
6/29/93 04:37 pm richford@osf.org 1 of 18

GANDF:Status and Design
Richard L. Ford

Open Software Foundation Research Institute

April 7, 1993

GANDF is an experimental ANDF installer component,
based on the GCC back-end technology. Details of the
design of GANDF and its current status are presented.

1. Introduction

ANDF is an architecture- and language- neutral distribution format being
developed by OSF and other collaborators around the world. It is based on
the TDF technology provided by the Defence Research Agency (DRA) of
the UK Ministry of Defense.

GANDF is an experimental ANDF translator being implemented at the
Open Software Foundation (OSF) Research Institute (RI), based on the
back-end technology of the Gnu C Compiler(gcc), produced by the Free
Software Foundation, along with some support routines from the DRA
technology.

The primary objective of GANDF is to show that ANDF installers can be
successfully built by interfacing ANDF to existing compiler back ends.
Thus system vendors can make use of ANDF while still preserving their
compiler investments. Secondary objectives are to increase the availability
of ANDF installers and to help educate others in the technology needed to
write ANDF tools.

An ANDF installer is considered “successful” if it produces code that is
correct and that has efficiency that is close (within 5%) to that produced by
the best non-ANDF technology. The installers that DRA has developed
(targetted to the Intel 386, Motorola 68k, MIPS, and SPARC) achieve this
level of efficiency (for selected benchmarks) when used in conjunction with



GANDF:Status and Design

Status

2 of 18

the DRA C producer. One question to be answered by the GANDF
experiment is whether similar efficiency can be achieved by an installer that
does not have detailed knowledge of the strategy of the ANDF producer. In
other words, does the ANDF itself carry enough information for generation
of efficient code, or must one also know something about the patterns of
ANDF that the producer will produce?

More specifically, we would like to see whether an ANDF installer based on
a particular back-end technology (e.g. the GCC back end) can achieve
parity with a C compiler based on that same back end. Similar questions
should be investigated for other languages (e.g. Fortran, Cobol) when
producers for those languages become available.

The reader is referred to the paper “GANDF: A GCC-based ANDF
Translator” for further background information on GANDF.

2. Status

GANDF is still under development. Currently it supports 75 of the 87
ANDF expression operators. This subset is sufficient to support ANSI C.
Implementation of this subset was completed recently and there still are a
few bugs left. Here is a summary of work still remaining to complete the
GANDF project:

• Implement Pointers to bitstrings

• Support Debugging (-g)

• Implement local label constructs

• Support error treatments

• Implement long_jump.

• Implement “visible” attribute of variables, environments, and variable
access using environments

• Implement local allocation constructs

• Implement “round_as_state” argument of the round construct

• Our GANDF work thus far revealed one feature of ANDF that could not be
implemented while conforming to the C ABIs on the platforms that GANDF
is presently targeted to. That is the feature of ANDF which allowed a single



GANDF:Status and Design

Status

3 of 18

procedure to return more than one type of result, depending on which return
statement was executed. This feature, which is not needed to implement C or
any other language we know of, has been removed from the latest ANDF
draft (not yet published).

• Recognize when a procedure has a variable number of arguments. Currently
we always assume this is the case, but that assumption requires a more
costly entry and exit sequence than is necessary in the common case.

• Put out GCC loop notes. Loop notes are marks in GCC’s RTL code that let it
know where the beginning and ending of the loop are. The thing that
prevents doing this from being straightforward is that the not all of the code
in the body of an ANDF repeat operator is necessarily really in the loop. For
example, the body of a repeat construct could include a branch of a labelled
construct which does some calculation and then exits the loop. This
problems should probably be solved by breaking the ANDF code into basic
blocks first and detecting the presence of loops. Currently, because of the
absence of these marks, GANDF is not doing any loop optimizations.

