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Abstract 

The REAP project at InterGlossa is developing tools 
to support maintenance and reverse engineering of 
assembly language programs, concentrating on well- 
engineered hand-coded programs. 

Abstraction of assembly programs takes place in the 
context of a selected ‘engineering model’ which includes 
the definition of the instruction set semantics but also 
constraints on the programs simalar to those found in 
ABIs. The process of translataon takes the form of 
a large-scale anductive demonstration that the program 
meets the constraints of the ‘engineering model’ as the 
translated abstraction is produced. 

A n  engineer’s interface makes this manifest to the 
engineer supervasing the translation. 

This approach can in prancaple handle programs 
whose models include a disciplined use of code self- 
modificataon or dynamic register bank switching. A s  
intermediate language for  the major analyses involved 
we use a representation based on the XANDF X/Open 
standard originating from the UK Defence Research 
Agency. XANDF is a standard for architecture neutral 
program representation which will permit support for 
analyses of portability. Concurrency is not yet covered 
but recent advances show how XANDF can be extended 
to encompass concurrency and distribution[lO]. 

We illustrate the effectiveness of the tools with ex- 
amples taken from live Intel 8051 and Zilog Z80 sys- 
tems. 

1. Introduction 
The REAP project at InterGlossa’ is constructing 

tools for the predominantly automatic reverse engin- 
eering of assembler programs. Our main targets are 
micro-controllers, where practice is still shifting from 
use of assemblers to high level languages for embedded 
systems. The particular nature of these processors and 
the variety of programming styles in use has prompted 
us to pay particular attention to the translation from 
the machine code or binary coding to intermediate lan- 
guage. Having expressed the meaning in an intermedi- 

‘This work is partly supported by the UK Department of 
Trade and Industry under the SMART programme. 

ate language we have found automatic transformations 
satisfactory for translation to C so far. 

The next section gives our objectives; section 3 
briefly discusses related work; section 4 discus., pes our 
view of translation and defines terms for the rest of the 
paper; in section 5 we describe the reverse engineering 
process that ensues; section 6 gives a brief introduction 
to the XANDF intermediate language used; section 7 
gives a practical example; section 8 discusses the cur- 
rent state and prospects of the REAP project; section 
9 is a summary. 

2. Objectives 

The REAP tools are for translation and also for pro- 
duction of maintenance documentation (including in- 
teractive representations) of assembler code and bin- 
ary systems, especially for micro-controllers, with en- 
gineer interaction supplementing automatic transform- 
ations and translations. 

We have seen many examples of long-lived codes, 
e.g. in aerospace and defence applications which are 
currently maintained from assembler source and where 
translation can ease the maintenance task or provide a 
more familiar representation of the system for study. 
Reverse engineering for software maintenance is our 
primary objective in the REAP project. 

Another objective in reverse engineering is that we 
hope to support safety arguments via reverse transla- 
tion. We expect to provide sound, though not formal, 
arguments that the behaviour of the system has been 
captured. This is the reason for paying particular at- 
tention to the first steps of the translation. At present, 
safety arguments for micro-controller based systems 
have to be based on the compilation tool chain. Our 
REAP tools offer an alternative approach to certifiers 
wishing to satisfy themselves of certain simple prop- 
erties of a code from its final installed form. While 
we would not propose such methods as the sole safety 
argument, we do believe that their use offers useful ad- 
ditional safeguards, especially with respect to tlhe reli- 
ability of the tool chain. 

Consider the safety argument for e.g. the confine- 
ment of a robot arm to a certain spatial region by, say, 
a system of sensors and power control. Such an argu- 
ment could be made independent of large parts of the 
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system. We believe that a similar approach is within 
reach by reverse engineering although a great deal of 
work is necessary before such arguments can carry real 
weight. At present they can be simply useful addi- 
tional evidence of the safety of the implementation and 
the compilation tool chain in a given case. 

