
29 Jun 93 - 23:14 fabre@osf.org © 1993 OSF 1 of 16

ANDFizing OSF/1 R1.2 commands

Christian Fabre

Open Software Foundation
Research Institute

June 1993

This paper presents a study of ANDFizing
OSF/1 R1.2 commands. It describes the various
portability issues encountered while
ANDFizing the basic/bin/ls command.

1. Introduction

This paper presents an investigation of the issues involved in porting OSF/1
R1.2 commands to the ANDF1 technology.

OSF/1 Release 1.2 (OSF/1 for short) is the latest version of the operating
system developed by OSF. Release 1.2 is compliant with IEEE Std 1003.2-
1992 [POSIX-SU] and based on the Mach technology. Additionally, OSF/1
Release 1.2 has been successfully tested against the X/Open verification
suites (VSX4), verifying source compliance with the base profile of the
X/Open Portability Guide Issue 4 [XPG/4-IF]2.

1. ANDF is an architecture- and language- neutral distribution format being developed by OSF and
other collaborators around the world. It is based on the TDF technology provided by the Defence
Research Agency (DRA) of the UK Ministry of Defense.

2. Note that the API defined by [ANSI-C] is included in [POSIX-IF] itself included in [XPG/4-IF].

ANDFizing OSF/1 R1.2 commands

Token libraries to achieve architecture neutrality

2 of 16

Our investigation involved porting commands to the ANDF compiler,
delivering them as a set of target-independent ‘.j ’ files3, and installing them
on two platforms: i386 and mips, both running OSF/1. So far, the
investigation has focused on the/bin/ls command.

2. Token libraries to achieve architecture neutrality

The key feature of ANDF for achieving architecture neutrality is thetoken
mechanism. A token is roughly a typed macro: its target-independent
definition is given in the C producer headers files, and each platform provides
its actual declaration through a target-dependent token library to be merged
with the ‘.j ’ ANDF file before translation.

Porting with ANDF is usually done in 4 phases:

• Compile and run the application on the current platform with the native
compiler, hence using the native standard headers and standard libraries.
This is just a sanity check.

• Compile and run the application on the current platform with the ANDF
compilation chain using the native header files and the native libraries.
This phase is to show up any discrepancies between the native C compiler
and the ANDF compilation chain.

• Compile and run the application on the current platform with the ANDF
compilation chain using ANDF target-independent include files and the
target-dependant token library. Currently DRA provides five sets of API
headers: ANSI-C, GCC, SYS-V, POSIX, and XPG/3.

• Check that the generated ‘.j ’ files can be installed and run on other
platforms.

3. This document uses the following terminology:
A producer is all of the software that is used to produce the ANDF form of an application. The
primary component of a producer is acompiler, which does the actual translation of source code
into ANDF. An installer is all of the software used to install an application on a target. The main
components of an installer are theTDF binder which resolves the target-dependencies by merg-
ing the target independent ANDF files with thetoken libraries of the platform, and thetranslator
which does the actual translation of target-dependent ANDF into machine-code. The target-inde-
pendent ANDF files (output of producers) are suffixed by ‘.j ’. The target-dependant ANDF files
(input of translator) are suffixed by ‘.t ’.

ANDFizing OSF/1 R1.2 commands

Standard APIs and OSF/1

3 of 16

For more details about porting C software using the ANDF technology, see
[SM/OSF-I-93].

3. Standard APIs and OSF/1

As stated above, the OSF/1 operating system supports variousde jure APIs:
[ANSI-C], [POSIX-IF], [XPG/3-IF] & [XPG/4-IF]. The official API
supported by OSF is described in [AES]4. Besides thesede-jure APIs, OSF/1
supports partially APIs coming from other branches of the Unix family such
as:

• Mach, from Carnegie Mellon University, as OSF/1 is based on the Mach
technology;

• BSD, from the University of Berkeley.e.g. the sockets;

• System-V, from USL.e.g. shared memory facilities and semaphores.

