AD-A121 375

UNCLASSIFIED

FLEX: A WORKING COMPU

PROCEDURE YALUES.. (U) ROYAL SIGNALS AND RADAR

STABLISHMENT MALVERN (ENGLAND)

E
JUL 82 RSRE-MEMO-3588 DRIC-BR-85111

J M FOSTER ET AL.
F/G 972

Ny P R e A, R T Wiy WLl e et e e

- W e e———— e ———

FEEE

d32a

2223004 -

734

s e e -

-1943~A

MICROCOPY RESOLUTION TEST CHART
o

{ bR 5041

RSRE
MEMORANDUM No. 3500

ROYAL SIGNALS & RADAR
ESTABLISHMENT

ADA1231375

FLEX : AWORKING COMPUTER WITH AN ARCNITECTURE GASED 00 PROCEDUNRE VALUES
Asthors: J 8 Foster, I F Cortie 0ad P W Edwmerds

PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE,
RSRE MALVERN,
WORCS.

DT
SELECTl |
NOV 1 31968

» - o

ISRE MEMORANDUM No. 3500

B’!i” .
i

SE— T Ty o T o T,

A0RAL BGNALS AMD RADAR ESTASL DAENMY
Yaneuetsn 3300

TINS: NAS: A VORKING COMPVTER VITH AF ARCHITECTURE BASED O PROCEDIRE VALUES
ANTNORS: J % VOOTER, I F CURRIZ AND P ¥ EDVARDS
SATEs JRY 1962

Capedil itice need true procedure values to attais their best effect.

The Naen erchitecture, vhich has boen implemented on several machines
ouly {a mais store but aleo on

(se wall oo baching store and across & metwork. Capabilicies are

eaforced caggl oegrege them. This paper
¥/ mzu‘::o-.‘l.{num::o“n. of the importence of

Anmlcg Por

FTIS ORAMX
P .C TAB
Unannounced Q
Justification |

»y.
| Distribution/
Availability Codes
Avail and/or
an. Special

Al |

This memorandum is for sdvence information. it is not necessarily to be
regerded 8¢ 8 fine) or official statement by Procurement Exscutive, Ministry
of Detence

Copyright
c

Controlier HMEO London
1982

A, “J

w

Introduction
The ability to produce, without too much difficulty, sachines which

ocan be miorocoded has given us new possidbilities. First, we can design
an srchitecture and realise it on several hardware configurations. Flex
13 such an arcohitecture and it has been implemented on three different
sachines since 1978, with another implementation envisaged (1). Second,
vwe have been adble to design a storage allocation scheme, extending to
both the sain semory and the backing store, in which access is totally
oontrolled and checked by the microcode. Within this we have been adble
to include an efficient treatament of procedures as true values (2),
unlimited by the restrictions of stack dbased architectures. This has
resulted in a substantial increase in flexibility and in the uniforaity
snd sophistication of the oontrol which can be achieved.

The Flex architecture is intended to provide interactive computing
for several users. By supporting the use of procedures as true values,
aided by capabilities implemented with a tagged memory (rather than by
segregation) and extended through the dacking store, it provides a
perticularly safe mechine. The instruction code was designed as a
target for high level language ocompilers, particularly in respect of the
sethods of addressing and the fact that memory allocation and g

oollection is microcoded. Support for indefinitely many process,

structured values on backing store and the use of procedure values are

significant for operating systems. This paper describes the
architecture and then indicates how capabilities and procedure values
can be combined to give security and to help in the writing of operating
systess.

Since Flex is for interactive use, the main processor ﬁeeds to
respond in times comparable with human reactions. By placing the
control of peripherals in special peripheral processors we remove from
the main processor any need to respond in micro-seconds rather than
tenths of a second. Hence a fast microcoded garbage collector {(which
works in linear time) can be employed, without being detectable by any
degradation of performance. On the average about 3% of the time is
taken up by garbage collection.

Versions of Flex have been in use for more than three years, and a

considersble anount of software exists.