• We can’t think of any real reasons why GANDF code should be any worse
than GCC code. After the obvious impediments to good code (mentioned
above) are removed, if GANDF still produces poorer code than GCC, then
we will have to study why. One possibility is that there are “implicit
contracts” between the GCC front end and back end, or between the DRA
producers and installers.An example of this would be an installer which only
optimized certain ANDF patterns and an associated producer which made
sure to produce those patterns. If the installer then was used to install ANDF
from another producer which did not take pains to produce those patterns,
the code produced might be poor. Alternately, if an installer did not know
what special patters were being produced by an producer, it might not be
able to optimize as well as one that did. One solution to this is to make the
implicit contracts more explicit. That is what things like GCC’s loop notes
are. Perhaps ANDF will also need some way of adding annotations (the
token mechanism would be one possibility). Or maybe ANDF might need to
be enhanced in some other ways to avoid the performance penalty.

GANDF has been configured and tested on these seven platforms:

• HP PA-RISC 1.1/HPUX

• IBM RS-6000/AIX

• DEC ALPHA/OSF1

• Intel 386/OSF1



GANDF:Status and Design

Status

4 of 18

• Intel 386/SCO 3.2.1

• MIPS/Ultrix

• SPARC/SUNOS

As an example of how easy it is to configure GANDF for a new target (that
is supported by GCC), Andy Johnson got GANDF working on three of the
above platforms in a single week.

GANDF Source Size Statistics

To give some idea of the size of the components of GANDF, here are the
number of lines of source code, including comments, for them:

• GCC component: 432k lines, of which 285k lines are target independent
code and 147k lines are target dependent (machine descriptions or
configuration files). This includes only the part of GCC that GANDF is
actually using, and does not include files automatically generated from the
machine descriptions.

• DRA component: 24k lines. This is just the part used by GANDF.

• OSF component: 6k lines. When GANDF is completed this is likely to be
more like 8k lines.

A complete installer will also require a token binder. The current token
binder, tld, is about 7k lines of source.

Effort Expended So Far

The GANDF project was started August 18, 1992 so it has been about 7
months since it was started. However, GANDF has not been a full-time task
during that time period (my guess is about half time). The following figures
are an estimate. More precise figures will be available at a later time. About
600 total hours have been spent. Estimated percentages of time spent are as
follows:

• 30% studying GCC, validating GCC revisions by bootstrapping it on various
platforms, building GAS and GDB.

• 10% studying DRA installers



GANDF:Status and Design

Status

5 of 18

• 5% building the DRA tools on various platforms, including creating the
target-dependent token definition libraries

• 5% studying the instruction set architectures of target machines.

• 50% actual time spent designing, coding and testing the OSF component of
GANDF.

As can be seen, only about 300 hours of time was spent on the actual
designing and coding of the OSF part of GANDF. Much of the time was
spent getting familiar with the target back-end technology. If someone
already familiar with a compiler back-end technology were to take GANDF
and adapt it to their back end, it should take less than this amount of time, at
least to get to an equivalent stage of development (GANDF is not finished
yet).

GANDF Test Results

GANDF was tested using these test programs:

• As a preliminary to more complete testing, I used the Plum-Hall Sampler
tests. This is a collection of 79 simple tests of a variety of ANSI C features. I
used passing of the sampler as a prerequisite to attempting to run the
following tests.

• Plum-Hall Version 3 ANSI C conformance suite. We did not run the library
tests because many of the systems do not support the full ANSI C library.

• Benchmarks: We use the integer SPEC benchmarks (gcc, espresso, li, and
eqntott) and the dhrystone benchmark.

• The XFIG Drawing Program

• The Informix WINGZ spreadsheet.

One point that should be made regarding these results is that all of the
versions of GCC that have been used are advanced experimental versions,
not production versions. Thus it should come as no surprise that these
versions are not completely stable.

The ports to the Alpha and MIPS platforms are still in a preliminary stage
and although they are passing a significant number of individual test points,
they have not yet been able to execute these tests without failing some test
points.



GANDF:Status and Design

Status

6 of 18

The problems with the Alpha port are due to the immaturity of the GCC
port to the Alpha. We have used two versions of GCC for the Alpha port.
Using GCC 2.3.1 the Alpha was able to pass 71 of the 79 Plum Hall
Sampler tests. One problem with GCC 2.3.1 was that its method of handling
variable numbers of arguments was not consistent with the native compiler,
so calls to library routines with va_list arguments (like vsprintf) do not
work. I then upgraded to GCC 2.3.3+-alpha, a version of GCC 2.3.3 which
has additional fixes for the alpha. This version of GCC does handle variable
numbers of arguments in a compatible way. Unfortunately, this version of
GCC requires Version 1.2 of the Alpha OSF/1 system software which we
have not received. Thus this port is currently on hold.

