
AD-A174 674 ~ k~'4g IN ~ !~ 2 /

UNCLASSIFIED M

LL.

MICROCOPY RESOLUTION TESTOCHAI

UO,
-

UNLIMITED

co RSRE
• " MEMORANDUM No. 3947r,,,

< ROYAL SIGNALS & RADARI

OESTABLISHMENT

REMOTE CAPABILITIES iN COMPUTER NETWORKS

Authors: J M Foslur,) F Curie

wit

PROCUREMENT EXECUTIVE,
Z MINISTRY OF DEFENCE,

I RSRE MALVERN,
WORCS.

z

0
I

I[UNLIMITED

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 39+7

Title: Remote Capabilities in computer networks

Authors: J.M.Foster and I.F.Currie

Date: March 1986

Summary

System-wide types, capabilities and procedure values can be used

in computer networks to improve control of access and flexibility.

This paper describes a network system based on these ideas. They

provide a standard, uniform way of referring to data and using

procedures in remote computers, with control over access and system

type-checking. A working experimental version of the system exists,

implemented on Flex computers, which provide microcoded support of

capabilities. The mechanisms are such that normal programs written

in terms of procedures, even those using procedure parameters, can
be converted into network services without change. A possible way of'

implementing a similar scheme on conventional hardware is discussed.

Aooossion or / ".

DTIC TAB
Unannounced 5
Justificatio.

By

Distrib'ut ion/

Avn i I iJ7 Codes

Copyright
Dist >.

. " Controller HMSO London

Si 11986

1 Introduction

Capabilities are unforgeable values which programs can manipulate
(Fabry 1971t, England 1975, Needham and Walker 1977). For each kind
of capability some operations are permitted which are forbidden on
other kinds of capability and on non-capabilities. A particular

capability might give read access to an area of store. Programs will
be able to read that store only if they have, or can obtain, the
capability value. Other capabilities might give the ability to address
a particular piece of backing store, to use a peripheral or call a
procedure. In order to guarantee unforgeability, the checking of
capabilities is usually performed by microcode. The earlier

implementations of capabilities worked by segregating them in
special areas, but there is much to be gained by making them into
values which are freely mobile. If this is done they must still be
unforgeable, which can be ensured by using tag bits under the sole
control of the microcode. This also makes it easy and efficient to use
the notions of capability at a fine-grained level. Flex (Foster et al.
1979, Currie, Edwards and Foster 1981) is a computer architecture of'
this kind.

We can extend the idea of capaifities to networks of computers 1by
allowing one computer to hold a capability for something inside
another. These capabilities can be exercised across a network. The\
must still be unforgeable, both within the machines and in transit
across the network. We shall refer to them as remote capabilities.

Capabilities enable us to control access. It is a particular virtue
that this control is provided once and for all in the microcode, and
all the protection derives from this microcode. So if we want to
verify or validate or learn to trust the access control mechanisms,
we have only to examine the microcode. It is true that this may not be
a trivial task, but it is a limited one. Extending these ideas to
networks means that we have only to examine the remote capability
mechanism, and we have provided a way of controlling access across

the network.
If these mechanisms are built into the machine in the microcode

by tagging, then we have control which cannot be vitiated by wrong
compilers or wrong assembly code. The protection is provided at the
level of machine words. Each capability consists ef a word, with its
associated tag bit which is accessible only to the microcode. The
rules controlling the use of this word cannot be violated. But the
microcode attaches no meaning to groups of words. Any relations
between different capabilities and non-capabilities within the same
structure or record are unknown to it.

The type system of most programming languages provides a means
for describing data structures which are composed of many words and
may be distributed around the store. This provides flexibility and
convenience, in that many operations can be described more concisely
and programs become clearer. Furthermore it also provides a sort of
access control: for example, the checking mechanisms may prevent
integers being used as addresses. It has been suggested that this
mechanism is sufficient to provide the needed control of access and
capability mechanisms might be reserved for grosser checks, thus
allowing a cruder, easier and less fine-grained implementation.
However, the language types are normally only meaningful inside an
individual program. There may be communication of type information
between different modules of a program, but data can get from one
program into a separate one only through the operating system. This
knows nothing of the types within those programs, so type checking
between programs is lost. Thus holds still more stringly if the
programs are in different languages. For some time the operating
system of the Flex computers has used its own types to overcome this
omission (Currie and Foster 1982). The Flex system types are
sufficient to describe all the data structures produced by Alclol68,
Ada, Pascal, ML and other languages, together with types appropriate
to the description of backing store values. Values produced by these
languages can be passed between separate programs, which might be
written in different languages, and type checking is maintained.
Operating system procedures can be created using the languages, in
such a way as to produce typed procedures which can be invoked from

