Validating microcode algebraically
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This paper describes systematic algebraic methods used by a program to help in validating microcode. The methods are
formal, mathematical and generally applicable. Examples are given of the kind of property of microcode which can be
Sfound, including checking for timing constraints, ensuring that interrupts are polled frequently, checking against
expression stack overflow and ensuring the absence of certain sequences of instruction. The method separates into a
large part which deals only with the control structure of the microcode, and a small part which deals with the operations
performed by the micro-instructions. It has been used to check many properties of the implementation of Flex on Perq,

which involves more than 5000 microinstructions.
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1. INTRODUCTION

Many authors have described the use of algebraic
methods to discover properties of programs, for example
Aho,! Backhouseand Carre,? Bramson and Goodenough,?
Cousot and Cousot,> Kam and Ullman,” Mycroft,®
Mycroft and Nielson,® Rosen,!* Schaeffer,'®* Tarjan!*
and Wegbreit.!> These methods have most often been
used to check the criteria which permit particular
optimisations in compilers. It is also possible to use them
to prove the absence of wide classes of error in programs,
or if errors are present it may be possible to locate them.

Microcode is a particularly suitable object for such
studies. The correctness of the whole computer depends
on the correctness of the microcode, so the expense of
guaranteeing the absence of certain errors can easily be
borne. Microcode is often written in a very dense and
compact fashion, with many gotos and much sharing of
code because of the overriding need for speed and space
economy. There are also often unusual constraints on the
timing, and there may be sequences of instructions which
are impermissible. It is therefore particularly prone to
errors which are difficult to find by visual inspection but
can be found by algebraic methods. Furthermore,
microcode usually has a fairly simple control structure.
Conditional jumps, some kinds of switch jumps including
one for instruction entry, subroutine calls, returns and
exceptions account for most microcode control structure.
Procedures with parameters are usually absent and there
are a fixed number of registers. Main store is regarded as
a peripheral device. All this makes the algebraic method
easy to apply, though subroutines and exception hand-
ling do need an extension of the usual technique.

The algebraic methods take account of the control
structure of the program, without usually being able to
consider the particular values that are being manipulated.
It is not possible, for example, to know which way a
conditional jump will go, we merely know that it will go
one way or the other. Hence the methods are pessimistic.
If they say that an optimisation is possible, then that is
certainly so, but the optimisation might be possible
without being detected, since the actual values which can
occur might rule out some combinations of paths.
Likewise, if the program is said to be free from a certain
sort of error, then that is so, but the presence of an error
might be suggested when in fact it could be ruled out by
a more detailed examination of the semantics.

The method factors into two parts. In one, which is
independent of the particular property being investigated,
we calculate an algebraic expression corresponding to the
control structure of the program. In the other we
calculate a function of that algebraic expression which
gives us the property we require. So the control structure
of the program is entirely processed in the first
component and is divorced from the particular property
under investigation, which belongs entirely to the second
component.

This paper describes the method, shows how it may be
used to find various kinds of error and gives an account
of a program which implements the method for
microcode based on the AMD 2910 microcontroller. It
should be adapted for other controllers. The program
deals with subroutines and exceptions and in a limited
way with computed jumps. It operates in time O(ek),
where e is the number of edges in the graph of the
program and k is the maximum loop in-degree, which is
normally small. The edges, e, are counted only once for
each subroutine. The details of the algorithm and a
justification of the time bound are given in Foster.®

We start by giving an outline of the method in the rest
of this section. The second section illustrates the method
using the AMD 2910 microcontroller. In the third section
are examples of the method applied to finding a number
of useful properties of microcode which are apparently
quite different. These include ensuring that an expression
stack cannot overflow, finding the maximum time
between polling for interrupts, checking that timing
constraints on the use of store are met and making sure
that the interrupt routine does not disturb values in
machine registers. The fourth section contains some
conclusions. An appendix gives formal definitions.

We use what is known as a regular algebra. We can
think of this as being defined abstractly, by giving the
operations of the algebra and saying what laws they must
obey. Such a definition is given in the appendix. We can
also think of various concrete realisations of the algebra.
For one such realisation the values manipulated by the
algebra are sets of routes starting at one point of a
program and ending at another. The operations are ways
of combining these to make larger sets of routes and
ultimately the whole program.