We haven’t really investigated the problems on the MIPS yet, but it appears
that it is probably a simple configuration problem, because some of the tests
are giving unaligned address traps.

The following test results apply to the remaining platforms (other than the
Alpha and the MIPS).

GANDF has passed the Plum-Hall Version 3 ANSI C conformance suite,
without optimization, on all of remaining platforms. When optimization is
enabled the remaining platforms all still pass the Plum Hall tests except for
the RS/6000 which fails one of the expression tests (this is not due to a
problem in the ANDF to GCC translation, but the exposing of a latent GCC
back-end bug).

The Benchmark programs have successfully run on all of the platforms that
can run the Plum Hall tests successfully, except that on the RS/6000 a few
workarounds are necessary to get the gcc benchmark to run, and on the
SPARC even with the workarounds the gcc benchmark is not giving correct
results. On the platforms where the Benchmarks ran successfully with the
optimizer enabled, the GANDF code is running about 20% slower than the
GCC code (using the same GCC on which GANDF is based). We believe
that the reason that GANDF code is slower than GCC is largely due to the
factors alluded to above, namely always assuming a variable number of
arguments, and the lack of loop notes. However, we will have to wait until
we have solved those problems before we can say for sure.

The XFIG Drawing program has successfully executed, without
optimizations, on all of the platforms except the Alpha (which we did not



GANDF:Status and Design

DESIGN

7 of 18

attempt). When the optimizer is turned on, only the SPARC and Intel
386/OSF1 platforms are still able to successfully execute XFIG.

The WINGZ spreadsheet is only executing successfully on the two i386
platforms. On the others WINGZ is able to start up (usually), but does not
execute correctly. Clearly GANDF still has a few bugs that need fixing.
However, we do not know whether these bugs are in GANDF proper (i.e.
the OSF component), or in either the DRA or GCC components. Since our
WINGZ source license is only on a single platform, we cannot try building
it with GCC on the other platforms.

3. DESIGN

Overall Structure

GANDF reads the ANDF form of a program (or program fragment) and
produces the assembly language form of that program. GANDF is
comprised of the DRA component, the GCC component, and the OSF
component. GANDF does its work in the following (logical) phases. We
mark each phase with the component responsible for that phase.

• Top level control and option processing (GCC)

• While Decoding ANDF, also do constant folding, expansion of tokens,
expansion of conditional compilation constructs (e.g. exp_cond), and other
optimizations to be done while reading the ANDF. The result of this phase is
an internal representation of the ANDF for the program. (DRA)

• Translate the internal form of ANDF into the GCC abstract syntax tree form.
(OSF)

• Translate the GCC abstract syntax tree form. into the GCC RTL (register
transfer list) form. (GCC)

• Optimize the GCC RTL form, then convert it into assembly language. (GCC)

There currently is no publicly available documentation of the DRA
component, but it is mostly straightforward once one understands the
internal representation it uses for ANDF. DRA does have documents
describing their installers. The DRA component of GANDF is a target-
independent subset of the DRA code for their installers.



GANDF:Status and Design

DESIGN

8 of 18

The GCC component uses all of the parts of the GNU C compiler except the
C lexer and parser. The internals of GCC are described in the
documentation the accompanies GCC. GANDF is currently using variants
of GCC, version 2.3.3 [we are using variants in order to get some of the
latest work done by the University of Utah for the PA-RISC, and by Richard
Kenner of NYU for the DEC Alpha].

This rest of this section will concentrate on the design of the OSF
component.

ANDF Internal Representation

GANDF uses the internal representation for ANDF that is produced by the
DRA component. This mostly consists of expression nodes (the C typedef
“exp” is a pointer to such a node), but there are also declaration nodes
(typedef “dec” points to such) which are only used to provide extra
information (e.g. external name, if any) for top-level expressions. There is a
declaration node for each top-level tag that is either declared or defined.