a command interpreter, and again type checking is performed.
The correctness of these types depends on the correctness of the

compilers, unlike the capability control provided by the microcode.
The Flex types have to be independent of programs and of the precise
form of the text defining the programs. Though the Flex types
describe the data structures produced by Ada and other languages,
this is not because they are a superset of all kinds of type
definition, but because every data structure produced by the
languages has a description in terms of Flex types. These types have
now been extended to network communication, providing network.wide
types and type checking. They have to be independent not merel\ of
particular programs but also of computers; indeed the types must be
understood throughout the network. This is particulL'rly important for
new abstract types, which may be invented on one machine, but must
be understood and checked by all the computers on the network.

There are thus two levels of access control in the system which
is being described: capabilities, which work on individual words and
depend only on the correctness of the microcodE, and types, which

2

work on groups of words but depend on the correctness of the

compilers.
Network-wide types not only enable us to perform checks, but also

function as a description of data. This function of types is used in
the Courier protocol (Xerox Corporation 1981), but the types we are
about to describe are very much more powerful. It will be seen that
we can transfer capabilities for dynamically created procedures

around the network, and thus send new procedure capabilities to
other machines to be called in due course. The types of the
procedures, which of course contain the types of their parameters
(including procedure parameters), describe how their parameters are
to be handled. They give in an abbreviated form a description of what
can be done with them and make explicit the possible protocols.

Procedures are free-standing values in Flex (Foster, Currie and
Edwards 1982). The values and references that they need to use are
bound into them. A capability for a procedure can be created so that
it provides the only access in the whole system to some particular
object. This procedure can then give arbitrarily programmed control
over access to that object. These procedures, which are proper
values, allow an "object-oriented" approach to the creation of new
abstract data types, in that packages of procedure values implement
the possible operations on an abstract type. Flex permits procedures
or packages of procedures to be written to the backing stores - a
Flex computer can have several backing stores - and so new abstract
data types and their values can be written to backing store, with the
appropriate type checking on their use. Such procedure values can
have an indefinitely long life.

Flex uses a remote procedure call (White 1976) mechanism for its
network. On Flex, unlike other RPC networks, the possible procedures
which can be called do not have to be agreed between the machines
from the start. New remote procedure values can be made up by any
program, capabilities for using them can be passed to another
computer and then used for remote calls. The mechanisms allow for
exception handling in remote calls, of which timeout is one example,

and they allow for aborting or breaking in to remote calls.
The discussion in this paper is independent of the failure

semantics of the network. Flex operates an "at least once" semantics
(Spector 1982, Liskov and Scheifler, 1983) but all the following
remarks would apply equially to "exactly once" or to "at most once"
semantics.

Capabilities encourage the use of values rather then names, and
Flex takes full advantage of this throughout the system. Anv types of
value can be used on backing stores as well as in main store. So
directories, for example, play no special role, since procedmie

3

values, files or indeed any values can be held anywhere on disc. In
Flex the actual external modules used by a program are put in the text
which is to be compiled. The meaning of the text is not dependent on
the particular context at the time when it was compiled, but is
self-contained. This relieves some significant problems of
configuration control. Exactly the same principle is used in the
network. The system holds the actual remote capabilities, not just
their names, so changes in the association of names with values are
irrelevant and again much confusion is avoided.

The mechanisms that are to be described attach a network meaning
to normal constructions of programming languages, in particular to
the procedure statement. It will be shown that the use of procedures
in distant machines appears exactly the same as the use of local
procedures. Changes do not have to be made in order to use a
procedure from another machine even if it involves procedure

parameters; the remote capability mechanisms allow the existing
procedures to be used. This feature has proved of considerable
practical use. Procedures devised for one Flex machine have been
converted into network services by the simple means of providing
remote capabilities for them. Their parameters, results, exceptions
and break-in properties remained unchanged. Of course, procedures
which would require a large bandwidth for communication may be
impracticable on the network, but the mechanisms would permit them.

Flex supports processes as well as procedure values. Processes
are necessary when true parallelism is needed, but if the purpose is
only to create a context, procedures are simpler and more flexible.
Procedures are used as the preferred mechanism in Flex. This
certainly helps when we wish to convert an existing procedure into a
network service, since programs written in conventional languages
are likely to be in terms of procedures - it is not normal to use a sin
or cos process in Pascal. It is also the current practice to define

abstract types by the operations which can be performed on them,
which again corresponds more naturally to the procedures that can
act on them, rather than to processes.