We also expect to be able to provide portable trans- 
lations of such code or to indicate where portability 
breaks down. The architecture neutral representation 
of store offered by the XANDF intermediate format is 
essential to achieving this objective. 

3. Related Work 

Other authors have discussed translation and under- 
standing of assembler programs. Decompilation is a 
form of translation where a restricted and known set 
of idioms can appear in the source system. Decompila- 
tion for Intel x86 processors to C is discussed in [3] and 
a more general framework is given by Bowen [2]. For 
translation of possibly hand-written assembler systems 
the best-known work is that of Ward and Bennett [5] 
who describe their translation of assembler programs 
briefly. In some cases the authors are most concerned 
with the induction of design level information from the 
code rather than the deduction of its behaviour. Breuer 
and Lano [6] discuss the induction of objects from CO- 
BOL and Fortran in this sense. The maintenance sys- 
tem described in [8] is more relevant to our current 
concerns. 

Ward and Bennett discuss assembler translation (in 
the context of the IBM 370 instruction set) in the fol- 
lowing terms, with which we heartily concur: 

“It is theoretically possible to have a perfect model of 
the language which correctly captures the behaviour of 
all assembler programs. Certain features of Assembler, 
such as branching to register addresses, self-modifying 
code and so on, would imply that such a model would 
have to record the entire state of the machine, including 
all registers, memory, disk space, and external devices 
and ”interpret” this state as each instruction is ex- 
ecuted. Unfortunately, such a model is useless for in- 
verse engineering purposes since such trivial changes 
as deleting a NOP instruction, or changing the load ad- 
dress of a module, can in theory change the behaviour 
of a program.” 

Ward and Bennett then discuss three types of 
modelling of assembler programs which are appar- 
ently applied to different constructs during translation 
and which they judge suitable for all practical purposes: 

1. Complete modelling: they appear to emphasise the 

explicit treatment of flag registers and the treat- 
ment of the memory as an array here. 

2. Partial modelling: The treatment of dynamic 
branches is discussed under this head, with a set 
of labels (the set of possible targets) being asso- 
ciated, possibly by heuristic means, with dynamic 
branches. With this approach the dynamic aspect 
can be transferred from the jump target to a con- 
ventional case or choice structure. 

3. Excluded or minimally modelled: e.g. self- 
modifying code, only special cases are recognised 
by the translator. 

This very general framework coincides with our ap- 
proach, although we will show that fully automatic 
methods can supercede heuristics in many cases, by 
iteration through the analysis. 

Very little has been written about the accuracy of in- 
ference of data structures. In a private communication 
Ward indicates that the identification of distinct data 
items ”falls down where the assembler program fiddles 
with base registers in such a way as to create aliasing 
between otherwise distinct symbolic names”. 

4. Translating Machine Code 

As mentioned above, we expect each translation to 
be associated with an idealised model of the processor, 
simpler than the full behaviour. Aspects of behaviour 
which are not exercised in the particular system in 
question can be described in the notation of CSP[4] 
as chaos - in a given case we need not be concerned 
with the precise description of subsequent events once 
the bounds of our model are over-stepped. 

In general, a range of models will be deployed for a 
given processor depending on the features of the pro- 
cessor which have been used in the system. For ex- 
ample, for the Intel 8051 family register banks can be 
switched dynamically, but may not be in a particular 
case, or again the registers can be addressed by indir- 
ection, but may not be in a particular case. 

Suppose that system S does not exercise a particular 
feature F, for example code modification. The absence 
of F will be an invariant property, say inv-F of the 
system. A full description of the processor may be re- 
placed by a description which leaves out the feature 
or describes the behaviour on its invocation as chaos. 
This may considerably simplify the description. For 
example in the absence of code modification the de- 
scription need no longer include the binary decoding 
of instructions, which may be applied statically to the 
code at the outset. The true processor description is 
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clearly a refinement of the particular description since 
chaos is replaced by a particular behaviour. However, 
the notion of the inverse of refinement does not pre- 
cisely capture the nature of our description. Given the 
code for S and its starting and environmental conditions 
or a partial description of them we hope to prove the in- 
variance of inv-F. Usually the processor semantics will 
allow the effect of a given instruction to be deduced 
from the state at the start and will specify the state at 
the end of the instruction. The truth of inv-F on the 
initial state will allow the simpler semantics to be used. 
If we can then prove that inv-F is maintained we have 
the induction step for proving the invariance of inv-F 
from its initial truth and properties of the rest of the 
system. 