The ANDF declaration nodes of the top level tags form a linked list whose
head is pointed to by variable “top_def”. Each such declaration has a
pointer to an exp node which forms the root of the exp tree representing the
definition or declaration. Thus one traverses the ANDF internal
representation by traversing the list of declaration nodes and for each
calling a recursive routine to walk the corresponding ANDF expression tree.

Each ANDF exp node has a code (called a “tag” internally, and not to be
confused with ANDF TAGs) that is used to tell what ANDF operator it
represents. Most fields of an exp node are accessed via a C macro. For
example, name(e) will get the code (tag) telling what kind of expression
node e is. There is a mostly one-to-one correspondence between these codes
and the ANDF expression constructs. However, some codes represent more
than one kind of ANDF construct. For example, the ident_tag code is used
to represent the variable and the identify constructs, as well as the formal
parameters of a procedure. Such an exp node has an “is_var” bit which will
be true for variable constructs or parameters, and an “is_param” bit which
will be true for formal parameters. On the other hand, there are some codes
that represent some special cases of a more general ANDF operator.
Handling these as special cases makes it easier to produce good code. For



GANDF:Status and Design

DESIGN

9 of 18

example, reff_tag is a special case of the add_ptr construct when the offset
argument is a constant.

“Son” and “brother” fields of exp nodes are used to form exp trees. son(f) is
the first son of exp node f, bro(son(f)) is f’s second son, and so on. There
also is a “last” field. last(s) is true if s is the last son of its father. In that
case, bro(s) points back up to the father rather than really being a brother
field (this had me really confused until I figured it out). Sharing the same
field for both brother and father helps to keep the representation more
compact.

In some cases there are nodes, e, such that name(e) is 0, rather than having a
normal code. These are used to represent certain ANDF EXP lists, for
example, the “statements” argument of the sequence construct is such a
node and its children are the individual statements.

There is one case where the son field does not really represent a son, namely
for the obtain_tag construct (internal code of name_tag). In this case son(e)
points to the exp representing the introduction of the tag. Thus when
recursively traversing an ANDF exp tree one must be careful not to recurse
on the operand of the obtain_tag construct.

Not all ANDF operands are represented using pointers to other exp nodes.
Some operands are guaranteed to be constants at install time so they are
represented as integers within the exp node. In fact, most of the fields of exp
nodes are declared as unions so that they can hold either pointers of some
sort (exp or dec or to a character string or to diagnostic information), or
integers or floating point numbers. Macros are used to make accessing a
field as a particular type convenient.

One important field in each exp node tells its shape. Actually ANDF shapes
are also represented by exp nodes, but they have their own independent set
of “shape codes” so one must know when looking at an exp node whether it
represents a shape or a “normal” expression. In the external ANDF form
most EXP nodes do not have their shape specified explicitly. The shape field
in the internal form is produced as part of the “static semantic analysis” that
is done by the DRA component code as the ANDF is being decoded. The
shape of an exp node is deduced from the shape of its operands and, in some
cases, from an explicit shape operand that tells what shape it should have
(e.g. the change_variety construct).



GANDF:Status and Design

DESIGN

10 of 18

GCC Abstract Tree Representation

The output of the OSF component of GANDF is the GCC abstract tree
representation (also called expression trees, or just trees for short).
Alternately, GANDF could have chosen to produce the GCC RTL
representation directly. However, going to the TREEs has the advantage that
it is target independent (mostly) and simpler than the RTL. For full details
of the GCC TREE representation, the sources of GCC should be consulted,
in particular the files tree.def and tree.h. I will here just give a brief
description of its main features. The GCC representation actually includes
more than tree nodes (e.g. the binding level stacks), but I will ignore most
of those other details in this paper.

The tree structure is a collection of tree nodes which are linked together by
means of pointer fields in the nodes. Each node is a variant structure.
Sometimes the fields of the node structures have more than one use,
depending on the setting of other fields. Generally C macros are used to
access information in the tree nodes, and if a component of a node is used in
more than one way, there will usually be a distinct C macro for each. For
example TREE_CODE(e) is the expression used to reference the field
which tells which kind of tree node is pointed to by e. There are 122
different tree codes in GCC 2.3.3 The tree codes are classified into one of 11
tree code types. A character is used to denote each tree code type. I’ll now
describe the tree code types and list their tree codes. In most cases the
meaning of a tree code is evident from its name.