The next section gives a simple example of the use of remote
capabilities. This is not intended to be realistic, but to exhibit some
of the features which are needed. The third section shows how the
remote capabilities can be encoded and used so that remote and local
calls are very similar. Section '+ gives further examples. The fifth
section discusses the initialisation of the sysLem and what
capabilities must be present when the computer is initialised, and
the sixth considers the lifetime of remote capabilities.

2 A Simple Example

The Flex type system provides basic types and ways of
constructing compound types. Among the basic types are Void, which
is represented by zero bits, and the types Int, Real, Bool and Char.
The type of a structure (a record) is understood to be a cartesian

product and is written as, for example, Int x Real x Char. The type of
a procedure specifies the domain and range, for example, (Int x Real)

4 (Int x Char x Bool). Vectors of values have types like Vec(Char x
Real). There are other kinds of type, but these will suffice for the

following example.
Let us suppose that we have in computer A an integer variable, v,

and that we want to give ways of altering the variable and reading its
current value to computer B. The actual alteration and reading has to
be done by A, but B has to cause it to happen and must supply values
to put in the variable and must receive the results of reading it. We

construct two procedures in A, assignvar, which takes an integer
parameter and alters the variable, and readvar, which delivers an
integer result which is the current value of the variable. Since Flex
has true procedure values, these procedures are first-class values

and are independent of an) context which might have set them up.

assignvar Int 4 Void
readvar Void -) Int

A procedure accesses values which are given to . when it is
called, values which it creates while it is running, and values which
were passed to it from its context. On Flex the latter values, its
non-locals, are bound with the code, by means of an operation called

close by Landin (Landin 1961t), to form an object which is the
procedure. If some of the non-locals are references, those
references (that is, the appropriate capabilities) are included.

Since the capabilities are also true values, this makes the procedure
into a true value which is now independent of the context which set it
up. The procedures assignvar and readvar do have a non-local
reference, in fact the reference to v, so each of them has a

capability for v in its non-locals. There may well be no other
references to v anywhere else in the machine.

These procedures exist and run in A and alter A's variable, v. Now
we create in A two new remote capabilities, different from any
previous ones, which A can recognise as its own, and we associate
them in A's store with the two local procedures. A can send these
remote capabilities to B, though we shall postpone for the moment

. . . .• . == ,, ,,..=.= .m ,m m • .=, , == m S

the discussion of how it does so. B can then make a remote procedure
call to A in which one of these, say the remote capability for
assignvar, is the procedure to be called and the parameter of the
procedure is the integer which is to be assigned to v. A will, on
receiving this request, translate the remote capability that it
receives into its own local procedure, the local assignvar, and apply
this procedure to the given integer parameter, thus changing v. It
then sends back the result, in this case Void, which acts as an
acknowledgement to B. The process in B which issued the remote call
has been held up waiting for this acknowledgement or an exception to
be returned, and continues when it arrives. Clearly, in the case of
readvar, the value sent back - the result of the procedure - is the
required contents of the variable v.

Of course the interaction between A and B occurred over an

ordinary network, so the information had to be coded into bytes for
transmission. It is important that the capabilities should not be
forgeable. However, if the sending and receiving of the packets of

bytes, and their coding and uncoding into proper values can only be

done by microcode, or by trusted system procedures, then we have a
safe system. Once again, in Flex, the transmission of capabilities is
done by microcode and this ensures that the individual words created
as a result of the transfer are safe to use. We cannot confuse
capabilities with non-capabilities. But the transfer of compound
objects is done under the control of the type system, and though we
can convince ourselves that the actual transfer itself is correct in

terms of types, since this transfer program is written once for all,
we only know that the types of the values were correctly stated if

the compilers are correct.
The two procedures in A were proper values and had to be

associated with remote capabilities which were sent out. It might be
that the procedures are not used anywhere else in A, so the fact that
the remote capabilities have been sent to B must be sufficient to
keep the local procedures and the association alive and protected
from A's garbage collector. Care must be taken if B finishes with
them, or if B fails, that the procedures are not kept alive
indefinitely by the interface alone.