The actual interfaceaccessible (as opposed tosupported) through OSF’s
/usr/include headers and the C libraries is much larger than [AES].
Moreover, as the OSF/1 commands have to access internal structures of the
OS, they are more likely to useunsupported5 APIs.e.g.: /bin/ps has to
access the process table of OSF/1’s kernel to obtain the status of a process.

4. ANDFizing the /bin/ls command

The ls command

ls is a basic command of all Unix operating systems. The baseline behavior
as described in detail in [POSIX-SU] and [XPG/4-CU] is supported by OSF
together with some additional functionality.ls prints out file names and
directory contents in various formats,e.g.:

4. [AES] is OSF’s official API. It incorporates features coming either from BSD or System-V. Its
definition is several years old, an updated version is in progress at OSF.

5. The wordunsupported just means that OSF is not committed to the stability of these interfaces.

ANDFizing OSF/1 R1.2 commands

ANDFizing the /bin/ls command

4 of 16

• Line-by-line, or with file names aligned in columns (option-C);

• The-F option appends a character at the end at a file name to give its type:
‘ / ’ for directories, ‘* ’ for executables ‘@’ for symbolic links, and ‘=’ for
sockets, as in (wherebin is a symbolic link to/usr/bin):

% ls -F
bin@

• Just the file name, or both file name and additional information about the
file (option-l) like the size, the number of links… For special files (e.g.
in the/dev directory)ls -l prints out theirmajor andminor numbers
of the device in place of the size, for example:

% ls -l /dev/tty
lcrw-rw-rw- 1 root 19 2, 0 May 7 15:23 /dev/tty

• While listing directories with some options turned on (e.g.-l), thels
command prints out on the first line of output the actual size occupied by
the directory elements, in 512 byte units, for example:

% ls -l
total 66
-rw-r--r-- 1 fabre wheel 32081 May 7 16:06 ls.c
-rw-r--r-- 1 fabre wheel 411 Feb 25 13:56 ls_msg.h

ls and portability

The purpose of this investigation is not to have a portable version of
/bin/ls , but rather to detect and highlight the dependencies of OSF’s
version upon the various levels of API provided by OSF/1, in order to have a
portable version of OSF’s flavor of/bin/ls . Indeed, a side-effect of this
investigation is that it seems impossible to write a version of/bin/ls
providing all the functionality that one can expect from this command by
strictly adhering tode jure APIs.

The ls command is built from one C source filels.c . This file acquires
object6 definitions/declarations from various standard header include files.
Some of these objects have got a precise (de jure) definition, either through
OSF’s specified interface [AES] or through other specified interfaces such as
[XPG/4-IF] or [SVID-3]. Other objects have node-jure specification, but are

6. By object we mean types, function names, constants…

ANDFizing OSF/1 R1.2 commands

ANDFizing the /bin/ls command

5 of 16

present for historical reasons on almost all Unix flavors, and therefore are
also present in OSF/1. Theioctl() function is such an historical facility.

We describe here the various issues raised while portingls .

— Theerrno variable

ls.c includes<sys/errno.h> to provide the definition of theerrno
variable, and theEACCES constant. No standards body specifies this file.
According to [XPG/4-IF], these entities are defined in the standard header file
<errno.h> .

The<sys/errno.h> header was replaced by<errno.h> .

— Size of the screen in columns

To line-up names in columns,ls either uses the value present in the
environment variableCOLUMNS, or obtains the horizontal size, in characters,
of the window it is running in. The latter is done by a call toioctl() with
the constantsSTDOUT_FILENOandTIOCGWINSZ and an empty
winsize structure as parameters. After the call, the number of columns of
the enclosing window is in the fieldws_col of thewinsize structure.

Here we come down to critical issues with regards tols portability.
Obtaining the size of a window seems to be highly OS-dependent: OSF/1
uses a structure namedwinsize and the command passed toioctl() is
TIOCGWINSZ7, while SunOS defines a structure namedttysize , and the
command name isTIOGSIZE .