A piece of microcode turns a state of the machine into
another state. By a state we mean the contents of all the
registers and whatever extra information is needed to
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specify the machine completely. A single microinstruction
is a route of one step, which transforms states into states.
It consists of two parts. One, the control part, determines
what instruction will be processed next, and the other
specifies what changes are to be made to registers, what
peripheral operations start and so forth. A particular
execution of a microcode program consists of a sequence
of instructions which thus perform a sequence of state
changes. The simplest program is to do nothing, obey no
instruction, and make no state change. This is a path of
Zero steps.

Usually there will be a number of possible ways from
the start to the end of a program, because programs
ordinarily contain conditional jumps of some sort. All the
potential sequences of microinstructions which might be
performed by a program, considered together, constitute
the generalised notion of a path corresponding to that
program. There may well be infinitely many such
sequences. If we consider the collection of state changes
corresponding to each of the individual instructions in a
program, then each evaluation is a sequence of zero or
more of these elementary state changes and a generalized
path is a set (possibly infinite) of such sequences. So the
‘carrier’ of the path algebra, that is the values which are
manipulated by the operations of the algebra, consists of
sets of sequences of elementary state changes.

A regular algebra has three operators, denoted here by
.’, ‘4 and ‘*’, and two constants, written ‘1’ and ‘0’.
We shall describe them as they are used in the algebra of
paths, which is a realisation of regular algebras.

The operation °.’, read ‘followed by’, takes two sets
of sequences and makes a new one consisting of the
sequences composed from a member of the first
parameter of the operation followed by a member of the
second. The operation ‘ +’ takes two sets of sequences
and makes a new one which is just the union of the two
sets, that is routes from either one parameter or the other.
The constant ‘1’ corresponds to one sequence of zero
length, in other words a short circuit between the starting
and finishing points. The third operator, ‘ *’, takes a set of
sequences, r, and produces

l4+r+r.r+r.r.r+...

that is, the paths in the result are those obtained by going
zero times round r, or once or twice, etc. We may
sometimes also use the constant ‘0’, which corresponds
to an empty set of sequences, but we do not need this for
any of our calculations, just for some of the formal
manipulations.

There are various laws which are obeyed by this
algebra of sets of sequences. For example

3

a.b+c)=a.b+a.c
which is a distributive law and
a.(b.c)=(.b).c

which is the associative law for ‘followed by’. These are
examples of the laws necessary for regular algebras.

It is possible to take microcode and produce from its
control structure a regular expression which describes the
possible sets of routes through it. This interpretation of
the control structure of the microcode can be done
independently of its later use for checking, which depends
on the actual state changes made by the individual steps.
We therefore need just one program to do it.

As well as the realisation of the operations and laws
of regular algebras in terms of paths, we could realise
them in terms of other values and operations. Such a
realisation would again define values to be manipulated,
operations +’, .” and *” and constants 1’ and 0’, all of
which obey the laws. A homomorphism of regular
algebras, H, is a mapping which obeys the rules

Hl) =1

H(0) =0’

H(a.b) = H(a). H(b)
H(a+b) = H(a)+ H(b)
H(a*) = H(a)¥'

In order to obtain a property of the program we will
define a homomorphism of regular algebras from the path
algebra to an algebra devised especially for determining
the particular property. The implication of the rules for
homomorphisms above is that we can calculate the
property of a composite program from the properties of
its parts.

A property of a program will be some sort of value. It
may be as simple as a truth value, saying that the program
is good or bad, or an integer giving the maximum value
of something, or it may be quite a complex structure. The
path algebra is such that if we choose how the one-step
values are mapped by the homomorphism, that is if we
specify the property for individual instructions, then there
is only one way of extending this to a homomorphism.
If we introduce a function, atom, which takes the one-step
values to their properties, then the rule H(a) = atom(a),
when a is a single instruction together with the rules given
above, defines a recursive program for evaluating the
property.

