the compiler was implemented:

Use of the existing Notation language was essential both to provide portability across Ten 15 imple-
mentations and to access the full power of Ten15 - in particular, the ability to manipulate types
directly as values was helpful.

The parser was generated from the (new) grammar with RSRE's SID tool, as before, but now using
a different version that produces a polymorphic Ten 15 parser instead of a specific Algol68 one.

The mechanism for output of Tenl5 was made more general by polymorphically parametrising the
compiler by an encoder. This meant that any required output can be obtained by simply 'plugging'
an appropriate encoder into the compiler. Some encoders that have actually been built and used are:
a disc-based byte-stream encoding that is the same as the one produced by the previous compiler,
two that produce the result of applying the Tenl5 translator (for Flex or Vax) directly; and a textual
'pretty-printer'. Construction of others is straightforward.

The internal structure of the compiler was radically altered, and is now in an almost-functional style
that closely reflects the structure of the language.

The problems that were encountered were mostly related to resource limitations and other
inadequacies of the PerqFlex development system. The disc was always almost full;
sometimes the mainstore wasn't large enough; and the machine was very slow.

However, the main bottleneck concerned the implementation of the Ten15 type system on
PerqFlex. Some of the algorithms were hopelessly inefficient (,O(,! 1) time complexity),

8

some were just wrong, and some had never been implemented. Obviously no-one had tried to
use the full power of Tenl5's polymorphism before! Eventually some new routines were
written that were good enough for work to continue, but then disaster struck: an as-yet
unidentified fault was causing types to change spuriously underneath us. Some texts which
had previously compiled no longer would. As the proposal to remove this work from COOTS
had already been made, the attempt to diagnose this fault was discontinued.

When it was abandoned, the compiler was very nearly finished. A number of test fragments
had been compiled using the pretty-printer to show the output, and appeared correct. A few
had been translated for PerqFlex and seen to work.

Several features had not been completely implemented. Most were because of time
constraints, and could easily have been finished. A couple were because they were inherently
difficult, but were made usable by developing a temporary stopgap solution. The only aspect
that was really preventing the compiler from being used was the actual mechanics of creating
and loading modules (the form of the interface had been designed and extraction of
components had been implemented).

6 Typing algorithms

As originally implemented on VAX the portable Ten15 type system provided only
rudimentary support for polymorphic and cyclic types and none at all for parallel
programming. The absence of the parallel extensions could be tolerated until a parallel system
was required; the inadequacy of polymorphism and cycles could not, because many programs,
notably the new notation compiler, made extensive use of these features.

Cyclic types had been found computationally complex to construct. The polymorphic types
had a more fundamental problem: it proved impossible to infer the type resulting when
applying a polymorphic function. On investigation it was decided that the best solution was to
write an entire new type kernel.

Two new algorithms were designed: a lazy substitution for replacing a formal type with an
actual, and a type comparison to check whether a function can legitimately be applied to an
argument, and constrain its result type according to that argument. With these new algorithms
polymorphic application can be performed fluently through bounded polymorphism, and the
cycle complexity was resolved by adding a new multiple cycle constructor. Because the new
types and algorithms demanded the construction, substitution and comparison of many more
types than previously, greater reuse of already-existing types was admitted. At the same time
the parallel extensions for Version 0-P were added.

The new type kernel was modelled and developed in Ten 15 notation on Perq Flex, before
porting to VAX. It is functionally complete and has been tested interactively using the Perq
editor, but has not been debugged fully. When installed as a replacement for the Version 0 type
system on VAX it is sufficiently powerful to bootstrap the VAX Version 0 system and
translator, more rapidly than the original type system, but failure occurs shortly afterwards.

Apart from its general lack of robustness the system still contains a major flaw in the matching
of formal parameter types, revealed by some fairly ordinary ML programs. The flaw has been

9

diagnosed, but as substantial alterations to the underlying data structure are required it has not
yet been corrected.

The new type system represents an advance on previous type systems for Ten] 5 in its design,
functionality and efficiency. However it still contains serious flaws and is not yet a usable
product, and with the downgrading of Version 0 Ten15 may not be completed. A detailed
description of the new system appears in [6]. The experience gained will be beneficial for
writing type systems in future.

7 Conclusion

This paper has summarised the Ten15 work done within the COOTS project. Owing to
reduced effort on the associated Ten 15 background to COOTS and the large amount of work
outstanding the developments described in this paper were not taken to completion.

The all-embracing total system nature of Ten 15 is attractive for self-consistency enforcement
and security, but hinders its exploitability. The background Ten15 activity at RSRE has been
largely diverted to separating off a number of its facets for individual development
independently from each other. TDF (Ten15 Distribution Format) is the foremost of these,
developed from a target-independent portability layer for Ten 15 translators but applicable to a
much wider range of programming languages and hence more exploitable. The remaining
Ten 15 effort committed to COOTS has similarly been diverted within COOTS, to the
development of TDF for parallel languages and parallel machines, with consequently greater
exploitation potential.

The original objectives of Ten15 remain for the longer term. In preference to continued
evolution, it is likely that a fresh Tenl5-like system may be developed at some later stage,
firmly based on TDF and other independently developed facets from Ten 15, that will address
the major criticisms of current Ten 15.

10

References

1 The Ten 15 Signature, Version 0
David Bruce
RSRE unpublished paper, March 1990

2 Extensions to the Ten 15 Signature for Version 0-P
Margaret Stanley
RSRE unpublished paper, September 1990

3 Ten15 Prototype
J M Foster, I F Currie, N E Peeling, P W Edwards, M Stanley, P W Core, M Brandreth
RSRE Report 91025, November 1991

4 A Notation for Ten 15
Kim Goodenough, Sally Rees
RSRE unpublished paper, May 1989

5 The Evolution of Tenl5
David Tombs, David Bruce
RSRE COOTS Working Paper, September 1990
(subsequently revised and published as RSRE Memorandum 4543, November 1991)

6 The Version 0 Type System for Ten 15
David Tombs
RSRE unpublished paper (incomplete)

11

REPORT DOCUMENTATION PAGE DRIC Reference Number (If known) ..

Overall security classfication of sheet UNC LASSIFIED ...
(As far as possible this sheet should contain only unclassified Information. If it is necessary to enter classified Information, the field concerned
must be mwked to indicate the classification eg (R), (C) or (S).

Originators Reference/Report No. Month Year
MEMO 4545 NOVEMBER 1991

Originators Name and Location
RSRE, St Andrews Road
Malvern, Worcs WR14 3PS

Monitoring Agency Name and Location

Title

TEN15 DEVELOPMENTS TO SUPPORT PARALLELISM

Report Security Classification Title Classification (U, R. C or S)
UNCLASSIFIEDI U

Foreign Language Title (in the case of translations)

Conference Details

Agency Reference Contact Number and Period

Project Number Other References

Authors Pagination and Ref

EDWARDS, P W; TOMBS, D J; BRUCE, D 1 11

Abstract

This paper summarises the work done at RSRE as part of the COOTS collaborative project (IED3/1/1059,
part funded by DTI/SERC) towards developing the Tent5 abstract machine to include facilities required
for the expression of parallelism and techniques for implementation on parallel machines. The paper also
indicates why this development was never taken to completion.

The content of this memorandum is reproduced from the COOTS project deliverable 2.1, June 1991.

Abstract Classification (U,R,C or S)
U

Descriptors

Dltbutlon Statement (Enter any limitations on the distribution of the document)

UNLIMITED
Nie048