Memory allocation
Data (including code) in Flex is measured in words, bytes or bits

and is contained in blocks (called objects in some systems). The
prograsmer does not see a linear store, but an indefinite number of
separate blocks each of size between zero and the full capacity of the
sachine, which he handles by means of pointers which occupy one word.
Having a pointer to a block enables one to use only that block and to
use it only in a peramitted way. The microcode organises the allocation
and distidbution of these blocks within the real memory. BEach word of
the real memory has some tag bits which are used to distinguish the

words which are pointers from other words and from bdits and bytes. The

tag bits cannot be altered by the programmer and are used by the
microcode to check the appropriateness of the operations on the word.

Each block has a type which controls what are the legal operations
on it. There are six types of which the main ones are :-

1) normal data, which can be read and if the pointer persits can be
altered,

2) procedures, which can only be obeyed (with parameters),

3) code, which contains the instructions which are part of the
definition of a_procedure,

4) workspaces, which are used for the obeying of procedures.

Every instruction checks that its operands are legal. For sxample,
an integer cannot be added to a pointer, nor can access relative to s
pointer be used to read or write outside its block. A procedure can be
obeyed but neither read nor written and stack operations cannot overflow
the block which contains the stack.

Pointers are only created by the microcode and cannot in any way be
forged. Hence, although all the users are running together in the same
memOry, sach user can only access the blocks which his current set of
pointers gives him, and only in the wvays appropriste to each dloock.
Separate or common use of data, or use supervised by means of procedures
can be flexidbly provided and safely controlled. A pointer to a dblock of
sero size gives a way of creating an unforgeadble piece of data which can
be used as a key.

In order to represent a reference, that is data whioch is itself the
address of other data, two words are needed - the pointer which says
which block 1s to be used and an offset which says where in the block

the data starts. In order to represent a reference to a vector of data

three words are needed - the pointer to the dlock, the offset of the

start of the veotor and the number of items in it. The instruction ocode
knows sbout references and vectors and all operstions on them are of
ocourse checked for validity. The ites to which the reference points and
the items which are the components of the vector can be of any sise in
words, dytes or dits.

The store is garbage collected by the aicrcoode using a fast
oompacting sethod which is linear in all its parameters. Because of
the speed of the algorithm and the faot that it is cbeyed in sicrocode
garbege ocollection is a small overheed on the operstion of the sachine.

The backing stores are organised as similar, separste addressing
scheses vith blocks of sisilar types containg pointer or non-poiater
data and with access oontrolled in the same way. However, although the
BAin BeSOry can contain pointers into & becking store it is not possibdle
to point from dacking store into sain ssmory or from one decking store
to another. 7There is ocaplete freedon to have arditrarily ocmplex
structures on the backing store. Ue have choses in practise to have
only one altersdle Dlock on dacking store in order to eanforce a regise
ubich is very safe against decking store failures.

The storage scheme serves s purpose similar to morsal capabilities,
but tagging the pointers instesd of segregatiag them ia separete dlooks
sakes it such easier to write compilers, since all the data omm e
handled uniformly and the parts of whet are logically the same structure

can be kept together. Also, as will m.nmgmuyu
progedures we obtain a very flexible protection schene.

Ihe instrwcticns
WMile & procedure is deing obeyed there are three bloocks which can

be directly adéreseed by the instruotions. These are the looal
workspece (8 special kind of block), Lhe constants block and the
aon-1ccals block. The 100818 Dlock ccntains the 8pece Which is crested

when the procedure is cxeouted and the oconetants Blook oontaias Lhe data
of which the value 15 knowa ot the Lime whes it wss ocompiled. The
fumotion of the mow~100als bloock 1o descrided in the mest section. A
stack 15 rum ia the locsls Sloock and & register, U, Bolds the top ites
of st block. U may ocontain Yol sero wunrds words, dytes or dits. A
typical iastruction, sush o8 ®load seven Dytes fYom coastants starting
at offset ten®, pushes the coatents of U cato the steck ia locals, and
replaces 1t By the seven Vytes specified, making swre beforehend that
the ocastants bDlosk ecntains the specified Oytes ond thst there is roos
on the stask o push the 0)d comtents of 0. Operstiocns swoh s “plus®
sttt on the eontents of U and the itams o0 the stack. As iaportast
1a0trusticn “push and ke 8 Words® pushes U outo the stack and then
reRoves & words fron the stach and puts thed iato §, oheoking &8 wswsl
for violations defure doing 0.