Let us take a very simple example to illustrate this.
Suppose that some of the elementary instructions can be
wrong. We wish to find out whether any route through
a program contains a wrong instruction. We take the type
of our property values to be truth values, true being
interpreted as meaning that a set of paths has no wrong
instruction in it and false as meaning that it does contain
a wrong instruction. A short circuit has no error so 1 is
true. The function atom is that which says for each
elementary instruction whether it is good or bad. For .’
we choose ‘and’ so paths will only be good of both
components are good. For +’ we also choose ‘and’, since
we want to detect an error if there is one in either
component. The operation *’ can be deduced to be the
identity operation on truth values, and the constant 0’ is
true. We must check that these operations obey the laws
for regular algebras which are set out in the appendix.
Then we can obtain the truth value which tells us whether
there was a wrong instruction on any of the routes
through the program by evaluating the homomorphism
for the regular expression produced from the microcode.

How are we to interpret this value? Let us consider the
operator +, bothin the path algebra and in the truth-value
algebra. From the laws in the appendix we see that it is
associative, commutative, idempotent and has 0 as its
unit, that is

O+x=x and x+0=x

It is always the case that for such an operator we can
define a partial ordering, written <, by defining x < y to
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mean x+y = y, in which 0 is less than or equal to each
element. In terms of the path algebra, any subset of a set
of sequences is less than or equal to the set, for the +
operator is just set union and the < operator is set
inclusion. In terms of the truth-value algebra, + is ‘and’,
< is ‘is implied by’ and true < false. For any homo-
morphism, H, x < yimplies H(x) < H(y). Henceif H(p)is
the property of some set of sequences then H(q) for any
subset, g, of p satisfies H(q) < H(p). Consider the
truth-value algebra. If the value of the homomorphism
applied to some set of sequences is true, then we know
that the homomorphism applied to each of the sequences
that makes up the set is true, since true is the least value
possible. So if we get the value true we know that every
route through the program is free from bad instructions.

If each member of a set of values is less than or equal
to a particular value b, then we say that b is an upper
bound to the set, and if b is the least such value, then it
is the least upper bound of the set. Homomorphisms from
the path algebra preserve least upper bounds. The set of
sequences for a path is by definition the least upper bound
of the component sequences. So its homomorphic image
is the least upper bound in the algebra of truth values.
If the value is false this implies that false is the last value
that will do and so, for this algebra, some sequence must
attain the value false and thus contain a wrong
instruction. It is not always the case that the least upper
bound is attained on some path, as will be shown in a later
example.

In terms of our simple example, this analysis seems
perhaps to be labouring a point which is sufficiently
obvious, but is necessary in general to be accurate about
the meaning of the value of a property, especially when
we are using the property of leastness to make a statement
about the value attained on some path.

2. EVALUATION OF THE
HOMOMORPHISMS

2.1 Structure of the program

A program has been written in Algol68 to implement the
method for microcode written for the ICL Perq
computer. The Perq microcode is based on the
AMD 2910 microcontroller and this provides the control
structure of the microcode. Since the production of the
regular expression depends only on the control structure,
this part of the program depends on the properties of the
AMD 2910. The individual homomorphisms will depend
on the other parts of the microinstructions. So the major
part of the program is dependent on the AMD 2910
rather than Perq. Methods used by other authors are
described in Refs 2 and 14.

The program first assembles the text of the microcode
into an in-store representation. This, of course, depends
on the form of written microcode for Perq. It then applies
a given homomorphism

hom(assemble(text), unit, dot, plus, star, atom)

the result of which is the value of the homomorphism for
the whole program. The value, unit, and the functions,
dot, plus, stat and atom define the particular homo-
morphism which is to be used and the procedure, hom,
knows the control structure of the machine and evaluates
the regular expression and its homomorphism. So
assemble, unit, dot, plus, star and atom understand about

the operations of the Perq microcode, but hom only
knows about the control structure provided by the
AMD 2910. It would have been possible to evaluate the
regular expression first, and then the homomorphism
afterwards, but that would have meant keeping a
representation of the regular expression which for a large
microcode would have been very bulky. The program
therefore evaluates the homomorphism as it goes, as this
usually takes very much less space.

