Compiler Techniguesfor Fast Migration
of Embedded Applications

Thilo S. GAUL" and Giinter SCHUMACHER
'Universitat Karlsruhe, Institut fir Programmstrukturen und Datenorganisadinel 2
76131 Karlsruhe, Germany; Tel: +49 721 608-7398; Fax: +49 721 30047
Email: gaul@ipd.info.uni-karlsruhe.de
Universitat Karlsruhe, Institut fir Angewandte Mathematik,
Postfach 6980, 76128 Karlsruhe, Germany; Tel: +49 721 608-2841,
Fax: +49 721 6087669; Email: guenter.schumacher@math.uni-karlsruhe.de

Abstract: With a number of microprocessor architectures in wxiay, the
flexibility to change from one target platform to armthin respond to market or
customer demands, is decisive for competitiveness foricagiph developers. In
order to increase this flexibility, the Architectureeiral Distribution Format
(ANDF) has been developed within OMI (Open MicroproceSy@tems Initiative).
After some demonstrating applications, it turned out, teg availability of
respective back-ends (installers) becomes the masiatipart of this technology.
During the OMI/SAFE project, an adequate solution has Heand to this
problem. By means of special compiler generating toolsldped at the University
of Karlsruhe, an installer for a specific platform da@ provided with much less
effort than before. The approach also allows to budlafigurable installers which
is of great importance for families of microprocessaond for DSPs.

1. Introduction

The development of software technologies to improveapdity has been identified as one
of the key strategies in the software area within OWhis is because the increasing
importance of software reuse in all kind of microelecicts developments. For example, a
number of silicon vendors in OMI have recently statleat they expect the number of
software engineers in their development teams to gromv 15% to 50% in the next 2 years
due to the increased supply of software and mixed softia®tare functions. Another
fact is that adding programmable features to a chip reqgibrases or a new compiler, or
both. And last but not least, developers have to faeefact that IP design reuse could
decrease product turnaround time to 6 months or less.

Consequently, many efforts have been spent to devettpase reuse techniques, among
which the Architecture Neutral Distribution Format (BN), a pure European development,
IS going to become a world-wide recognised standard fdraexggng software components
among different platforms. As the standard not yet &shal and other assumed
alternatives such as Java coming up, potentially irtefemdustry was going to drop
ANDF. This was mainly due to the lack of practical exg@e how ANDF favours
embedded system development and how it fits into traditevelopment environments.

In the meantime, two European funded projects (OMI/ANRASH and OMI/SAFE)
have demonstrated the superior nature of ANDF as adlegyn It turns out that through
ANDF not only the software functionality can be pdrt® other platforms but also the
quality aspects. It also features properties which ardeptmed for the special needs of
safety critical applications. Nevertheless, platformdependence always implies higher

intelligence of the corresponding compiling tools whicimally means higher complexity
and higher costs as well. Whilst higher compiler cbstge to be compared to the reduced
costs of software porting, the increasing complexitysw¢th components have still to be
considered.

This was the starting point for an investigation taygaautomatic generation of compiler
components within the OMI/SAFE project. The goal wagvaluate the feasibility of using
compiler-generating tools with respect to

» development time for back-end components

» architectural flexibility through parameterisation

* output quality of the generated component (code size, penfmen
In this paper, we describe the first promising resulis tire expected to give new
stimulation for promoting ANDF as an internationahstard.

2. TheArchitecture Neutral Distribution Format

In its original meaning, Architecture Neutral DistrilmrtiFormat means just the idea of a
platform independent format. In 1989 the OSF issued a RequeStethnology for an
implementation of an architecture-neutral format, arermediate language to support
application portability. Among 15 qualifying submissions, Gfsifounced in 1991 that they
had selected a subset of TDF developed by the DefendeaEva and Research Agency
(U.K.) to be the core technology of ANDF. Therefof®F (TenDRA Distribution Format)
is nowthe ANDF and no distinction is done between these twmder

| Producers for each programming language |

| cic++ || Fortran77 || Ada9s || DYLAN || occAm
ANDF \ / /
production A

ANDF
installation

8ox86 || MIPs || sPARC || PowerPC || RS6000

| Installers for each target platform |

Besides the definition of an intermediate language,elmANDF Technologyneans the
rigorous separation of the front-end (taking the sourceggrpm) and the back-end
(generating the binary) of a compiler. Any such fromt-¢calledproduce) is intended and
designed to be target independent whilst the back-end dcaltaller) is language
independent.

Any API (for any source language) therefore has a sdevet definition and a platform
specific definition (provided together with the instgllekPls are closely related to standard
programming libraries like ANSI C, X11 or POSIX. Becausepraducer only uses

abstractions of APIs, no further assumptions abouattigtecture on which the program is
supposed to be run are necessary.