™he register § is iaplensated as follows. 1If it contains wp to two
wrds they are held in registers mowm t0 the sicrcoode. lLarger values
ere poiated t0 by the rgisters withowt being Soved fron where they
originsted. Ther 15 a0 possidility of corrwptiag the valus held ia U Oy
SS9 other opereticn Desouwse all eperetions either wse ¥ properiy or éo
ast affest the msmory at all.

A0 ocperetice sush s "dareferense vestor of whied the cemponsats

are of sise 15 verds® xpests & referense (o ¢ vester (peiater, offset,
8130 of 1tens) 1a ¥ and leads 1ato U the 5 © 2ise verds addressed.
S401larly 1a sssignnent Lhe contentis of ¥ are witten inte the plase
90eified by the reference or vester en Wp of the sask or inte the
losal bloshk 1f ket 15 adédressed.

In erder 10 0pply o precodure L6 0000 PAreBOtlers & canpiler will
typically preceed as fellows. Piret the precctwe 1tsslf (tast 10 0
poister 10 o precedure bleshk) 1o leaded, followed Oy cosh of e
perenetiers ia ture. 1If £ 1o & precetuwre of Which he "alue 15 1o the
100019 Blosk, & 10 & ene word losal aad O & Uwe word losal thes w
esmpile fla, b, 3) ime

1ead £ sine ! were £ 1o e offest ia the iesal Slesk
1ead o oioe
lead b oise 2
Jeed literal)

ot whieh poiat 100 situntion 10 1100 B9 :-

]

figwre

Thes & "push and take” jastruetion places all e paraneters Lagether
iaste U and leaves the precsefare st the tap of the stack.

Jend ¢ aine ?
Jead @ sise !
lead b sise ?
lead lsterel 3
push and tade * werde

O helgs (0,0, N

i
§

0]

Miguwre 2

Pianlly ¢ “e8ll® 100irvstiicn FEBROYES 00 procetere fYes the stosk ansd
Sleris SEetviing It whing & aow 1600is Blosk and oilh ¥ Boidiag e
parensters.

et £ oise ?
1ens o sige V
jend © stise 2
jesd 1iterel)
Pt and tone & wores

O wlae (s, 0, 3

|m".7|ﬂ-l'-’"””
TE WME W Wr WE PP BT BT B¥
DI BE BE NS B BB B3 B BE

{3

A% he end of 100 acw precedare U 16 Gade 0 cantals all We resuite ans
w0 reture 10 100 origioni Preeedure and 100010 Slosh Wit W09 resuits 1o

¢ Jest 00 for ony other cpereties.

S oslgs Mo, o,)}

i
i

R W O BT WT P TT TT S

Mgwe ¢

The “00li® erentet ¢ aow 1000is biesk fur the cssetion of the
procsture, tAsugd his 10 SPLIBINSS 10 GRiY G0000. WNN0e Provesses,

onsh of Which consists of 3 soquence of such diocks can be slaried,
olegped and Guchange ¢enirel Vithoul B2y Problens 3BOVL SLOrage, usisg 3
Sochaniss very 1ihe 8 precedwre call. :tervrypis are trested by caliing
o precodwre valus WRich 18 0P0Eial 10 1t crewpl IS QUEstion, a8 if
tr. She POINt 1B 1RO €000 WROre THe INlerrupl eccurved.

Gacenditions] a4 conditions]l JuBpe octwr ocnly VILRLS Uhe ©0de of
precedure, though 1here 15 & SOCRNRISD, the “lang Jump®. for going Lo 2
Co0t 1001 100 9P 1N106 00 & Poir consiating of & lecals block and 3 cose
offest. I» (his cose 10e 1088is Blosk Gust 110 0 Lhe chBIM Of Lhe
CUPTEnt Preeess.