Since different homomorphisms will map to regular
algebras in terms of different base types (modes in
Algol68), the types of unit, dot, plus, star, aroma and hom
will be different when calculating different properties.
Algol68 does not permit modes to be parameterised, so
itis necessary to recompile in order to generate a program
which applies a new homomorphism. The structure is
schematically,
begin

mode M = definition of mode of values produced by
hom

proc atom = (instruction /)M : body;

proc dot = (Ma,b)M: body;

proc plus = (Ma, b)M: body;

proc star = (Ma)M: body;

M unit = value;

proc hom = (microcode m,

Mu,

proc (M, M)Md,

proc (M, M)Mp,

proc (instruction)M atom)
M:

body;

hom(assemble(text), unit, dot, plus, star, atom)
end
The first six lines of definition are special to a particular
homomorphism, the remaining lines are always the same.

Of course it is possible for the control structure of the
microcode to be illegal itself. For example, the
AMD 2910 chip has only five levels of subroutine entry
available, so exceeding this number must be wrong,
excluding any consideration of regular expressions. Also,
if we start to interpret a new macroinstruction when the
subroutine stack is not empty this is likely to be a mistake.
These and other errors are detected by hom while it is
evaluating the regular expression, and are indicated as
errors to the user.

2.2 From control structure to regular expressions

From the point of view of rapid calculation, the most
important properties of regular algebras are the
associative and distributive laws. These imply that we can
calculate the regular expression corresponding to a part
of the program and slot it into place in a larger
expression, without any problem about the order in which
these things are done. So we can calculate the regular
expression starting from a label in the code up to, say,
the points at which we start to decode the next
instruction, and store it, or rather its homomorphic
image, together with the label. Then when we find
another jump to that label we can use the already
computed value. Something similar can be done for
subroutine calls by storing the value associated with the
subroutine up to the returns and exception jumps, and
re-using this. This is made complex by the need to treat
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exceptions (Jump-pop in the AMD 2910) and because of
the explicit manipulations of the subroutine link stack
which are possible. Subroutine calls, exceptions and the
efficiency of the calculation of regular expressions are
dealt with in another paper.®

Clearly a section of program which continues to
another using ‘next’ or an unconditional jump is to be
composed using the ‘followed by’ operator.

A conditional jump brings the + operator into play.
Notice that the operation performed by the instruction
before jumping has to be dealt with, so a conditional jump

yields (effect of instruction). (dest1+ dest2)

were dest]l and dest2 are the regular expressions

calculated from the continuation and the (labelled)

destination. Switch jumps are dealt with similarly.
Microcode typically has a structure

initiate . (insO+ins1+ins2...)*

where initiate is microcode to set up the system, and ins0,
insl, etc. are microcode to interpret the various
macroinstructions. This, therefore, is how we treat the
switch jump to decode the next instruction.

The AMD 2910 has a register S. This is used both for
counting, which can be treated by the same method as
conditional jump, and also to hold a destination for a
jump. This opens the possibility of computed jumps, but
if the values which are loaded into S are constants of the
microcode it is possible to calculate the values which can
be in S at any moment and treat a jump using S as if it
were a switch jump to all these places.

We have still to deal with loops caused by jumps.
Suppose we take a note when we start to process code
starting at a label. If, while processing it, we arrive at a
jump to the same label we have in effect the situation

x=a+b.x
were a is the rest of the regular expression, and b is the

set of paths leading up to the jump to the label. For this
we produce the regular expression
b*.a

It can be shown that this substitution can always be made
(see Appendix), and that although doing things in a
different order may lead to different regular expressions,
these are always equivalent under the laws of regular
algebras.

The rest of the features of the AMD 2910 can be dealt
with in ways which are easily deduced from those which
have been treated above.

3. EXAMPLES OF HOMOMORPHISMS

3.1 Some regular algebras

We start by considering a few examples of regular
algebras in order to help with the homomorphisms to
follow.