We can build on this example to show one way in which procedures
can be communicated. Since procedures are true values in Flex, new
procedures can be created inside a procedure call and delivered as

its result. We could therefore produce a procedure, genvar, in A,
such that when it is called it creates a new integer variable and two
procedures like assignvar and readvar to update and read the

6

variable, and delivers the two procedures. Its type is therefore

genvar . Void- ((Int 4Void) x (Void- Int))

a procedure delivering two procedures with types like assignvar and
readvar. Consider what happens if we associate genvar with a remote
capability and send it to B. B can call the remote capability' with a
Void parameter, which activates genvar in A, creating a new variable

in the store of A and two procedures which are local to A and have the
capability for that variable bound into them. The capability for the
variable occurs nowhere else in A. Then A has to send the two
procedures back to B as the result of the remote call. This can be
done by creating new remote capabilities for them and sending the

capabilities to B. B is now in the position of the earlier example and
can assign to the variable in A and read its value by using the two
remote procedures to do so. Each time B uses the remote capability

for genvar, A creates a new, different variable and two procedures
bound to it, creates remote capabilities for these procedures and

sends the two new remote capabilities back to B. All these

interactions, and therefore in this sense the high-level protocols

which are possible with genvar, are implicit in its type.

We can see from this example that the possession of a remote
capability for a procedure of an appropriate type enables us to create
and pass around new remote capabilities. Remote capabilities can be
transmitted as procedure parameters as well as procedure results. In
section 6 we consider the initial remote procedure which must be

owned in order to start off the indefinite transmission of other
procedures, and particularly consider its type.

Each of the local procedures could have been used locally in A.
The only operation that was necessary to make this local "service"
available over the network was to create and send out the remote
capability for genvar. The creation and transmission of the other

capabilities was automatically done by the system.
It would be possible to use remote capabilities standing for other

types of value than procedures. We might, for example, have a remote
reference. A remote reference would have to have remote assignment

and remote dereference operations defined on it, so we would have
such operations as well as remote procedure calls. Likewise remote

arrays would have remote indexing operations. It seems unnecessary
to introduce these types, since remote assignment and remote

indexing would have to be implemented by means of some assignment
code in the originating machine, in effect a remote procedure. The

mechanisms which have been defined will suffice for the defining
operations for all types of value, including new abstract data types

7

in the object-oriented sense. Indeed, the example above shows how
this would be done for references.

3 Encoding the remote capabilities

The Flex type system is intended to be sufficient for t\pe
checking operating systems. It contains basic types, type generators
(including ones for backing store), new abstract t'pes and new t.\pe
generators, and polymorphic types. In this it is like the type sv.tem
of ML (Gordon, Milner and Wadsworth 1979), with the addition of' t\pe
generators for the basic backing store types and, as we shall see,
for network types. Unlike ML, it permits programs which are created
by the compiler to inherit type checking, which will also he correct.
Part of the mechanism for this is the use of an infinite union type,

which is the union of all types. In Flex this type is called Moded. The
procedures which control the transmission of data are written to
operate on Moded values, so that, when they check types, that type
checking is guaranteed by the correctness of the compiler which
created the procedures.

We are trying to achieve a system in which the network is
transparent. Procedure calls, procedure parameters and results,
break-in to procedures and exception handling are all to be like those

for local procedures except that, by using a remote capability
instead of a capability for a local procedure, we are activating a
different computer. In order to issue a remote procedure call we
need a remote capability for the procedure that is to be called and

some parameters to give to it. From these we must form a packet by
encoding them into a byte form. The result will come back in the form
of a packet of bytes, which must be decoded into the proper form of
the procedure's results.

At the other, 'eceiving, end a packet arrives containing the

encoded remote capability, which the receiver recognises as

corresponding to a particular local procedure. The rest of the packet
contains the encoded parameters, which must be decoded into proper
local values. These are passed to the actual procedure which is run in

a new process created for the purpose. The result of this local call
is then encoded and sent back to the originator. We shall not consider

the detail of how the network transfers the packet of data, though we

shall describe below how time-out, rejection of the request and

abortion of the procedure once it has started can be fitted into this
picture. It can be seen that the capability for the procedure to be

called is dealt with differently from the parameters and the results.

It would be possible to write the procedures, flatten and

8

unflatten, which encode and decode the parameter and result values,
and give them the types

flatten Moded -) Vec Char

unflatten Vec Char -* Moded

If we did this we would have to encode the actual mode into the

vector of characters in the packet. It would be possible to write

flatten and unflatten this waN, and have them known to he correct in

terms of type because of the ! ,,e checking inherited from the

compiler which produced them. However, as we shall see, both ends
of the transaction know the t pes that. are being transmitte(l. Thus in

order to avoid the waste of encoding the types into the packet. but

still maintain type-correct proramming the procedures have been

given the types

flatten Moded - Vec Char

unflatten (Vec Char - Type) - Moded

The form of these is not symmetric. The flatten routine does not
encode the type into the packet, but at the end of the transaction