Fortunately enough, these two interfaces have the same profile:

• For the structure: Fourunsigned short handling the horizontal and
vertical size of the screen, in numbers of characters and in numbers of
pixels, in the same order;

• An integer constant to name the command.

7. This way of obtaining the size of a screen originally comes from BSD.

ANDFizing OSF/1 R1.2 commands

ANDFizing the /bin/ls command

6 of 16

ANDF provides a way of unifying these two interfaces: As these two
interfaces exactly map one onto each other, only one set of token names is
required, say the couplewinsize /TIOCGWINSZ. The ANDF target-
independent headers could turn source code references to the
ttysize /TIOGSIZE interface into ANDF references to tokens as defined
by winsize /TIOCGWINSZ. On the target-platform, the token library could
use eitherttysize /TIOGSIZE or winsize /TIOCGWINSZ to implement
thewinsize /TIOCGWINSZ related tokens. Such a scenario provides the
maximum flexibility:

• Source code could use both interfaces;

• Targets are only required to provide one of them.

For the time being, despite its broad availability on actual platforms, the
ioctl() function is left unspecified by all standardization bodies, as it is
too platform dependent.

This issue of obtaining the size of the window could be fixed in many ways:

1. Put the relevant code for each platform between #ifdefs
__MY_PLATFORM and#endif .
The generated ANDF will be portable only among platforms
whose specific C code has been enclosed in#ifdefs at ANDF
generation time. Furthermore, should the semantics of the
ioctl() 8 function change in a future version of OSF/1, the
ANDF code would no longer be valid, preventing upwards
compatibility.

2. Defining a new C macro named
get_window_number_of_columns(int stream)
which will return the size of the window as an integer. The
definition of this macro being in a new header file named, say
<osf-commands.h> . The native version of this header would
generate the proper macro expansion, and the ANDF headers
could tokenise it. In this case, it is up to the token library to
provide the definition of this token. That is, if a new platform is
introduced, or if a given interface to obtain the window size
changes, a corresponding token will have to be provided in the

8. ioctl() is an unsupported function provided by OSF/1.

ANDFizing OSF/1 R1.2 commands

ANDFizing the /bin/ls command

7 of 16

token library for this platform. The user will then be able to use
thesame existing ANDF. When all OSF/1 commands have gone
through this ANDF porting process, we will end up with the file
<osf-commands.h> summarizing allunspecified interfaces
used by OSF/1 commands, and therefore covering the actual API
used by OSF/1 commands

3. Definition of a new set of ANDF-C header files extending the
current set of APIs delivered by DRA, namely, [ANSI-C], GCC,
[POSIX-IF], [SVID-3], [XPG/3-IF] and soon [XPG/4] and
[AES]9. This new environment, which we will callosc12 ,
would describe unspecified facilities actually provided by OSF/1.
Note that such a process will allow upwards compatibility as long
as this API is actually supported by the target platform. When all
OSF/1 commands have gone through this ANDF porting process,
we will end-up with the environment namedosc12
summarizing allunspecified interfaces used by OSF/1
commands, and therefore having the actual API used by OSF/1
commands.

It is worth noting that (1) is a common approach but provides the least
compatibility: A new platform might not be able to use existing ANDF as its
specific code would not be included into existing ANDF code.

We have used the scheme described in (3) to ensure the maximum
consistency with the existing environments:

• A newosc12 ANDF environment has been created on top of DRA’s
XPG/4 environment.i.e.: At this starting point,osc12 is strictly
equivalent to DRA’s XPG/4 environment.

• A new file<sys/ioctl.h> has been added to this environment. This
file defines the very minimum required by/bin/ls :

- A definition of the ioctl(int,int,…) function.

- A definition of theTIOCGWINSZ constant.

- A definition ofwinsize as a structure name.

9. This is AES revision A. As mentioned above, this version is several years old, and a new version
is in progress at OSF.