Since the first release of TDF (as ANDF), sevexlvilies have been established to
provide components for the ANDF technology, i.e., prodsjdestallers, validations suites,
etc. A reasonable part of these activities have lhesaed under the ESPRIT programme.
Therefore, the ANDF technology must be considered @alaEuropean development. At
times when standards become more and more importaatcassful European standard for
— generally spoken — real-time interfaces would bring grdateis on European providers
of respective technology. Although this is rather "psyagical’ since ANDF is open for
anyone, examples like Java demonstrate the existéiois effect.

The lessons from Java have brought up another integeapect. Java is currently
considered as something like an “ANDF”, even in thd-tigee area — although it is quite
different from the "real” ANDF. In fact, Java is tasted to C-like constructs while it also
features C-like uncertainties. On the other hand, AND&th as a language and as
technology) features language-independence while it enalBlesafe programming, a fact
which has been proven by the OMI/ANTI-CRASH proja@devertheless, many companies
have started to focus on Java while ANDF is techpgiséll the better alternative.

Therefore, a European driven ANDF standardisation (aa@/} started at the ISO level)
is mandatory and urgently recommended. To overcome famons “chicken-and-egg”
paradigm (no standards without industrial interest, no industterest without standards),
more demonstrating actions have to be establishdaeasne proposed by this project. The
project consortium will also closely co-operate wittiie newly established ANDF-Club, a
special interest group that acts as a forum for all comANDF activities.

ANDF was always said to be too big and complicatednaoh parameterisation. This is
true in a compiler environment where only one languageanslated to a small set of target
architectures; in this case the intermediate repragentcan be driven by the features of the
target machine. But the more programming languages hawe itdegrated into this simple
framework, the more general the intermediate languagehas ANDF was designed to be
a most general exchange platform, architecture neutridlel sense that it provides a real
superset of most intermediate operators and is widelynadegsisable in most architecture
dependent language features. This allows building a compsgéens for a lot of different
source languages and target machines, which always @searti® compiler infrastructure.
ANDF as anm to n interface between the various combinationsmdifont-ends anah back-
ends assures, that a lot of code can be reused, egpeaiadiformations and optimisations
on intermediate language level.

3. ANDF Based Compiler Construction

The last decades of compiler construction research pradiced a lot of fancy techniques
for the construction of fast, safety or highly optimis compilers but the very few have
come to an industrial relevance. The best chancsufch a technique to be used in practice
is to be integrated into a generator tool. The beswknexamples of such techniques are
deterministic finite automatons for lexical analyssl stack automatons for the analysis of
context-free languages. Nowadays everyone who dealdanghbage translations knows the
corresponding tools LEX and YACC (and their derivatitég} use these techniques.

The main aspect is, that the mentioned techniques fdweid way into generator tools,
which generate concrete parts of a compiler from dasymaintain and extendible
specifications. Nowadays every programming language descriptiomes with a

specification in EBNF, from which a YACC specificatican be derived easily. This is not
the case for other parts of the compiler and mostchfstrial relevant compiler systems are
still hand-written.

The tool approach we present in this paper shows a fustep in the automation of
compiler construction.

3.1 The Compiler Framework
The compiler framework developed in OMI/SAFE was desigmednaximise reuse and
reliability. This ,developers best friend” goal is aaked by:

* dividing the compiler into well

Source Progra Source Progra ma_nggeable phasgs
Languagd J Languagen « dividing phases into language and
architecture dependent and

AW VA independent parts
Frontend I Frontenm I * generating compiler parts from
specifications

N N First the compiler is divided classically
[ANDE] into a front-end and a back-end where
ANDF serves as the intermediate
FoTmTTTToTT e N7 language. This is not only a conceptual
| l subdivision, but this is a concrete
| Backenl I """ Backenn I ' interface where different front-ends and
| m— A : back-ends can be exchanged - even
[Machine Prograr] (“Machine Prograrj dynamically. In a concrete development
Architecturd. B Architecturan framework this reduces the amount of

combinations of front-ends with back-
ends fromm*n to m+n and thus reduces
the costs for porting the compiler to new architectuwedanguages. ANDF programs
produced by the front-end can also be saved as binasy filhich can be distributed and
translated further with any ANDF-back-end, without anpwledge about the language
they were produced from. The feature of being able toilgis¢ binary coded intermediate
programs is similar to Java-Byte-Code, with the difiese that the latter is neither
independent of the source language nor architecture neutral.

In the rest of this paper we will concentrate us anlihck-end partir{staller) of such a
compiler and the generator techniques used here.