Suppose we are trying to prove that there are no 
register bank switches in a program. Initially we can 
assume that there were none up to the nth execution 
step and translate the instructions accordingly. (0th- 
erwise we would have had to represent the processor 
register banks more explicitly in translation.) 

Since the desired invariant is clearly true at the start 
we have to prove that it is preserved by the instructions 
of the nth step of the program from the premise that it 
is valid for the instructions up to the n - lth. 

It is this hidden inductive proof that constitutes the 
logical basis of reverse engineering. 

We describe as an engineering model the simpli- 
fied processor description and the invariants that guar- 
antee its correctness. The availability of a tractable 
engineering model is usually the result of the discipline 
applied during the systems design and implementation. 
When we have verified that the engineering model ap- 
plies throughout the operation of the system we have 
already made a big step towards recovering the design 
of the system, albeit that part which related to its map- 
ping to the processor. 

We can thus see recovery of design information as 
the recovery of properties which guarantee the system’s 
confinement to a state space in which its dynamics and 
properties are more simply described. 

In most cases we cannot expect to demonstrate the 
induction step from a direct translation of the processor 
semantics, without a good deal of transformation and 
preparation. For this reason, we expect to carry the 
invariants which characterise an engineering model for- 
wards through the analysis process as proof obligations 
to be discharged either automatically by analysis or by 
the explicit intervention of human agency. 

Our methods are not formal. In order to produce a 
formal argument for the correctness of a description of 
behaviour derived by transformations it is necessary to 
demonstrate both that the transformations are in ac- 

cordance with the semantics and that the transforma- 
tion engine applies the transformations correctly. While 
authors have reported the former property [5] we do not 
know of systems for which both properties are formal- 
ised. 

4.1. Analyses and Proof Obligations 

The analyses which lead to discharge of proof oblig- 
ations are carried out subject to these conditions. We 
need to be sure that we are not merely basing an argu- 
ment on contradiction. In fact conventional data and 
control flow analyses used to support these demonstra- 
tions are satisfactory. Logical problems would arise if 
we tried to ‘run the semantics backwards’, that is, ar- 
gue from operation results to operation inputs. As long 
as we avoid this both backwards and forwards analyses 
can contribute soundly to the overall inductive argu- 
ment. We hope to formalise this argument in the fu- 
ture. 

5. The REAP Reverse Engineering Pro- 
cess 

We assume that the program to be reverse engin- 
eered has been produced in an engineering environ- 
ment. By this we generally mean that certain invariants 
are preserved during execution with the result that the 
interpretation of instruction semantics in the context of 
the program is considerably simplified. 

In this section we identify the engineering model for 
the program. As we process the program, we can check 
that the program conforms to the proposed engineering 
model (and iterate if not). We then present the REAP 
engineer’s interface (see section 5.1). 

Our choices of engineering model must be strong 
enough to allow the program to be translated into our 
chosen intermediate format. The essential characterist- 
ics involved are discussed in section 6.2. 

When the program is known to conform to a given 
engineering model (either through assertions about the 
program by the engineer or by analysis of the source 
code) the program can be translated into one or more 
intermediate forms. Actually, the program need only 
partially be shown to conform to the model, while out- 
standing properties can be carried forward as proof ob- 
ligations to be discharged later. Alternatively, a par- 
tial translation may be possible with partial knowledge, 
and further knowledge, derived from analysis of the 
translated form of the program, can be fed back to 
improve the partial translation, in an iterative scheme. 