Consider the non-negative integers with infinity
a.b—-a+b (addition on integers)

a+b — min (a, b)
ax -0 3.1
1-0
0- 00
Here < is ‘greater than or equal’ for integers.

. que the non-negative integers with plus and minus
infinity a.b—-a+b (addition on integers)
a+b — max(a,b)
a* —if a > 0 thenoo else 0 3.2

1-0

0->—
This will satisfy the laws for regular algebras with a zero
(seeAppendix)providedthatwetake — 0o + 00 = — 0. The

relation < is the normal ‘less than or equal’ for integers.
Another simple example is to take truth values, 7 and

F with a.b—aandb (3.3)
a+b-aorb
ax—->T
1-T

0->F
or its obvious dual. Here < is ‘implies’ and in the dual
case it is ‘is implied by’.

Several of the examples of homomorphism below use
regular algebras derived in the following way. Given a
regular algebra with a zero defined on a set R, we can
obtain a regular algebra defined on R x R by

(al,b1).(a2,b2) > (a2+al.b2,b1.b2) (3.4)
(al,bl)+(a2,b2) - (al +a2,b1 +b2)
(a,b)* — (a.bx, bx)
1-(0,1)

We can see that (0,0) is a right zero for ‘followed by’,
but it is not a left zero. However (0, 0) is a unit for the
plus operation, which is all that is needed to define the
bottom element for the < relation. Indeed < for the pair
isjust < in both the components. If a proper zerois needed

one may be added consistently to the base set, but it will
not be needed in any example below.

3.2 Examples of homomorphisms

Consider the following simple example, useful in what
follows. We wish to find whether a path expression
contains a path of zero length, that is, whether there is
a possible short-circuit between start and finish. Note that
the path expressions that we produce from microcode are
slightly different from the sequence of instruction steps
through the program. For the single instruction

label: op, goto label
translates into the path expression
op . Op*
since the operation is always obeyed at least once. A

zero-length pathin a path expression is quite possible. Let
us take R to be truth values, with

atom(a) = false 3.5
1 = true
a.b=aandb
at+b=aorb
a* = true
0 = false -
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It can easily be seen that this computes the correct answer
and satisfies the laws for regular algebras with a zero. It
just uses the algebra of Formula 3.3. In view of the
remarks about least upper bounds in the first section, we
cansee thatif the result is false, then there is no zero-length
path, and if the result is true there must be a zero-length
path somewhere in the expression.

Now let us design a homomorphism which will decide
whether an X instruction is immediately followed by a Y
instruction. Though it appears that this might be easy to
detect by eye, in fact to do so in 4000 instructions with
all the possibilities of interaction which are permitted by
the AMD 2910, and to be certain that no example has
been missed, is no light task. It is something which is
useful for Perq microcode, since there are instructions
which can occasionally, because of interrupts, spoil the
effect of the following one. We will let R consist of
quadruples of truth values (x, y, t, €), in which x will tell
us if any of the paths ends with an X instruction, y will
say whether any path starts with a Y instruction, ¢ will
say whether there is a path of zero length, and e will tell
us whether there is an example of XY in any of the paths,
which is the error we are looking for. Let

atom(X) = (T, F,F,F)
atom(Y) = (F, T, F,F)
atom(a) = (F, F, F, F) otherwise
1 =(F,F,T,F)
(x1,yl,tl,el).(x2,y2,12,€2) =
(x2 or (2 and x1),
yl or (1 and y2),
t1 and 12,
el or e2 or (y1 and x2))
(xl,yl,t1,el)+(x2,y2,12,€2) =

(x1 or x2,

(3.6)

ylory2,
tl or 12,
el or e2)
(x,y,t,e)x = (x,y,T,e or (x and y))

The ¢ component is just the same as in Formula 3.5. The
pair x and ¢ as well as the pair y and ¢ are examples of
Formula 3.4. The laws for e can also be easily checked.
Inspection will verify that these definitions are a correct
interpretation of what was required. Note that it might
be the case than an instruction X contains a conditional
jump which, because of extra facts which we know,
cannot jump to the Y instruction. In this case we shall be
told that there is an error when there is none. But
certainly if this homomorphism says there is no error, we
can be sure that this is so. In practice we would like, not
only to know that the program is free from this error if
it is so, but also if there is an error, where the fault
occurred. Such error location can be done in this case
without much difficulty by adding extra components to
R, but it has not been done here, in order to keep the
example uncluttered. However, in general it is not so easy
because the error is not usually easily attributed to a
particular place in the program.