ANDFizing OSF/1 R1.2 commands

ANDFizing the /bin/ls command

8 of 16

- A definition ofws_col as anunsigned short field of the
winsize structure.

— Internationalization support

ls uses the functionmbswidth() (declared in<mbstr.h>) to obtain the
width, in screen columns, of a file name expressed inmulti byte strings (mbs),
as opposed towide character strings (wcs). Both mbs and wcs provide the
same level of functionality. However, the mbs strings are partially10

supported byde-jure standards whereas wcs are more completely supported.
No standards body specifies<mbstr.h> ; it is inherited from AIX11.

The dates of last modifications of a file are converted into a character string
according to the current national language support status. The conversion of a
tm structure into an string of characters requires a temporary buffer. The size
of this buffer is defined by an OSF/1 constant namedNLTBMAX available
from OSF/1’s<time.h> header.

The call tombswidth() was replaced by the sequence:

• Convert the mbs string into a wcs string;

• Call the XPG/4 functionwcswidth() with the converted wcs string to
get the actual screen width of the original mbs string.

The header<mbstr.h> was replaced in the list of include files, by the
<wchar.h> <limits.h> and<stdlib.h> headers.

The constantNLTBMAX was added to theosc12 environment as part of the
<time.h> header.

10. Onlypartially because [ANSI-C] and [XPG/4-IF] provides almost only functions to convert a
mbs string from and to a wcs string, and no functions toe.g. convert a mbs string to a long integer.
See [ANSI-C] and [XPG/4-IF] for details.

11. AIX is IBM’s flavor of Unix.

ANDFizing OSF/1 R1.2 commands

ANDFizing the /bin/ls command

9 of 16

— File status

The information about a file is obtained by a call to thestat() function
(defined in<sys/stat.h>) which fills up astat structure for a given file
name.

The basic type of files and their related information available through the
stat structure is described in [XPG/4-IF]. OSF/1 supports others types of
files imported from others members of the Unix family:

Symbolic links. They are defined in [SVID-3] and [AES]. Both these
definitions provides aS_IFLNK constant to distinguish a link
from other files, but strange enough, none of them provide a
S_ISLNK() macro to question if a given file is a symbolic link,
similar to those they provides for others types of files. OSF/1
does provides these two macros in its headers files. Thestat()
function returns the status of the object pointed to by the link, as
opposed to the status of the link itself. To query the status of the
link itself, thelstat() function is defined in [AES] and
[SVID-3]. ls.c uses the BUFSIZ constant as the size of the
temporary which holds the path to the pointed file. This is not
correct: The maximum size of a symbolic link isPATH_MAX.

Sockets, originally from BSD. In order to distinguish them from others
kinds of files, OSF/1 provides for this purpose a constant:
S_IFSOCK and a macroS_ISSOCK() .

The constantsS_IFLNK , S_IFSOCK, the macrosS_ISLNK()
S_ISSOCK() and the functionlstat() have been added toosc12 ’s
<sys/stat.h> headers.

Occurrences ofBUFSIZ was replaced with eitherPATH_MAX or
PATH_MAX+1 when they meant the size of the largest symbolic link or the
size of the temporary to holds the name of a link respectively.

— Size of blocks

File sizes are obtained by a call to thestat() function.

ANDFizing OSF/1 R1.2 commands

ANDFizing the /bin/ls command

10 of 16

This structure is only partially defined by standards bodies, and the size in
number of blocks is part of the information that is defined in some standards
[SVID-3] and not in others [XPG/4-IF]12.

ls.c includes the header<sys/param.h> to obtain the constant
REPORT_SIZE, which is used as disk block size to compute the number of
file system blocks occupied by files in a directory. As XPG/4 requires this
constant to be 512 bytes ([XPG/4-CU], page 446, 1st paragraph) we have
hard-coded this definition into the source code. The originalls.c defined
REPORT_SIZE as the same asUBSIZE which may not have be 512 for all
implementations. This constant was taken from a BSD inherited file:
<sys/param.h> .