The XANDF-based intermediate format is referred 
to in the following as IF. In IF translation we provide 
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an IF equivalent for each assembler instruction, subject 
to the validity of the engineering model for the given 
program. The registers must be modelled as globals 
but stack locations can be treated as locals provided 
that stack modelling has shown that their lifetimes are 
properly nested within those of routines. 

Manipulation of IF allows us to further verify the 
conformance of the program to the engineer’s model. 
We also reduce program size, and simplify the code, 
through transformations such as eliminating dead ex- 
pressions and tests, idiom recognition and in-lining. 
Given conformance to the model we can produce a high 
level language translation or output the IF representa- 
tion of the program for later code generation or further 
analysis. We describe this process in section 7. 

In section 8 we present an example of the REAP 
tool used on a live Intel 8051 system, illustrated by 
fragments drawn from the original source text. 

Some of the properties that make up an engineering 
model are almost always inter-procedural in nature, e.g. 
the correct nesting of call/return pairs. It cannot be 
expected that translation can be performed effectively 
on a procedure by procedure basis alone. 

A useful example of translation is given by the re- 
turn instruction in a typical assembly language. The re- 
turn instruction necessarily specifies a data-dependent 
transfer of control. To substitute the most general se- 
mantics of the return instruction into a program is to 
invite chaos. Instead the return instruction should only 
be translated in contexts where its use is constrained. 
In the most common cases the program conforms to 
the constraint that the program returns to the instruc- 
tion following the matching call, with correctly nested 
call/return pairs. This can be established by care- 
ful modelling of the call/return stack over the control 
flow of the program. An assembler program cannot 
be translated into the IF format unless its call struc- 
ture has been analysed and can be modelled using the 
conventional calls and returns. Such modelling itself 
depends on the absence of overwriting or stack over- 
flow of the return stack from the program’s execution. 
Verification of this can be deferred until after transla- 
tion to IF, when a target independent analysis can be 
used, since an IF representation infers that the original 
stack s t ructure  was fairly regular 

In summary, we carry out the translation in the con- 
text of a set of coupled global properties of the program 
which are verified at various stages of the translation. 

5.1. Engineer’s Interface 

Figure 1 shows the entry interface of the REAP 
translator at the start of the translation process from 

REAP HYPOTHESIS BROWSER (hypos)------------------------------- 
1 SVOL AS PASSED Stack/stack pointer not volatile 
2 RTI AS PASSED Instruction after subroutine call 
3 SPOVW AS PASSED Stack pointer not overwritten 
4 REGB AS PASSED Register bank constant 
5 DTOK AS PASSED Data/return addresses trusty 
6 MVPC AS PASSED MOVC from PC unambiguous 
7 DPOW AS PASSED DPTR manipulates data labels 
8 SOVF IF UNRESOLVED Stack doesn‘t underflow or overflow 
9 SOVW IF UNRESOLVED Stack not overwritten or read 
10 INTR IF UNRESOLVED Scope and side effect of interrupts 
11 ROVW IF UNRESOLVED No register overwriting by indirection 
12 DIND IF UNRESOLVED Data is relocatable 

Figure 1. REAP hypothesis browser (8051) 

Intel 8051 assembler to C. The model selected is ex- 
pressed by a number of hypotheses embodying global 
properties of the system. There is a status associated 
with each hypothesis (PASSED, FAILED or UNRE- 
SOLVED). Hypotheses are grouped by phases where 
AS indicates hypotheses that must be substantiated for 
the assembler representation of the program; and IF 
those for substantiation in the intermediate format. 

A number of analyses are available to the engineer 
who can aIso browse the code and any annotation to 
the code made by the translator. 

As the engineer proceeds iteratively with the ana- 
lyses and examinations of the points at which they 
show inconsistency with the hypotheses of the selec- 
ted model, confidence in the orderly behaviour of the 
system can be established. 