• “d”, declarations: FUNCTION_DECL, LABEL_DECL,
CONST_DECL,TYPE_DECL, VAR_DECL,
PARM_DECL,RESULT_DECL, FIELD_DECL. The declaration nodes are
used not only to represent the information in a declaration, but also to
represent a reference to the declared item. Thus the operands of the
PLUS_EXPR node for “I+J” would be pointers to the VAR_DECL nodes
representing the declarations of I and J.

• “t”, types: VOID_TYPE, INTEGER_TYPE, REAL_TYPE,
COMPLEX_TYPE, ENUMERAL_TYPE, BOOLEAN_TYPE,
CHAR_TYPE, POINTER_TYPE, OFFSET_TYPE, REFERENCE_TYPE,
METHOD_TYPE, FILE_TYPE, ARRAY_TYPE, SET_TYPE,
STRING_TYPE, RECORD_TYPE, UNION_TYPE, FUNCTION_TYPE,
LANG_TYPE.



GANDF:Status and Design

DESIGN

11 of 18

• “c”, constants: INTEGER_CST, REAL_CST, COMPLEX_CST,
STRING_CST.

• “r”, memory references: COMPONENT_REF, BIT_FIELD_REF,
INDIRECT_REF, OFFSET_REF, BUFFER_REF, ARRAY_REF.

• “1”, unary expression operators: FIX_TRUNC_EXPR, FIX_CEIL_EXPR,
FIX_FLOOR_EXPR, FIX_ROUND_EXPR, FLOAT_EXPR,
NEGATE_EXPR, ABS_EXPR, FFS_EXPR, BIT_NOT_EXPR,
CARD_EXPR, CONVERT_EXPR, NOP_EXPR, NON_LVALUE_EXPR,
CONJ_EXPR, REALPART_EXPR, IMAGPART_EXPR

• “2”, binary expression operators:PLUS_EXPR, MINUS_EXPR,
MULT_EXPR, TRUNC_DIV_EXPR, CEIL_DIV_EXPR,
FLOOR_DIV_EXPR, ROUND_DIV_EXPR, TRUNC_MOD_EXPR,
CEIL_MOD_EXPR, FLOOR_MOD_EXPR, ROUND_MOD_EXPR,
RDIV_EXPR, EXACT_DIV_EXPR, EXPON_EXPR, MIN_EXPR,
MAX_EXPR, LSHIFT_EXPR, RSHIFT_EXPR, LROTATE_EXPR,
RROTATE_EXPR, BIT_IOR_EXPR, BIT_XOR_EXPR, BIT_AND_EXPR,
BIT_ANDTC_EXPR, TRUTH_AND_EXPR, TRUTH_OR_EXPR,
IN_EXPR, RANGE_EXPR, COMPLEX_EXPR

• “<” comparison operators: LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR,
EQ_EXPR, NE_EXPR, SET_LE_EXPR

• “e”, other expressions: CONSTRUCTOR, COMPOUND_EXPR,
MODIFY_EXPR, INIT_EXPR, TARGET_EXPR, COND_EXPR,
BIND_EXPR, CALL_EXPR, METHOD_CALL_EXPR,
WITH_CLEANUP_EXPR, TRUTH_ANDIF_EXPR,
TRUTH_ORIF_EXPR, TRUTH_NOT_EXPR, SAVE_EXPR, RTL_EXPR,
ADDR_EXPR, REFERENCE_EXPR, ENTRY_VALUE_EXPR,
PREDECREMENT_EXPR, PREINCREMENT_EXPR,
POSTDECREMENT_EXPR, POSTINCREMENT_EXPR

• “s”, expressions with side effects: LABEL_EXPR, GOTO_EXPR,
RETURN_EXPR, EXIT_EXPR, LOOP_EXPR

• “b”, blocks: BLOCK

• “x”, codes fitting no category: ERROR_MARK, IDENTIFIER_NODE,
OP_IDENTIFIER, TREE_LIST, TREE_VEC

OSF Component Phases

The OSF component itself operators in three phases:



GANDF:Status and Design

DESIGN

12 of 18

• An information collection pass. This pass is not yet implemented.