where unflatten is used the type of the data is always known, as we
shall see below, and can be supplied as a parameter. Supplyincl the

type in this way does not break the type checking rules, since even if

this information is wrong it is still only possible to create legal

data. If the wrong type were to be supplied, either the

incompatibility of this with the packet would be discovered, or the

result, "le being of the specified type, would not be the result

that was required.
Such values as Int, Real, Char and Bool can easily be encoded, and

so can structures, vectors and unions of them. We are assuming in

this that the representations of the primitive values are the same in

both the source and destination machine. The more complex

considerations involved by different representations have not been

studied in the implementation on Flex.

The more interesting question is how to encode the values which
are procedures. Suppose that we are in the following situation.
Computer A is about to issue a remote procedure call upon computer

B. using a remote capability for a procedure in B, say m, which has a
procedure parameter. We wish to arrange that the procedure which A

is going to supply as the actual parameter, say f, is encoded and
passed over to B. But B's procedure m, which is a normal procedure

in B, is expecting an ordinary procedure parameter. We have

therefore got to produce in 8 an ordinary procedure, say bf, to pass

I

to m. When bf is called it must issue a remote call to A, where the
real procedure f resides, wait for the result, decode the result into
an ordinary B value, and return this to m. The procedure bf must have

its proper type in B.
Suppose then that the procedure f in machine A has type Par -) Res

and we are applying flatten to f in A. Flattening the procedure must.
produce a new remote capability to transmit to B, and it also creates,
in machine A which does the flattening, an association between that
capability and the procedure. However the procedure that is
associated with the capability is a modified version of the original
procedure f. In fact we create a new remote capability, cf say, in A,

and a new procedure, ff say, in A

ff Vec Char -4 Vec Char

ff : Xv. flatten(to-moded(f(unflatten(v, Par))))

and associate ff with cf. The effect of ff is to unflatten the rest of
the packet containing the remote call from B, producing a value of
type Par. The local procedure f is applied to this, the result is
converted to a Moded value by tomoded, and flattened back into a

packet. Hence the procedure ff accepts packets, translates them into
proper parameters for f, calls f and translates the results back into

packets, which it delivers.
Note that we can keep ff in an association list. for the remote

capabilities because true procedure values are manipulable objects.
As long as the association between cf and ff' persists, we shall be
keeping ff, and therefore also f, alive and protected from A's

garbage collector. We now encode cf in a unique way, so that its
encoding is different from that of every other kind of value and from
any other remote capability created either in this machine or an,,

other. To do this we need to incorporate something equivalent to th e
machine A's identity and the time of creation. We also include the
type of f encoded as a sequence of bytes.

It is worth pointing out the level of protection provided by the
assumed correctness of various parts of the system. If the microcode
controlling the transfer of capabilities is correct, then we cannot
confuse capabilities with non-capabilities, so we can be sure that. we
have only the capabilities that we are allowed to have and are usinq

them in the proper way. But we may be wrong about the Flex types of
the objects that have been transferred and indeed we may have
transferred the wrong values, though they must be ones to which

access was possible. If the type checking derived from the compiler
is also correct, then we have data of the right type, but it might not
be the data which we thought was the parameter of the remote call. If

l0

the procedures flatten and unflatten are correct then we have the
right data.

The remote capability cf is associated with ff in such a way that A
can find ff if it is given cf. Let the procedure to find ff from cf be

find.proc, where

find-proc : RemoteCap -4 (Vec Char -4 Vec Char)

so if A receives a remote call, in which the capability is cf and the
packet representing the parameters is v, it can implement this by
launching a process to obey

find_proc(c)(v)

and sending the bytes delivered by this back as the result of the
remote call.

B needs to issue the call, ant to do this the primitive procedure
remotecall is defined.

remotecall : (PlemoteCap x Vec Char) 4 Vec Char

B therefore obeys a procedure bf, which has the same type as the
original procedure f. It flattens the actual parameter and uses the
resulting Vec Char and the capability cf in a remote call. It then

unflattens the Vec char which is returned, producinq an object of the
correct type. Obeying bf in B thus has the effect of calling f in A.
Note that if f has procedure parameters, so will bf. These will he

supplied in B and f'ttening them will create remote capabilities and
associated procedu. a. So when f, running in A, calls its procedure
parameter the call is transferred back to B and is obeyed there.

