A syntax improving program

By J. M. Foster*

A program called SID has been written which accepts as data a grammatical definition of a
language and attempts to transform it into an equivalent grammar which can be parsed by a
simple one-track parsing algorithm. Not all grammars can be so transformed, and if SID fails
it reports the reason for its failure. If it succeeds, it further transforms the grammar rules that
it has produced into a fast-running compiler written in machine code.

(First received September 1967)

Compilers which use a syntactic description of the lan-
guage that they are translating are desirable because of
their convenience and flexibility, but they are often slow.
Syntax analysis programs which are capable of working
for all possible phrase-structure grammars are unlikely
to be fast, and so, in order to achieve a tolerable rate of
translation, various classes of well-behaved grammars
have been used (Floyd, 1963; Johnson, 1965). This is
sometimes unsatisfactory because the way in which the
grammatical rules of the language have to be written
conflicts with the natural structure, and because a gram-
matical definition suitable for one system may not transfer
unchanged to another.

In order to reduce some of these difficulties, a program
called SID (Syntax Improving Device) has been written
which attempts to transform a grammatical definition
into an equivalent grammar which can be parsed by a
simple one-track parsing algorithm. If it succeeds, it
transforms the grammar rules that it has produced into
a fast-running compiler written in machine code.

The ability to recognize that a string of characters
belongs to a language does not constitute a compiler,
and so SID carries out its transformations on the
syntax and translation mechanism together, thus
obviating the need for the compiler writer to work in
terms of the transformed rules.

If SID succeeds, the grammar that it produces is
capable of analysing a string at any point in terms of
the next character and the previous analysis record,
without any back-tracking (Floyd, 1964). The grammar
is also unambiguous. Being sure of unambiguity is not
easy by hand, and this has proved one of the more useful
features of the program.

SID assumes little about the nature of the translating
functions, and so it can be used for a variety of lan-
guages. It has been used to produce part of an ALGOL
compiler, to help in the development of a new language
and a compiler for it, and in the development of a
pseudo-English query system.

The efficiency aimed at can be illustrated with the
syntactic description of a number, discussed below, for
which the final output of SID corresponds to the
following ALGOL program, though the output is
actually in machine code.

t := character;

if ¢ > 10 then goto failure;

tl :=t; t := character,

n:.=tl;

label: if t << 10 then begin ¢1 := ¢; ¢t := character;
n:=nx 10 + t1;
goto label
end

The function ““character” reads successive items from the
input.

Part of an ALGOL compiler produced by SID has
been compared with a hand-written compiler. The
version produced by SID was about 50%, longer and ran
at about the same speed, but it checked the syntax
completely, which the hand-written one did not.

SID is written in ALGOL, and uses list-processing
features developed on RREAC for ALGOL.

The translating routines

A syntax is generally considered to be a passive
description of the legal sentences of a language. The
syntax

(sentence) ::=pgqr|stu

means that the two possible sentences are p g r and s ¢ u.
Alternatively, the syntax can be considered to represent
an active recognizer for the sentences of the languages.
Instead of the p in the definition representing the letter
p, it means a program which reads a character and makes
sure that it is p. The grammatical class names (the non-
terminal symbols) are likewise active; the {sentence) in
the example is a recognizer which reads characters and
is satisfied by either pgr or st u. So the whole syntax
can be regarded as an active recognizer. This is equi-
valent to the method known as top-to-bottom analysis.
It is a simple extension to allow the symbols occurring
in the syntactic definition to stand for not merely recog-
nition programs, but any programs. They are under-
stood to be obeyed at the moment in the recognition
process corresponding to their placing in the syntax. If
these routines are those which produce the output from
the analysis, then the difficulty about transforming the
translation mechanism has been removed. Any trans-

* Royal Radar Establishment, Malvern; (now at Aberdeen University).

" $10Z ‘9z Arenuer uo 1senb Aq /B10's[euIno [paoxo- jufwody/:dny woly pepeojumoq

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

Syntax improving program

formations on the syntax which would produce an
equivalent grammar if the routines were all ordinary
basic symbols, will give a recognizer which will produce
the same translation as the original. For such trans-
formations do not affect the order in which the routines
are obeyed when a particular string of characters is
recognized.

Consider the process of reading and forming the
value of a number. When the first digit is read its value
is assigned to a variable. Subsequent digits cause the
variable to be multiplied by ten and the new digit added
to it. This could be denoted in a particular example by

12287838

where « is the operation
n:.:=1

t being the value of the last character, and B is
n:=nx10-+¢

The interpretation is that « and B are carried out at the
points in the string of characters where they occur. An
active syntax with operations can be written for this
string.

{number) ::= {digit) « |

{number) {digit) B

It happens that in this case the translating operations
are at the end of the productions, but this is not so in
the equivalent productions

{number) ::= {digit) o {continue)
{continue) ::= ¢ | {digit) B {continue)

where ¢ represents the empty string of characters. This
is an example of the sort of change which SID carries out.