The fieldst_blocks of thestat structure has to be multiplied by
S_BLKSIZE to get the actual size of disk space in bytes allocated to this file.
[SVID-3]13 defines this field as being:The total number of physical blocks of
size 512 bytes actually allocated on disk (quoted from [SVID-3], page 6-
135).

The definition ofREPORT_SIZE to 512 bytes is now directly in the file
ls.c , and the header<sys/param.h> is no longer included.

Reference to the constantS_BLKSIZE has been removed and replaced by
the hard-coded constant 512.

— Major and minor modes of devices

With the-l option,ls lists major and minor numbers of devices, that is the
number of the driver and the number of the device respectively. Such
information currently has node jure definition. OSF/1 provides this

12. This is a major drawback and means that thels command could not be written in a fully por-
table fashion,i.e. it is not possible to write an [XPG/4-CU] compliant version ofls using only
information provided by the [XPG/4-IF] API.

13. It is worth noting that there is a small discrepancy in [SVID-3] concerning this field: In the
stat structure fields list (page 5-70 and page 6-133), a C comment in front of thest_blocks
fields says:/* Number of st_blksize blocks allocated for this
object */ , while the description of the field (page 6-135) says:The total number of physical
blocks of size 512 bytes actually allocated on disk. The latter is correct.

ANDFizing OSF/1 R1.2 commands

ANDFizing the /bin/ls command

11 of 16

information in two different ways depending on whether the code is to have
access to the kernel structure or not14:

C Macros if the compiled code is kernel code, ls.c obtains these
macros from the<sys/types.h> include file, which in turn
obtains them from the<machine/types.h> header.

C functions in other cases.

In order to have a public API (i.e. outside of the kernel), the function
mechanism has been chosen:

The two functionmajor() andminor() have been added to the
<sys/types.h> osc12 header.

— Obsolete features of de-jure APIs

Some features are declared obsolete in a given version of an API. This means
that these features might be widthdrawn in futures releases. However, to
ensure maximum upwards portability of source code, many vendors continue
to support the obsolete features of an API as long as they do not conflict with
the current one.e.g.:

[XPG/3-IF] says that constantsS_IEXEC, S_IWRITE & S_IEXEC, used
by ls.c , have been withdrawn and replaced byS_IRUSR, S_IWUSR &
S_IXUSR respectively. However, OSF/1 still provides these definitions in its
header files.

ls.c also uses a feature that has been declared obsolete by XPG/3 and
withdrawn from XPG/4: TheS_IVTX mode of a file. This was used to
indicate that an executable had to be kept as long as possible in swap space in
order to have a faster start-up during the next invocation.

The obsolete features have been added to theosc12 environment.i.e. the
constantsS_IEXEC, S_IWRITE, S_IEXEC & S_IFVTX .

14. If the macro_KERNEL is set, then one gains access to the kernel definitions.

ANDFizing OSF/1 R1.2 commands

ANDFizing the /bin/ls command

12 of 16

— Built-in constants

There is a built-in constant that is logically part of the API used byls but
which have not been placed in any API: The size, in numbers of bytes, of a
user login- or group-name.ls.c had a plain constant (i.e. 16) assuming that
user names will not be longer than 15 bytes15. The typical usage for Unix is 8
bytes.

This plain constant have been changed into a constantLOG_GRP_MAX set to
15 at the beginning of the file.

As OSF/1 does not even provide such a constant in its headers, it has not been
moved to an OSF/1 header. It is worth noting that this will be a limitation of
the ANDFizedls . i.e. it would install properly but would not run properly on
a platform having login names up to, say, 24 characters.

However, this constant is a candidate to be moved into a standard header as
soon as it is supplied by a future API.

— List of messages issued by/bin/ls

To run properly into an internationalized environment,ls.c does not
provide its error messages directly in the source code but accesses them at
run time in a locale-specific file. They are referenced by means of message
numbers found in the”ls_msg.h” header.

The point is: are those constants defining messages part of/bin/ls API?