Another example, closely related to Formula 3.5, will
give us the shortest path through a program in terms of
the number of instructions. This could easily be modified
to give the minimum time. Take R to be integers and let

atom(a) = 1 (3.7)

1=0
a.b = a+b (integer addition)
a+b = min(a, b)
ax =0
0=0

This is just the regular algebra of Formula 3.1. Again the
resulting value is attained on some path.

From this homomorphism we can derive another
which will check for the following kind of error. It
happens on the Perq that if a certain sort of store
instruction is followed within four instructions by
another memory instruction then the memory instruction
will go wrong. Ensuring that this does not happen is
clearly both important and difficult to check. Let us devise
a homomorphism to ensure that an instruction of class
X is not followed within »n steps by an instruction of class
Y. We take R to consist of three integers and a truth value
and interpret (x, y, ¢, €) by letting x be the smallest number
of steps from an X to the end, Y the smallest number of
steps from the start to a Y, ¢ the shortest number of steps
through the path expression not involving X or Y, and
e the truth value telling whether an error has occurred.
Let

atom(X) = (0, o0, o0, F)

atom(Y) = (00,0, 0, F)
atom(a) = (o0, 00, 1, F)otherwise
(x1,y1,11,e1).(x2,y2,12,e2) =
(min (x2m x2+ 12),
min (1, t1+y2),
t1+12,

(3.8)

elore2orxl+y2<n+1)
(x1,yl,t1,el)+(x2,y2,12,€2) =
(min (x1, x2),
min (y1, y2),
min (t1, £2),
el or e2)
(x,y,t,e)* = (x,y,0,e or x+y < 5)

This is clearly closely related to Formula 3.6 and again
is an example of the use of Formula 3.4.

We may find the maximum number of steps (or time)
through a program by using the algebra of Formula 3.2

and taking
atom(a) = 1

The least upper bound argument now tells us, if the result
is infinite, not that an infinite value is attained, but that
there is no finite upper bound to the length of paths.
We can use this in a similar way to find the maximum
distance between instances of a particular kind of
instruction, X. This is useful, for example if we want to
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ensure that polling for interrupts occurs sufficiently
frequently to keep up with some peripheral. We take a
quadruple of integers (a, b, t, m), a being the maximum
distance after an X to the end, b the maximum distance
from the start to an X, ¢ the maximum distance through
the path expression not involving an X, and m the
maximum separation between Xs.

atom(X) = (0,0, — o0, —00) 3.9
atom(a) = (— o0, — 0, 1, — )
1 =(—o00, —00,0, —00)
(al,bl,t1,ml).(a2,b2,12,m2) =
(max (a2, al +12),

max (b1, b2 +11),
t1+12,

max (ml,m2, al +b2))
(al,bl,t1,ml)+ (a2, b2,)12,m2) =

(max (al, a2),

max (b1, b2),

max (¢1, £2),

max (ml, m2))
(a,b,t,m)x = (if t > 0 then a+ oo else q,

if £ > 0 then b+ oo else b,

if > 0 then oo else 0,

if ¢ > 0 then max (m,a+b+ o)

else max (m, a+ b))

We examine the ¢ and m fields of the result to see
whether we have good microcode. Since any loop not
containing an X will give a value of infinity this will mean
that we must look at every loop which does not poll for
interrupts in order to check by hand that using it will not
exceed the permitted interval. However, the homo-
morphism can be modified to find such loops, and it is
in any case probably wise to look at them.