Any L1iegai eperetios ressits 1o 68 vaiue 10 U Wieh has Lype
*11iegnl®. M0 Silenpl U0 Stere Sund & vaiee Wil) resuit 18 Lhe currest
precedure being Jeft Wilh he cane 1ilegel veiee in §. There are
opecial i1astirwetiens to enanise iilegnl vsiuse Wich 028 8¢ wed W0
ColerRine A0 Orver WD e Gafe. The pregrenser ¢ap foree sued orvars
R0 he GICRREIED 680 DO w08 10 provide eneeplics handiing.

fxesstwres
0 Procetere Bioeh CEMAISS POLAIETS 10 BIONED WhIeh SONLAIS he

esfe, ke conotonts and the asn _lesale. OCsasider the felioving pieee of
pragren: -

nlcﬁ!;

n'.mg ' vew l vy %&

LN

Beneeer o0 we f o0 roguire e we of 1 18 It to give the valwe dhieh
§ e ot e GOt the Geslaretion we cacountered (lbe evalwtion of

the declarstion).

In order to do this in Flex we set up, at the
evalustion of the declaretion, a non_locals block containing § and all
the other itLeme used in f bDut declared outside it (including references)
and vo bind this block with the code and the constants to fors the
procedure. This gives us what 1s cammonly called static binding.
Dynamic binding can De provided Dut 1is generslly undesirsble. A pointer
L0 this Block now represents the proocedure, which can only be executed
nd canmot Be Gecomposed.

>s—"‘%‘-,,;

Prosedure eeeeces) :ﬁ.....
(ome wore)

Pigure S

& proesture will protect the aoa_locals fros the garbege oollector, but
will 00t enabie Lhe woer 1O 800N the a0n_looals exoept in 80 far as

he procedere Oporates on then. If the declarstion was in & loop or s
reCwresion we Gay et asay procedures, each derived from the same code

and ¢onetants Dut wilh ¢ifferest sets of nom_locals.

Such procedures are nov ordinary dats odbjects, and there is no
prodlen in aseigning thes into references or in delivering thes fros
procedures.
groe b« (igs 3)proc jav:
degis ref iat b ¢ dat 1 %
JRLIDORIR ¢ e Lo 1 ¢t opd
=t

S79% A% & ¢ M10);
29 Aas) ¢ o{200);

.. 8 BS... 3 ...
The grecodere b LD0S 00 1Neger goreBeter, J, ereetes 8 reference
itial 1000 10 J and Gelivers & precedure wWhich, 600k time it 19 Oalled,
taerenents the refurence antd Gslivers it acv eomtents. The procedures
& and) ore WO Sett, WRieh will Geliver clenents of two indepondant
SOQueneee Startiag with ' ang 29! respestively. Calls of &k ang 1 are
intepoatant and 100 faet thetl o0 Rave &k GIves 4B 80 200080 1O the
reforcace “Ried 18 DOlGing 100 ourvent Sesber of the sequense. lor 1s
tASre iy 0000se 10 the privete referenses fred saywbere else in the
dele soehiae (60 Welr would to with capadilitios Dt 00 prevedure
wlewe). Moy oumber of Sush Prooedures oan b oot wp.

v

non_locals
H 0 |
{ { > | woo|eaea) | 11 !
k e 4 : oo | veos
! .
l non-locals
1l cceed | ceeeleee] > | 0 H
}) !
H { | code and constants
Figure 6

The proocedures k and | have just one non-10cal which is a reference
(pointer and offset).

Such procedure values have besn knowm for a long time (2) but have
not Deen widely used because implementing thes has involved heavy
overbeads. But Flex vith its low overhead garbdage collector can afford
to use then freely.