A scenario for distributing/bin/ls in a both computer-language- and
natural-language-neutral format, would be

• The executable/bin/ls as an ANDF package, and

• One message file for each supported natural language. The choice of the
right message file would be an installation parameter.

15. 16 includes the trailing null char.

ANDFizing OSF/1 R1.2 commands

Status

13 of 16

In such a scenario, the coherency between message numbers and their actual
string counterparts are part of/bin/ls coherency as a whole, and therefore
are not related to any API.

— Visibility of names

As ls is made of only one C modulels.c , all global variables have been
declaredstatic . As the C producer does not keep the name ofstatic
variables, their actual names are not provided in the ‘.j ’ file.

5. Status

The current status is as follows:

• All changes to the source code mentioned in this paper have been
incorporated intols.c .

• A new ANDF API for OSF/1, namedosc12 , based on DRA’sxpg4 have
been created according to this paper. This environment has successfully
generated ANDF headers and a token library for a i386 platform.

The sizes of the various files compare as follows16:

The ANDF generated executable is 10% smaller than thecc generated one.

16. OSF/1 nativecc is derived fromgcc .

File ANDF cc /i386

Object
ls.j
20014

ls.o
29015

Executable 30563 33682

ANDFizing OSF/1 R1.2 commands

Future work

14 of 16

6. Future work

Future work includes:

• Building of an installer for a OSF/1 mips platform based on the Gandf
experiment carried out by Richard L. Ford at OSF-RI in Cambridge (See
[OSF-RF-II-93] for details). This installer will allow a second installation
of /bin/ls .

• ANDFization of other OSF/1 Commands.

ANDFizing OSF/1 R1.2 commands

Future work

15 of 16

7. Bibliography

On operating systems

[ANSI-C] Programming languages - C, from ISO.

ISO/IEC 9899;

[POSIX-IF] Information technology - Portable Operating System
Interface (POSIX) - Part 1: System Application Program
Interface (API) [C language], from ISO.

ISO/IEC 9945-1; IEEE Std 1003.1.

[POSIX-SU] Information technology - Portable Operating System
Interface (POSIX) - Part 2: Shell and Utilities, from ISO.

ISO/IEC 9945-2; IEEE Std 1003.2-Draft.

[XPG/3-IF] CAE Specification - System Interface and Headers,
Issue 3, from X/Open.

ISBN: 0-13-685843-0. Prentice-Hall.

[XPG/4-IF] CAE Specification - System Interface and Headers,
Issue 4, from X/Open.

X/Open Document number: C202; ISBN: 1-872630-47-2.

[XPG/4-CU] CAE Specification - Commands and Utilities - Issue 4,
from X/Open.

X/Open Document number: C203; ISBN: 1-872630-48-0.

[SVID-3] System V - Interface definition - Issue 3, from AT&T.

[AES] Application Environment Specification - Operating
System - Programming Interfaces Volume - Revision A,
from OSF.

ISBN: 0-13-043522-48-8; Prentice-Hall.

ANDFizing OSF/1 R1.2 commands

Future work

16 of 16

On the ANDF technology

[DRA-XII-92] The TDF specification - Issue 2.0 Revision 1 - December
1992.

The Defence Research Agency, St. Andrews Road, Malvern, Worcestershire,
WR14 3PS, United Kingdom.

[OSF-SM-I-93] Porting with ANDF by Stavros Macrakis, from OSF.

6th article of OSF’s ANDF Collected papers, Vol. 1, January 1993.

[OSF-RF-II-93] GANDF: status and design by Richard L. Ford, from
OSF.

2nd article of OSF’s ANDF Collected papers, Vol. 2, March 1993.

Copyright 1993 by Open Software Foundation, Inc.

All Rights Reserved

Permission to reproduce this document without fee is hereby granted, provided that the copyright notice and
this permission notice appear in all copies or derivative works. OSF MAKES NO WARRRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for any direct or indirect, incidental, special or consequential
damages in connection with the furnishing, performance, or use of this material.