3.2 Back-end Architecture

The main aspects at the construction of compiler badk-are retargebility and reliability.
Efficiency of the generated code is also an import domembedded systems, but unlike to
code generation for high-performance workstations meroongiderations are often more
important. The generator approach used in OMI/SAFE allmnsptimise code generators
for both runtime efficiency and memory consumption.

Following ANDF mechanisms to divide an installer in&mwchitecture neutral and
architecture dependent parts, our approach performs a stefpansformation from ,high-
level* ANDF to low-level machine code:

1. Read and link the architecture
neutral ANDF code together with [ANDF]
machine dependent ANDF

libraries and application

programming routines L{nked- ANDE-Linker —

ANDP) Code Selectiorn
Rules

2. Select target machine code for L&M

Linked-ANDF programs (code
selection) v , A

3. Assemble and bind produced code | [.
ode Selector| <
to executable programs r‘ Generator

The latter is a standard job for a Imm
system specific assembler/linker tool
chain and is normally provided by the
target machine manufacturer.
Implementations of task 1 (ANDF-
Linker and Reader) can be reused at
100%, because they do not depend on the target and are imigdraechitecture neutral.
Several C-implementations are available, one asudt ref the OMI/SAFE project. The code
selection phase (task 2) performs the mapping of data gymk®perations to the target
machine while trying to use target resources optim@llyviously this is the most tedious
task to implement and tool support is urgently required.

Assemble

A 100% reuse

. B2 generated
[Machine Cod] [T

sys. dep.

3.3 The Generator Technology

There exist a variety of techniques that address thelggnoof matching machine code to
intermediate languages. Common methodology is to spemifice and target language
terms, which are related by code selection rules atemtwith costs. From those
specifications a cost controlled rewrite system isegatied, that implements the code
selector. The mechanism assures that always thenoigtal code - memory consumption
or execution time - is selected. Efficient tree tdart®rs or bottom up rewrite systems
achieve practicability. The user of the generator doéshave to bother with the generated
transducer system, he just has to assure, that thdiegpeale set is complete w.r.t. to the
input language (ANDF) and of course, that the single rute$oaally correct.

Most powerful machine instructions can be used not niynplement one node of the
program tree but several nodes at the same time. I twdeke full advantage of this
instruction set property the declarative specificatibthe code generator describes machine
instructions by tree patterns. This is done by defimimgs. Each rule describes a node
pattern and the corresponding sequence of processor immstg ahich will be the output
for this pattern. In order to produce code for the emtiqgression tree, the code generator
picks out a suitable set of rules so all nodes are covaree. Now the tree is traversed in
postfix order and for each rule of the set the corredipgrmachine instructions are emitted.

Many processors have an ample instruction set, wha lead to a lot of different,
possible covers. These covers are all correct, lmtrdbults may have not the same code
guality. In order to select the best cover, each ragethe above mentioned cost statement.
The code generator computes the total cost of eaclbf@ssiver by adding the costs of all
rules belonging to the cover. Then the cover of mihcoat is chosen and for this the code
is produced.

Several generators with industrial relevance have beénin the recent years and are

now included in compiler toolboxes (BURG, IBURG/MBURBAGODE, BEG). The
back-end generator BEG is the tool with most user sugpattis complete in the sense,
that it is possible to specify the whole code genemapioocess. BEG produces highly
efficient code generators, includes several registecatlbrs and also generates instruction
schedulers from specifications.

BEG was developed and used in ESPRIT-project COMPARE arwhisnaintained and
sold by H.E.l.-Informationstechnik, Germany. The carial version comes with full
support, a public domain version with less features @ asilable. The practicability has
shown up in several compiler projects (COMPARE, MOCIsather-K, Java-Byte-Code)
where code generators for different processors (VAX, B8knsputer-T800, MIPS, Sparc,
PowerPC, Pentium) were produced.

4. First reaults

This paper also reports first results and experiencesptmenting ANDF back-ends with
the new generator approach. We will give an overvievhwman resources and technical
results of the first phase of the installer part witiie OMI/SAFE project.

A code generator consists of intermediate language speaifd target machine
dependent parts. The language part models the input represensatd performs
optimisations on ANDF-terms. This part can be reused 1#00% new compiler and will be
available in the public domain and also commercialia assult of the OMI/SAFE project.
The machine dependent part has of course to be adaptednfaw architecture, but the
specification mechanism allows to concentrate ortahget machine facilities. The compiler
writer does not have to bother with the transforamprocess itself, but he can concentrate
on single aspects and local transformations.

Table 1 gives an overview on the usage of human resonessted related to lines of
specification and C-code produced.

% of total lines of code lines of C-code

man-power gen.-spec. (gener ated)
Reader 20% 17.000
ANDF-specific code-gen. part 40% 1.500 10.000
Target-specific| Architecture dependent 40% 800 25.000
code-gen. part Processor dependent 400 8.000

Tabelle 1 Human Resour ces

Architecture dependent means, that this part only depemdiseotarget architecture or
family, not on the concrete processor.