If an exception occurs in A during the execution of the procedure
f, perhaps an overflow, an index out of bounds or a user stimulated
exception, we would like to have this transferred back to B, tle
originator of the remote call. Accordingly it is necessary for the
call of flatten in the body of ff to trap the exception and deliver a
version of it coded as a vector of characters. Likewise, when B
receives the packet containing the encoded exception, the unflatten

operation causes the appropriate exception in B. A time-out in the
remote call, if one is implemented, must cause a time-out exception
to occur in B. Flex implements exceptions and exception traps.

In Flex, when a process is launched, a procedure is delivered
which when called will abort (break in to) the process. Over the

network we want to achieve the same effect. B, having started a
remote call in A, now wants to abort it. There is therefore the

11

provision to send from B a further packet, an abort packet, belonging
to the remote call, on receipt of which A will abort the process it
launched to obey f, and return the exception value it receives as a
result, duly encoded as above, back to B. The call to abort the

transaction had to occur in a different process in B from the one
which issued the remote call, since that process waits for the reply
from A. It is necessary to specify what happens if the abort packet
arrives in A after the completion of the call of f. Since any abort has
to be issued from a different process, it is always possible that the
process in question has terminated before the abort is acted upon (it
is impossible to schedule with semaphores or monitors, in the very
nature of an abort). So the correct programming of aborts always
allows for the possibility that it is too late, and this rule can also
be insisted upon for remote calls. Hence it is adequate for an abort

package which arrives too late to be ignored.
It can be seen that the remote procedure call in B behaves exactly

like an ordinary procedure call in B, in respect of parameters,
results, exceptions and break-in. So it is often possible to test
programs locally, not using the network, and then when they are

working, to use them remotely. This can simplify the debugging
process.

to. Further examples

4.1 Remote use of dictionaries

A dictionary is an abstract type with five defining procedures,
one to make a new dictionary, one to add names and values to a
dictionary, one to look up names in a dictionary, one to delete and one
to produce a visible form of the dictionary.

new_dict Void -* Dict
add_dict (Dict x Vec Char x Moded) -4 Void

find_dict (Dict x Vec Char) -, Union(Moded, Void)
delete_dict :(Dict x Vec Char) - Bool
show_dict : Dict -) EditableFile

Using the object-oriented approach we can say t.hat each dictionary
which is made up by new-dict consists of a group of four procedures,
derived by binding in the actual dictionary. We can write a procedure,
make_dictionary, which calls new__dict, and then delivers four

12

procedures.

make_dict Void 4 ((Vec Char x Moded) -* Void x (add,
Vec Char 4 Union(Moded, Void) x {find,'
Vec Char -) Bool x (delete}

Void -4 EditableFile) (show',

Note that a dictionary can contain values of any type and holds them
as Moded values. The look-up procedure, find dict, produces a Moded
value if the identifier is present, and a Void value if not. The only
operations on the resulting Moded values are those which can be
produced by the compiler, so type checking has not been breached.

We can use a dictionary across the network by passing some or all
of the procedures delivered by make-dict in the form of remote
capabilities. Procedure values, and so the object oriented approach,
are being used across the network in exactly the same kind of way as
they are used locally.

I-.2 Different file transfer protocols and the associated types

We consider how the type of the procedures characterises the
kinds of communication. Suppose that we are doing a simple file
transfer of named files from one machine A to B. Let A provide for B
the remote capability for

transferi ; Vec Char - (Void -) Vec Char)

in which the parameter gives the name of the file to be looked up in
some particular dictionary in A, and the result is a procedure for
producing successive lines of the file. The actual transferl runs in
A, having been remotely called from B. It creates a procedure to
deliver the lines, flattens it giving a remote capability, and sends
that remote capability back to B. B now issues a remote call using
this capability each time it wants a new line from A. So it is B which
is the active partner in the actual data transfer and determines when
each line is to be sent. On the other hand suppose that A provides

transfer2 ;(Vec Char x (Vec Char -4 Void)) 4 Void

The first parameter is again the name of the file wad the second is a
procedure for receiving successive lines of the file. Once again
transfer2 is local in A and remotely called from B. But this time B has
to create, flatten and send a remote capability for a procedure local

13

to it, which will deal with the lines when A cares to produce them.

This time it is A which controls the actual data transfer. So in the
same way as in a purely local type scheme, we can see the kinds of
interaction which are possible across the network, just by examining

the types of the procedures involved.