Secause they bave not been widely used some of their importsnce has
escsped notice, especially in the ares of oontrolling access to data and
their relation with cepadilities, indeed their necessity if capabilities
are to schieve their full potential. In the rest of this peper we
conceatrate o demonstrating their uses in this ares and in the writing

of operstiag systess.

e e of srooeture valwes

Simple policies for controlling the access and use of data are not

stoguate. Orenting peraission for sewoh 10w _level operations as reading
ond writing oo the Dagis of the iéentity of the user does nOt provide &

.
.
s
[
4

T K

satisfactory means of control. In general we need to carry out an
arbitrary checking action when access to data is mooted, that action
depending on the particular data among other information. The use of
procedure values ia precisely what gives us that ability. If we make
the actual data be a non-local of a procedure and give that procedure to
a user, he will only be able to see the data or change it by calling the
procedure, at which moment the dbody of the procedure can carry out
checks, record footprints or whatever is required. Since the procedure
is impenetrable we can be sure that this is all that he can do. Because
true procedure values can be created we can set things up so that only
the procedure has acceas to the data, and no-one else including the
operating system. Thus we can accomodate various policies and implement
unforseen requiresents for control.

The operating aystea is no different from any user in respect of
the mechanisms availadle to afford it protection. It has pointers which
give it access to certain blocks which it makes available to the users
only through procedures. Indeed the interface between the operating
systea and a user is precisely through a set of such procedures. A user
in his turn can act as an operating systems to a sub_user or pass
procedures to a parallel user and has just as much sophistication
available to him by way of control as has the operating systea.

Let us consider an example, a pair of procedurea which share a
reference to which no one else has access. One procedure writes into the

reference, the other reads from it.

b

in coceaad |} -=}l==> code !
f==> |
{ ! !

-

Figure 7

This could be set up by a procedure to generate such pairs of
procedures.

proc makechannel = struct(proc(int)void in, proc int out):

begin ref int 1 = int;

((int j)void: begin i := J end,
int: begin 1 end)

end

Any number of calls of makechannel can be made, each of which will
set up a new pair of procedures with a new common reference and no one
else will have any access to any of the references. Clearly the
parameters and bodies of the procedures could be complex and contain any
checks or operations on the data. No interaction with the operating
system is needed to set up the scheme. A scheme in which the references
were generated by a program which might still have access to them would
be undesirable.

Another typical use of procedure values is shown in the way in
which the operating system gives a user procedures to manipulate the
display on his vdu. The basic code for displaying is bound together
with the pointers owned by the operating system which identify the vdu

to forms a procedure which will only affect the particular vdu in
question. This procedure is then given to the user. A similar
technique can be used for output from files, where the data is bound
with code to form a procedure which, each time it is called, gives the
next line of the file. This is used not oﬁly to provide control, but
also so that programs which use the lines do not need to know how the
file is represented, but only need the specification of the procedure.
Backing store procedures can be created which have a similar nature
to those in memory. Once again they consist of code and constants (on
the backing st&re) which can be bound to a set of non-locals (on the
backing store) to fors a backing store procedure. The only operation
available on this is to bring it into memory and convert it into a
normal procedure. This facility can be used for many purposes. For
example, the operating system creates dictionaries which consist of a
number of procedures, including one to look up an identifier and find
the corresponding value and one to insert a pair consisting of an
identifier and a value. These have bound into theam the backing store
data structures which actually represent the information in the
dictionary but this is totally inaccessible except through the
procedures. Thus the integrity of the data can be assured. The user is
given the procedures and can only do his manipulations through them. If
he wishes he can create in terms of theae procedures others, either in
semory or on backing store, which offer a subset of the facilities,
check acocesses or whatever he requires and pass these to other users or
to his sub_users. Furthermore this again helps to preserve a constant

interface, since it is the specification of the procedures which has to

be kept constant rather than the actual data structure representing the
dictionaries.

In fact only a small kernel of procedures is supplied initially and
operating systems are built up on top of these without needing any

special facilities to do so.

References

1. I. F. Currie, J. M. Foster, P. W. Edwvards. Flex firmware.

Royal Signals and Radar Est. Report No. 81009

2. P. J. Landin. The mechanical evaluation of expressions.
Comput. J. Vol. 6, No. 4, p308 - 320 Jan. 1964)