Transformations on the syntax

The first transformations which SID applies remove
left recursion. Such productions as

{number) ::= (digity | {number) {digit)

give rise to difficulty because the top-to-bottom algorithm
does not terminate unless precautions are taken. In
fact this syntax could cause the {number) recognizing
routine to be continuously activated. To avoid this
the rules are transformed so that it is not possible to call
a recognition program while it is still active, unless a
character has been read in between. This is just the
transformation needed to turn the syntax into the form
suitable for predictive analysis. Such a transformation
always exists, and can be made to preserve ambiguity
(Greibach, 1964).

The transformation can be illustrated on {number)
which yields

{number) ::= (digit) {(newclass)
{newclass) ::= ¢ | {digit) {(newclass)

32

where {newclass) is a new non-terminal symbol. This
is the only transformation needed in practical examples
which have occurred in using SID, but a generalization
which deals with every situation is possible and is used
by SID.

The more general case arises because the potential
loop can involve more than one non-terminal symbol.

ay i=<{b) | x
by ii=<ay |y

There may be a set of non-terminal symbols involved in
a loop, <n,>(i=1...s5). The general case can be

written
(npy i=Lapy | <njy <bj»

In this the symbols <a;> and <{b;> can stand for any
collection of other symbols.
The set <a;> are assumed not to begin with any of the
{n;>. A convention similar to the normal summation
convention is used: if a suffix is repeated, then the dis-
junction of all possible values is implied.

The transformed version of this general case is

iy vi=Lap x5
<xrs> = 8rs I <brr> <xts>

The symbol §,; has the value ¢ if r is equal to s and the
value w if r is not equal to s.

The symbol ¢, the empty string, is such that when it
occurs the string of characters is equivalent to the same
string with the ¢ left out. The symbol w, the illegal
symbol, is such that any string in which it occurs is not
a legal string of the language. If both ¢ and w are
allowed to occur in the original definitions for the {n;>
then the transformation described is perfectly general,
as is easily proved by examination of the possible legal
sentences.

In practice, however, it is best to transform the
smallest linked sets first, and the effect of this is that the
more complex multiple transformations do not have to
be used.

In its second stage SID takes the set of grammatical
rules, which can now be parsed by a top-to-bottom
method without danger of an indefinite loop, and
attempts to change them so that they can be parsed
quickly. Suppose that the definition of some class
name is

a) i=<by ey ... | Kd><a>. ..

and that the set of characters which possibly begin (5>
is disjoint from the set of characters which can possibly
begin {d)>. Then if, during the parsing, the algorithm
is attempting to recognize an <{a), it can tell from the
next character which of the two alternative productions
must be used. The other possibility can be discarded
immediately. The second set of transformations there-
fore attempts to ensure that the sets of characters starting
each of the alternative productions for a class name are
disjoint. This process, unlike the first transformation,
cannot always be done.

102 ‘9z Arenuer uo 1senb Aq /6.10°sfeunolploxor ulwody/:dny woij papeojumoq

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

Syntax improving program

The transformations, which are very simple, resemble
the distributive law of ordinary algebra.

@y ::=<by | (>
by i=<d> | (e

can always be replaced by
{ay 1:=<d) | <e> | {e)
ay 1= by {c> | <b) <d>
can always be replaced by

@y 1= <b) <x)
xy ii=<Ley | Kdy
Consider this part of the syntax of ALGOL.

and

{statement) ::= {block) | {compound statement)
(block) :.= begin {declaration list) ; {statement list) end
{compound statement) .= begin {statement list> end

This is not satisfactory because (statement) can start
with begin in two analyses which are only resolved later.
The following is a form which needs no back-tracking.

{statement) ::= begin (statement continuation)
{statement continuation) ::= (statement list) end |
{declaration list) ; {statement list) end

The difficulties of the process, as in automatic algebraic
simplification, lie not in carrying out the transformations,
but in deciding which must be done and in ensuring that
the method terminates.

For processing a particular class name, the set of
characters which can begin each of the productions must
be formed. It should be remembered that during this
process the class names and the characters occurring in
the productions are considered, not the translating
actions (which are transformed but do not cause trans-
formations). Each production is examined. If a
character occurs first then this in itself makes up the
required set. If a class name occurs first then all the
characters which can begin it make up the required set;
but if this class name contains an empty production then
the process of examination continues and new items
may be added to this set. If the production is empty,
then the set is formed from all the characters which can
occur immediately to the right of the class name in any
production. Calculating these sets presents no difficulty
of principle, but takes a major part of SID’s time.

If the sets are disjoint then nothing further need be
done; but if a group of them intersect, then the definition
must be altered. If the first item in each of the pro-
ductions is the same, they can be treated as begin was
in the preceding example. If not, then the class name of
highest order is replaced by its expanded definition, and
the process is repeated. The order of a class name is
the maximum number of substitutions which can be
made, always on the first item of an example of the

33

definition. Thus the order of <{block) is 1 and the order
of {(statement) before transformation is 2. Expanding
a class name can never give one of higher order at the
beginning.