'+.3 A command line interpreter

A command-line interpreter could have the type

interpret : ((Void -4 Vec Char) x (Vec Char - Void)) -4 Void

The first parameter delivers characters to be interpreted each time
it is called and the second parameter receives messages to display in
return. If the local procedure for interpret lies in A and B has a
remote capability for it, then B can activate the command interpreter

in A, passing procedures which A will call in B to produce the lines to

interpret and display the messages. If A fails when B is accessing it,
B will get a time-out exception, which can be trapped and turned into

an appropriate message. Note again that the type of interpret is such
that it could be used locally in A, and so tested in A alone before
being used on the network. We may expect this, since an object-

oriented procedural approach will of its nature lead to a procedural

definition which can be used remotely. This will usually be possible,
but not always useful, since the bandwidth of local communication is

likely to be much higher than the bandwidth available from the
network. It is not likely, for example, that large block moves of

pixels could usefully be performed if the data has to go across the
network. Hence remote graphics programs are likely to have to
communicate in a coded way, whereas within one machine this need not
be so.

5 Initialisation

All the kinds of transfer which have been discussed so far have

needed the possession of a remote capability before anything can
happen. Given an appropriate capability more capabilities can be
propagated around the system. Indeed given a suitable capability

involving the type Moded, we can arrange to transfer a capability of
any type. But we do need at least one capability to start all this off.
This has to take the form of some capability which a computer
automatically has as soon as it is activated.

On the Flex system we have chosen to provide an initial function

1t

firstfn

first_fn . Computerldent -4 (Vec Char -+ Mod.-d)

which is given the identification for a computer and delivers a
function from names to Moded values. The names are looked up it) a
particular dictionary on the nominated computer.

6 Life-times

When machine A flattens a procedure in order to send a remote
version of it to a distant computer, the procedure is kept alive and
protected from the garbage collector by being associated with the
corresponding remote capability in the list used by findjwoc. TIe
distant procedure can in turn pass the remote capabilit for this
procedure on to other computers, which could use it directlh to call
the procedure in A. If A's store is not to become choked up bN these
procedures it must garbage collect them away, and to do so it must
discover whether any of the other computers which are still on the
network are keeping the remote capability alive in its store and might
therefore use it. Computer A therefore periodicall. asks all the
other computers about each of its own remote capabilities. If none of
the others requires the capability, then A can remove it from the
association list, and the procedure will be removed at the next local
garbage collection. The other computers therefore have to have
access to all the remote capabilities which theN hold, in orde to
answer this question.

The identification of the computer which is included in the
encoding of remote capabilities, serves two purposes. It enables the
system procedures to send the information to the correct place to be
acted upon, and it is part of the unique identification of the remote
capabilities. The remote capabilities that we have described only
have a meaning as long as the computer in which they originated is
switched on. So the network address is a sufficient identification of
the computer. In systems where the computer moves about in the
network, cellular systems, the address which is used to identify the
computer will serve.

When a computer is switched on again, after having been off for a
period, it is necessary to avoid confusing packets created in the new
incarnation with old packets still in the network. A time of switch-on
is therefore also a necessary part of the identification of a
computer.

i5

7 Conclusions

We have described mechanisms for interactions between machines
on a network which preserve the safety of capability machines and
include a network-wide type checking mechanism with inheritable
checking and abstract data types. This system has been implemented
on a network of Flex machines and is in use.

The already existing system of capabilities was clearly essential
as a base for remote capabilities. However, it was the presence of
true procedure values that made the rest of the system and its
implementation relatively easy. It would not have been possible to
use this method if procedure values could not have been kept in an
association list, regardless of their origin in particular programs.

In the exploration of the system it has become apparent that we
need a concept of "universal" capabilities, that is capabilities which
have the same purpose network-wide. For example, a Pascal compiler
in the local filestore of machine A is related to the Pascal compiler
in machine B, even if they are not at the same level in terms of
updates. We may want to send a procedure cal to a machine saying
"use your Pascal compiler" rather than "use this specific remote
capability". Another example lies in the use of new abstract data
types. It is natural to implement these as remote capabilities, but
once again we want the meaning of types to be the same across the
whole network. We want to refer to a particular abstract data type,
using the same "universal" capability in a transaction with any
machine on the network, not a different capability for each machine
which happens to stand for the abstract type in that machine. The
required properties of these universal capabilities are being

explored in the Flex system.
The implementation has not addressed the question of mixed types

of machine. Clearly, data may have different forms which must be
translated in transactions between different types of machine. There

are further, more difficult problems. The Pascal compiler, though
still recognisably serving the same purpose on two machines, does
not produce the same form of code for different machines. Some uses
of a capability for the compiler will mean "use your compiler",
others, such as updates, will mean "use the type A compiler', still
other will refer to a specific capability.