• An edit-declare pass. This pass would do ANDF to ANDF transformations
(it doesn’t do any of these yet) and makes GCC tree declarations for the top
level tags (i.e. variables and procedures) so that they will be declared when
needed in the third phase.

• A translation phase which does that actual translation from ANDF to GCC
trees.

Currently the edit-declare phase and the translate phase are both
implemented by a single procedure, andf_to_tree, which analyzes an ANDF
expression and returns a representation of it in terms of GCC trees. During
the edit-declare phase, andf_to_tree does not recurse and ignores variable
initializations, thus it only does declaration processing. Then during the
translation phase it fully recurses, thus producing the GCC tree
representations of the executable code and variable initializations.

Translation of Shapes

A basic part of translating an ANDF expression is finding the GCC data
type that corresponds to the expression’s ANDF shape. This translation is
performed by routine andf_shape_to_tree. Every ANDF exp node (whether
a shape or “normal”) has two fields that can be used to save information
about the translation of the node. Thus a node only needs to be translated
once. If it is referenced several times, its first translation will be reused on
subsequent times. For shapes, the saved translation information is a pointer
to the GCC tree for the type representing the shape.

Here are the GCC types used to represent ANDF shapes:

• bottom and top are represented by void_type_node, corresponding to the C
type void.

• GCC has signed and unsigned integer types with sizes powers of 2 up to the
largest supported size. GCC supports long long, so on 32 bit platforms it
supports up to 64 bit integers and on 64 bit platforms, up to 128 bit integers.
The ANDF integer variety shapes map to the smallest of these that will hold
its range of values.

• GCC supports float, double and long double types (the latter two are not
necessarily distinct). These are used to represent the ANDF floating varieties.



GANDF:Status and Design

DESIGN

13 of 18

• ANDF bit fields usually cannot be represented as a simple GCC type (see
explanation later), but under some circumstances they are represented using
GCC structures.

• The ANDF proc shape is represented using a function type returning void
without any information about it arguments. This is necessary because
ANDF does not provide any of that information with its proc shape. Later,
variables of shape proc (corresponding to C pointers to functions) must be
cast to function types with the correct return type and arguments, in order to
be processed correctly by the GCC back end.

• All ANDF pointer shapes(except pointers to bitstrings which are not yet
implemented) are represented as pointers to char. This is necessary so that
pointer arithmetic will be done correctly, since the ANDF offsets already
take into account the size of the items that the pointer points to.

• Offsets are represented as signed integers of the same size as pointers. It is
necessary that they be signed since ANDF offsets can be negative. Currently
bit-resolution offsets are not implemented (except for constant bit offsets
which are handled specially, see below), only byte-resolution offsets. One
issue that will need to be resolved for bit-resolution offsets is whether to use
double-sized offsets for them or just to use the same size. In the former case,
bit resolution offsets could cover the whole address space, whereas in the
latter case only 1/16 of the space could be covered (1/2 because they are
signed and 1/8 because 3 bits are needed to give bit within the byte).

• In ANDF, sizes are represented by offsets. However, internally in the DRA
representation there is a separate “size” shape. I don’t recall where it came
from, but I represent it using an unsigned integer represented in a native
“word”.

• ANDF has a “compound” shape which is used to represent fixed-sized
aggregates such as structures and unions. However, unlike languages like C,
ANDF does not tell what fields are in the “compound”, only its size and by
implication its alignment. Since we don’t have information about the
components, one might think that these should be represented as arrays of
bytes. However, owing to its C heritage, GCC does not treat arrays quite as
first class citizens. For example, it does not allow arrays as function return
types. For this reason, we represent compound shapes using C structures
which have a single component which is a byte array of the appropriate size.
You might think that there would be difficulty later when it is necessary to
select a component from such a structure (these arise from explicit pointer
arithmetic in ANDF). How that problem is solved is discussed later.