If one of the intersecting sets results from a ¢, SID
reports a failure. For example,

{word) ::= {number) space space
{number) ::= digit | {number) digit | {number)
space digit
which says that two spaces terminate a number but one
does not, results in

{word) ::= {number) space space
{number) ::= digit {number continuation)
{number continuation) ::= ¢ | digit

{number continuation) | space digit
{number continuation)

by the first transformations, and failure now occurs
because number continuation contains ¢ and space can
occur to its right as well as starting its third production.

SID may also report a failure because its attempt to
transform the grammar causes it to loop.

A third set of transformations is applied to improve
the efficiency. Classes with identical definitions are
detected, and uses of them are made to refer to a single
class. Class names defined by single productions and
occurring in only one place are substituted into this
place.

After all this processing an ALGOL syntax, which
originally contained 54 class names, contained 82 class
names.

Forming the compiler
The translation of the syntax into a compiler in
machine code is straightforward. Each operation symbol
is replaced by the piece of program for which it stands,
and the other symbols are replaced by recognition
routines for the classes and characters. For example,
the syntax for a number enclosed in any number of pairs
of brackets
{numbery ::= digit o | {number) digit B
{sentencey ::= ({sentence)) | {number)
a=mn:=t1
B=n:=nx10+4 11
digit =t1 < 10
which is transformed into

{number) ::= digit « {x)

(xy 1= ¢ | digit B <{x)

{sentencey ::= ({(sentence)) | {number)
a=n:=t1
B=n:=nx10+4tl

digit = t1 < 10

102 ‘9z Arenuer uo 1senb Aq /6.10°sfeunolploxor ulwody/:dny woij papeojumoq

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

Syntax improving program

will yield
number: subroutine entry
number2: check that the character just read is a digit and
fail if it is not
read the next character
n:=tl
x: if the character just read is a digit, jump to /
subroutine exit
I: read the next character
n:=nx 10+ ¢l
jump to x
sentence: subroutine entry
if the character just read is “(’’ then jump to m

if the character just read is a digit then jump to
number 2

fail

References

m: read the next character
call the subroutine sentence
if the character just read is not “)” then fail
read the next character
subroutine exit

read the next character
call the subroutine sentence

start:

This contains the program for {number) given in the
introduction.

In order that the comparison of a newly read character
with the set of characters which can begin a production
should be fast, SID forms a word for each production
in which the presence of a bit denotes membership of
the set. Checking the character is then done by looking
for the appropriate bit for the character just read.

FLoyD, R. W. (1963). Syntactic Analysis and Operator Precedence, J. Assoc. Comp. Mach., Vol. 10, p. 316.
FLoyp, R. W. (1964). Bounded Context Syntactic Analysis, Comm. Assoc. Comp. Mach., Vol. 7, p. 62.

GREIBACH, SHEILA (1964). Formal Parsing Systems, Comm. Assoc. Comp. Mach., Vol. 7, p. 499.

JoHNsON, J. B. (1965). A Class of unambiguous Computer Languages, Comm. Assoc. Comp. Mach., Vol. 8, p. 147.

Book Review

Selecting the Computer System, by D. N. Chorafas, 1967;
336 pages. (London: Gee and Co., 70s.)

The book deals with the selection of a computer in a com-
mercial environment, and where the author goes into detail,
as in Chapter 2 on “unit runs and file specifications”, it is all
to do with accounting, sales records, stock planning and so
on. The message he wants to convey seems to be as follows:

(1) Computers are tremendous, but getting your office
organization on to a machine is a very tricky business
with pitfalls everywhere.

(2) Make a detailed and exhaustive study of all your
activities and be sure that you know exactly what you
want to do.

(3) Involve the top management and get their confidence.

(4) Look very critically at any proposal from a manu-
facturer, make him give you all the details about the
machine he is trying to sell you and make sure that
he can provide all the supporting services you need.

(5) Look equally critically at any recommendations you
have had from a consultant, for their ranks include
rogues and incompetents.

One would have thought that this could have been put across
in less than 330 pages. I found the book verbose, plati-
tudinous, often irritating and very expensive.

34

There is a fair amount of information about computers
and their use for commercial tasks between its covers, but
the author can never leave facts to speak for themselves. In
fact, I got the impression the whole book was written to
display how clever is Dr. Chorafas. He takes pains to tell
us that he has carried out exhaustive researches. He points
out to us from time to time (for example, footnote 2 on page
19 and footnote 1 on page 254) the superiority of his own
ideas. And of the eleven technical references he gives nine
are to his own books and two to other books published by
Messrs. Gee. This is the sort of thing which would cause
raised eyebrows in the scientific world. Incidentally, in one
of these references (page 42) the author is quite exceptionally
unfair, for he uses some private technical terms and refers
the reader to another of his own books for their definitions.

To conclude, let me quote the remark on page 47 where
Dr. Chorafas has been discussing the probable boom in
computers.

“The English market will most probably share this boom,
but it is doubtful how much United Kingdom’s own com-
puter manufacturers will benefit—the United States manu-
facturers’ invasion has caused several home companies to
fold.”

J. HowLEeTT (Chilton).

102 ‘9z Arenuer uo 1senb Aq /6.10°sfeunolploxor ulwody/:dny woij papeojumoq

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