We will produce a homomorphism to check that any
sequence of instructions starting with an X instruction
and ending with a Z instruction does not contain any Y
instructions. This might be because Y spoils something
set up by X for Z to use. Typically Y is the interrupt poll.
We use a septet of truth values

(X, 9,2,xy,yz,1,€)

Let x mean that there is a path from an X to the end of
the path expression not involving a Y or a Z, let y mean
that there is a path from start to finish with one or more
Y instructions on it but neither an X nor a Z, and let z
mean that there is a path from the start to a Z instruction
without X or Y. The truth value xy shall mean that there
is a path with an X on it followed by some Ys and dually
for yz. Let ¢t mean that there is a path without X, Y or
Z and e shall signify that an error has been detected.

atom(X) = (T, F,F,F,F,F,F) (3.10)
atom(Y) = (F,T,F,F,F,F,F)
atom(Z) = (F,F,T,F,F,F,F)
atom(a) = (F,F, F,F,F, T, F) otherwise
| =(F,F,F,F,F,TF)

(x1,y1,z1,xy1, yz1,t1,el) . (x2, y2, 22, xy2, yz2, 12, €2)
= (x2 or (x1 and #2),
(y1, and #2) or (¢1and y2) or (y1 and y2),
z1 or (z2 and ¢1),

xy2 or (xyl and #2) or (xyl and y2)
or (x1 and y2),

yz1 or (¢1 and yz2) or (y1 and yz2)
or (yl and z2),

t1 and 72,
el or e2 or (x1 and yz2) or (xyl and z2))
(x1,y1,z1,xyl,yz1,tl,el)+(x2, y2,22, xy2, yz2, 12, €2)

= (x1 or x2,

yl or y2,

z1 or z2,

xyl or xy2,

yzl1 or yz2,

tl or 12,

el or e2)

x,y,z,xpy,yz,t,e)* = x
Vs
z!
xy or (x and y),
yz or (y and z),
T’
e or (x and yz) or (xy and z) or
~(x and y and z))

Finally, we show how we may ensure that the limits of
an expression stack are not exceeded. Suppose we have
two instructions, push and pop, and a stack which is
limited to n items. The instructions only change the
number of items in a stack, so we work in terms of change
relative to the start, and will assume that the stack is
initialised at the start of the program.

Takeaquartet of integers (d, i, s, g). Let the accumulated
change in value of the stack height from start to finish
through a single route in the path expression be ¢, which
may be positive or negative. Let d be the least value of
c for all the routes in a path and let i be the greatest value
of ¢ for all the routes. Let s be the least value of the stack
height which occurred anywhere on any of the routes,
relative to the start, and let g be the greatest.

atom(push) = (1,1, 1,1)
atom(pop) = (_ 17 - 1’ - 1’ - 1)
atom(a) = (0, 0, 0, 0) otherwise

(3.11)

1=1(0,0,0,0)
dl,il,sl, gl).(d2,i2,s2,82) =
dl+a2,
i1+i2,

min (s1, 52 +d1),
max (gl,g2+il))
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(d1,il,s1,g1)+(d2,i2,52,82) =
(min (d1, d2),
max (i1, i2),
min (s1, s2),
max (g1, g2))
(d,i,s,g)* = (if d < 0 then — o else 0,
if i > 0 then oo else 0,
if d < 0 then — o0 else s,

if i > 0 then oo else g)

If the final value of g is greater than n then there is an
error, and if the final value of s is less than 0 there is an
error. Pinpointing the error can be more difficult since it
is not necessarily a localised mistake, but the area where
the maximum or minimum occurred can be found. It is
more complex to try to find the same kind of mistake in
the presence of a stack-reset operation, because the
natural extension of Formula 3.11 does not obey the
distributive law. However, a modification of this method
can be designed which computes both relative and
absolute maxima and minima.

4. CONCLUSIONS

We have given a number of examples of useful diagnostic
properties of microcode that can be computed using the
method of homomorphisms, and shown how a program
has been written which separates this calculation into a
part involving the control structure which depends only
on the AMD 2910, and a part involving knowledge of the
Perq microcode. This program runs fairly quickly and has
proved its use in removing errors from about 4000
instructions of Perq microcode implementing the Flex
architecture. Many of the tests which were run found
errors, some of which were subtle, involving interrupts or
unlikely combinations of circumstance which would have
been difficult to remove by the usual methods of trial and
error.
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