So far all Flex implementations have been microcoded. The
system-wide types would present no problem on a conventional
computer, and the procedure values present only the problem of
achieving an efficient implementation. But the capabilities present a
more serious problem. One approach would be to depend entirely on

16

the type system and the checking provided by the various compilers in
the system. The reliability of compilers is not at present good

enough to make this a satisfactory solution, and we would like to

allow for the possibility of the development of new compilers which
will certainly go through a stage of containing errors which must not

be allowed to crash the whole network.
Accordingly an abstract machine has been developed, known as

Ten1S and based on algebraic principles. This machine is
implementable on conventional computers and uses the Flex type

system, enforcing it with complete rigour. We therefore have to
depend for our network correctness only on the correctness of the
implementation of Ten15 which can be used as target hy man\

compilers. The Flex Ada and Pascal compilers already use Teil5 as

their basis.

References

l.F.Currie, J.M.Foster

"Curt : the command interpreter language for Flex"
RSRE Memorandum 3522, Sept 1982

l.F.Currie, P.W.Edwards, J.M.Foster

"Flex firmware"

RSRE Report 81089, Sept 1981

D.M.England

"Capability concept mechanisms and structure in System 258"
Rev. Fr. Autom. Inf. Rech. Oper. (France)
Vol 9, pp '7 - 62, Sept 1975

R.S.Fabry
" Capability based addressing"

Comm. ACM Vol 19, pp"e3 - 1+12, July 1974.

J.M.Foster, l.F.Currie, P.W.Edwards

"Flex: a working computer with an architecture based on

procedure values"

Proc. International Workshop on high-level architecture, Fort

Lauderdale, Florida (Dec 1982) pp 181-185

17

: __ _ _ _ _ _ ., -A.l

J.M.Foster, C.I.Moir, I.F.Currie, J.A.McDermid, P.W.Edwards,

J.D.Morison, C.H.Pygott

"An introduction to the Flex computer system-
RSRE Report 79616, Oct 1979

M.J.C.Gordon, A.J.Milner, C.P.Wadsworth
"Edinburgh LCF"
Springer-Verlag 1979

P.J. Landin
"The mechanical evaluation of expressions"
Computer Journal Vol 6 No I+ pp 388 - 320 Jan 1964-

B.Liskov, R.Scheifler
"Guardians and actions: linguistic support for distributed
programming"
ACM Trans. Prog. Lang. and systems. Vol 5, pp 381 - "4- July 1983

R.M.Needham, R.D.H Walker
"The Cambridge CAP computer and its protection system"
Operating System Reviews
Vol 11, No 5, pp 1 - 10, Nov 1977

A.Z.Spector

"Performing remote operations efficiently on a local computer
network"
Comm. ACM Vol 25, No 1, pp 39 - 59, April 1982

J.E.White
"A high-level framework for network-based resource sharing"
AFIPS Conf. Proceedings, National Computer Conf. Vol 45, p5 6 1-570
1976

Xerox Corporation
"Courier: the remote procedure call protocol"
Xerox Report XSIS 838112, Dec. 1981

18

DOCUMENT CONTROL SHEET

Overall security classification of sheet . UN.RCLASSIFIEDo. . 1 , ~ r~ , c ass fie~ on ot hee

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. DRIC Reference (if known) 2. Originator's Reference 13. Agency Reference 4. Report Security
Memorandum 3S47 1Classificalion

5. Originator's Code (if - 6. Originator (Corporate Author) Name and Location
known)

Royal Signals and Radar Establishment

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location
Code (if known)

7. Title

REMOTE CAPABILITIES IN COMPUTER NETWORKS

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference naers) Title, place and date of conference

S. Author 1 Surname. initials 9(a) Author 2 9(b) Authors 3,4... 10. Date pp. ref.

FOSTER, J M CURRIE, I F

11. Contract lumber 12. Period 13. Project 14. Other Reference

15. Distribution statement
UNLIMITED

Descriptors (or keywords)

continue on separate piece of paper

Abstract
System-wide types, capabilities and procedure values can be used in computer
networks to improve control of access and flexibility. This paper describes
a network system based on these ideas. They provide a standard, uniform way
of referring to data and using procedures in remote computers, with control
over access and system type-checking. A working experimental version of the
system exists, implemented on Flex computers, which provide microcoded support
of capabilities. The mechanisms are such that normal programs written in terms
of procedures, even those using procedure parameters, can be converted into
network services without change. A possible way of implementing a similar
scheme on conventional hardware is discussed.

580/48

DATE

FILMED