GANDF:Status and Design

DESIGN

14 of 18

• The ANDF NOF shapes are not represented as arrays, as one might expect,
because of GCC’s deficiencies in handling arrays (as mentioned above).
Instead structures are used for these also. An additional problem I
encountered when I initially tried to use arrays was that the DRA code was
digesting the NOF shapes so much (it reduces an NOF to its alignment and
size) that is was not possible to come up with appropriate array types. This
is a problem that would not have arisen if an internal representation for
shapes had been chosen that more closely mirrored the original ANDF.

• The local label shape is not currently supported. However, GCC allows label
variables, so when these are supported I will use whatever type GCC uses
for its label variables.

Translation of ANDF expressions

The andf_to_tree function is the main recursive procedure for translating
ANDF exp nodes into GCC trees. Actually, andf_to_tree’s return type,
gandf_trans, is more complex than just a GCC tree node. The reason for this
is that not all ANDF nodes can efficiently be represented as simple GCC
trees. gandf_trans is a typedef that is a pointer to a gandf_trans_node
structure. These structures are dynamically allocated, as needed, to
represent the results of translating an ANDF expression. The gandf_trans
type has the following purposes:

• In the simplest case, its base_tree component will point to the GCC tree
representing the translation of the expression.

• For pointer (address) expressions, it can hold the base address, run-time
offsets (with a constant factor) and a constant bit offset as separate
components of the translated value. This allows constant parts of addresses
to be combined at compile time instead of at run-time.

• To handle offset expressions efficiently. As with pointer expression, offset
expressions can be handled more efficiently by constant on non-constant
components to the offsets.

• To handle bitstring results, which also need to have information about the
wide of the bitstring and whether it is signed or not. Also ANDF bitstrings
can result either from a memory reference or by converting an integer
expression to a bitstring. In both of these cases, the GCC code cannot be
produced until it is seen what context the bitstring will be used in. Thus the



GANDF:Status and Design

DESIGN

15 of 18

gandf_trans result for a bitstring just captures the information about how the
bitstring was created and it is then processed further when the bitstring is
used.

Time does not permit giving the complete details of the translation of the
ANDF operators, at this time, so the remainder of this section will just
touch on the high-lights.

The array andf_tree_code is used to map ANDF codes to GCC tree codes
for the 38 ANDF operators which have a straightforward translation into
GCC codes (this are mostly unary and binary expressions).

A utility routine, andf_proc_to_tree, is used to set up a GCC function
definition tree.

ANDF uses explicit pointer arithmetic to get the address of array elements
and structure components, then uses the contents construct to reference the
data item at that address. When such a pointer value is at an variable offset
from the base address, GANDF uses explicit pointer arithmetic and the
INDIRECT_REF (like C’s * operator) operator to reference the data. When
the offset relative to the base address is constant (such as would be the case
for a component of a C structure), GANDF uses a COMPONENT_REF.
One problem that had to be faced here was whether it was going to be
necessary to create dummy structure types with components at the
appropriate offsets in order to make use of the COMPONENT_REF
operator. As it turned out, we do need to have a field declared with the
appropriate type and offset, but it is not necessary that it be declared in the
structure type you are accessing. Thus GANDF uses a hash table to keep
track of fields that it has declared with each type and bit offset (and width, if
it was a bitstring). Another place where there might have been a problem
was in initializing such structures. As it turned out, even then it was not
necessary to create full structures with fields at the proper offsets. GCC has
a facility where initial values of structure can be labeled with the component
that they are to initialize. GANDF was able to make constructors with such
explicit labels. In that case, GCC does not bother to check that the fields
being selected are actually part of the structure being initialized. However, it
might be that some other compiler back ends will be more rigid than GCC.
In that case, it might be necessary to do a more thorough analysis of ANDF
memory reference patterns, in order to try to recover some of the data
structure information that is lost in ANDF.



GANDF:Status and Design

DESIGN

16 of 18

As alluded to above, pointer, offset, and bitstring constructs do not return a
single GCC tree result, but rather a structure used to accumulate (at install
time) such expressions. When it is necessary to reduce such a result to a
single GCC tree expression, the trans_tval routine is used to combine the
various components into a single tree.