These first results show, that on the one hand theifispgon mechanism is very
powerfull — relation from lines of spec. to lines ofc@de is at least 10 to 1 — and on the
other hand that the biggest part can be reused for amntecture or processor family.

5. Conclusions

First results in the OMI/SAFE project show, that alegenerator technique like BEG is
especially well suited for complex intermediate languages ANDF and for embedded
system processors with complex instruction sets, egiffes and addressing modes.

Compared to hand written compiler back-ends, the usagedefgenerator tools decreases

the retargeting time to a new architecture signifigaautl well as it improves reliability.

The main benefits of using a compiler generator foreztdbd systems are retargebility
and reliability. Comparing hand written back-end implermgob and writing a declarative
description the latter has several advantages:

» the description text is distinctly shorter than tharse text of a conventional hand made
back-end (the current version is generated from approx. 2#&30df specification)

» specifying the code generation at a higher declarative Il more convenient for a
programmer, because it improves understanding and commuenesEs; even
complicated details can be described by rather simple rule

* writing a description takes less time and effort because shorter and clearer; the
programmer can concentrate himself to local aspduwtsylbbal mechanism is generated
and assures correct compilation

» the division of the code generation process into skpbeses (rewriting, covering, code
emission) allows an easy debugging of the code genetsebr i

» the BEG performs consistency checks on the descriptiasjmproves completeness,
correctness and reliability of the produced code.

» It supports cost controlled code generation, which allbavproduce locally optimal
code (w.r.t. time economy or resource economy) andotoe close to the program
global optimum.

» adding new correct rules can not cause any worsenirgnsahs introduced to improve
code quality of a particular coding problem won't suppressodéingr minimal cover
found correctly before the extension

» the correctness of the produced code can be approved wasigply proving local
correctness of single rules

» because BEG generates automatically a register allpdaatie no longer necessary to
design and to implement one, that saves additional time.

Especially the correctness aspect is very importantrédiability of safety critical
applications and a lot of work has been done on thig, do®. For example in [5] we
showed how to prove the whole code generation procasectamn the basis of local
correctness. The whole code generation specificatinrbe verified against the semantics of
source and target language, which results in an modvleetampiler specification. Such a
compiling specification can then be implemented corydxtitechniques described in [6] and
others. The whole generator can be proven corrgoecesly with the back-end techniques
described in this paper.

Refer ences

[1] Helmut Emmelmann, Code selection by regularly aidhgd term rewriting. In R. Giegerich and S.L.
Graham, editorsCode Generation - Concepts, Tools, TechnigWéxrkshops in Computing. Springer-
Verlag, 1992, S. 3-29

[2] H. Emmelmann, F.W. Schroer, R. Landwehr: BEGGemerator for Efficient Back-Ends, Proceedings
of the Sigplan’89 Conference on Programming Language Desijingplementation. Portland,
Orgeon, June 21-23, 1989, Sigplan Notices, Vol. 24, Number 71988

[3] Albert Nymer and Joost-Pieter Katoen. Code Germrdtased on formal BURS theory and heuristic
search. Technical report inf 95-42, University of Tvegrif996

[4] Todd A Proebsting. BURS automata generation. ACM 3aations on Programming Languages and
Systems, 17(3):461-486, May 1995

[5]
[6]

[7]
[8]
[9]
[10]

Wolf Zimmermann and Thilo Gaul. On the Construata Correct Compiler Back-Ends: An ASM
Approach.Journal of Universal Computer Science (JUCE5):504-567, 1997

Wolfgang Goerigk and Axel Dold and Thilo Gaul and GerhHaods and Andreas Heberle and F. W.
von Henke and Ulrich Hoffmann and Hans Langmaack and Hefgéfer and Harald Ruess and Wolf
Zimmermann. Compiler Correctness and Implementatiaifiségion: The VERIFIX Approach,
International Conference on Compiler Construction, 1,996koeping, Sweden.

H.S. Jansohn: Automated Generation of Optimized CB##D-Bericht Nr. 154, R.Oldenbourg
Verlag, 1985

A.V. Aho, M. Ganapathi, S.W. Tjiang: Code Genenatidsing Tree Matching and Dynamic
Programming. 1987

A. Balachandran, D.M. Dhamdhere, S.Biswas: EffitiRetargetable Code Generation Using Bottom-
up Tree Pattern Matching, Computer Languages, 15(3), 1990, S. 127-140

R.S. Glanville: A Machine Independent Algorithm foode Generation and its Use in Retargetable
Compilers, PhD Thesis, University of California, Beley, 1978