For the conditional construct, the result is either first expression, if it
terminates normally, or the alt expression otherwise. When the shape being
returned is TOP (i.e. actually no meaningful result), this can be
implemented using flow of control operators. However, when a meaningful
result is being returned, it is necessary that a temporary variable of the
appropriate shape be created and passed to the subsidiary expressions.
When andf_to_tree is called with such a suggested target, it assigns the
result of translating the expression into the target. Similar techniques are
used to translate the repeat, labelled, and sequence constructs when they
return a meaningful result.

The work that andf_to_tree does is factored into two parts. First there is a
switch statement that is used to preprocess the arguments to the expression
according to one of these schemes:

• All of the arguments are translated (by recursive calls to andf_to_tree) and
the results of their translation saved in handy local variables (t1, t2, etc.)
while the untranslated arguments are saved in local variables (e1, e2, etc.).
This scheme e is used for things like binary operators which always must
have their arguments evaluated before they can be evaluated.

• The untranslated arguments are saved in local variables (e1, e2, etc.), but the
arguments are not translated yet, because they must be translated in a
specific order. This scheme is used for flow of control constructs like
sequence, conditional, and repeat, as well as some other others that need
special processing.

• The obtain_tag construct is handled specially. I mentioned before that each
exp node could save up to two translated results. Ordinary expressions save
only one, but declarative constructs like identify and variable need to save
two results: the tree node of the declaration of the tag that they introduced,
and the result of translating the body of the construct. In the case of
obtain_tag, its operand is a pointer to the variable or identify construct that
introduced the tag being referenced. This scheme will fetch the declaration
translation into local variable t1.



GANDF:Status and Design

Conclusions

17 of 18

After the above switch statement has done some standard processing of the
operands of the expression, there is another switch statement which
completes the processing for each expression.

The operations on pointer, offset, or bitstring operands are characterized by
sometimes lengthy case analysis on the translations of their operands (e.g.
does operand 1 have a constant bit offset, does operand 2 have a run-time
offset, etc.)

For a number of ANDF constructs that return aggregate results (e.g.
concat_nof), the GCC CONSTRUCTOR operator was indispensable. This
operator allows one to build a structure value in which the components have
the specified expressions as values. Any back end wishing to translate
ANDF would do well to make sure it has such a powerful building block to
use.

One unexpected thing I discovered was that a number of the operations
which are binary in the external ANDF are extended in the internal
representation to be n-ary. My initial implementation of these only looked at
the first two operands. In the cases where the DRA decoding code had made
some of these n-ary, I was losing part of the computation. Of course it was
relatively easy to handle these as n-ary once I knew that it was necessary.

DRA suggests that the make_value construct not result in any code.
However, I found difficulty in doing this because the make_value was used
in contexts where some value for it was needed (e.g. it was the definition of
an identify whose tag is referenced). Perhaps a better analysis of the ANDF
could eliminate such references to undefined values, but for now I’m
supplying a zero value for make_value.

For the identify construct, I use GCC’s save_expr tree code. This operation
is such that even if there are multiple reference to the tree node, the
expression will only be evaluated once. Subsequent references will get the
value from the first evaluation (which will have been saved somewhere).

4. Conclusions

The GANDF experiment is not yet complete, but our results so far are
encouraging. Final conclusions must await the completion of the



GANDF:Status and Design

Conclusions

18 of 18

experiment, but we believe the results so far show that interfacing ANDF to
an existing compiler back end is practical and relatively easy to do, and that
the result will probably produce code with quality comparable to that of a
native compiler based on the same back end. In addition, for a retargetable
back end like GCC, the additional effort to get additional ANDF installer
targets is quite small.

For further information please contact:

Richard Ford
richford@osf.org
(617) 621-7392

Copyright 1993 by Open Software Foundation, Inc.

All Rights Reserved

Permission to reproduce this document without fee is hereby granted, provided that the copyright notice and
this permission notice appear in all copies or derivative works. OSF MAKES NO WARRRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for any direct or indirect, incidental, special or consequential
damages in connection with the furnishing, performance, or use of this material.