A certain number of analyses are performed dir- 
ectly on the assembly code. When a certain degree 
of structure has been established, particularly order in 
the call/return nesting, it is possible to translate the 
assembly code to the intermediate format, IF, which 
is based on XANDF, for an easier and more portable 
approach to program translation. 

Some aspects of translation, such as translation of 
dynamic jumps or of pure binary, require, under Ward 
and Bennett’s ‘partial modelling’ approach, that range 
information be input to the translations. In fact such 
information can be collected, albeit laboriously, by a 
grand iteration of the whole translation process, feeding 
new ranges discovered in the IF analyses back to the 
start of translation. 

6. Introduction to XANDF 

XANDF is an intermediate language developed by 
DRA at Malvern and adopted as its choice of ANDF 
(Architecture Neutral Distribution Format) by the 
Open Software Foundation[7]. XANDF is being stand- 
ardised by The Open Group (X/Open) [l]. 
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6.1. Purpose and Use of XANDF 

XANDF is an intermediate language independent of 
source language and target architecture developed by 
the Open Systems Software Group at DRA Malvern. 
XANDF supports modular compiler development, per- 
mitting detailed checking of the target independence of 
programs and the correctness of their use of standard 
APIs. XANDF has been considered as a strategic tech- 
nology for the OM1 project cluster in the ESPRIT pro- 
gram. More generally, XANDF provides a standard 
semantic medium for programs at the implementation 
level. 

XANDF is a tree-structured language with special 
features for portability. It preserves more program 
structure than low level IRs such as the RTL of gcc, but 
has no syntactic sugar and a weaker type system than 
typical high level languages (HLLs). Explicitly writ- 
ten XANDF appears verbose, but is implemented with 
powerful compression. In quantitative studies XANDF 
compares well in measures of performance and size with 
standard compilation. 

A producer converts an HLL into a compact bin- 
ary representation of XANDF. The fundamental unit 
of XANDF is the capsule which contains definitions 
and declarations of procedures, variables and tokens 
(see below). A capsule can export these declarations 
and definitions by binding them to external names. A 
XANDF linker allows capsules to be bound together 
using these names. 

Even portable programs possess machine and op- 
erating system dependencies such as the implementa- 
tions of C types i n t  and FILE. XANDF possesses a 
mechanism to defer the representation of target depend- 
ent program components using parameterised place- 
holders called tokens. XANDF provides a linker that 
can be used to include parameterised definitions for 
tokens. These expand place-holders to satisfy target 
dependencies. 

An installer converts a fully linked XANDF file to 
target specific object code which is then linked with 
required system object libraries using the target system 
linker to produce an executable. Producers have been 
or are being developed for C, Fortran 77, Ada95, Dylan 
and C++ along with installers for 80x86, MIPS, Alpha, 
PowerPC, HP/PA and ARM processors. 

6.2. Expressiveness of XANDF 

XANDF’s description of store shapes, alignments 
and accesses allows it to give an architecture neut- 
ral description of store without losing the capability 
of representing C completely. XANDF views store as 

segmented into independently created chunks known as 
orzgincll spaces. It is not permitted to take the dif- 
ference of pointers in different original spaces or, by 
XANDF pointer operations, to derive a pointer in one 
original space from a pointer in another’. 

XANDF describes all procedures as having single 
entry and returning to their caller. This means that 
additional conventions have to be adopted to represent 
the multi-entry and alternate return proceduires used in 
some programs. 

6.3. Translation to XANDF 

When we translate from assembly language to 
XANDF, in the context of the engineering model which 
has been assumed, we do so for the particular data rep- 
resentation appropriate for the processor and system 
in question. To achieve an efficient architecture neut- 
ral translation we can proceed to demonstrate the rep- 
resentation independence of the program in XANDF. 
Alternatively, we can transform the program so that 
the required data representation is bound in, directly 
modelling data for the processor in question. This lat- 
ter approach is likely to produce slower code because 
coercions to the processor’s register formats has to be 
introduced in some places. 

Demonstrating representation independence depends 
on establishing types for the program variables. 

Our IF contains constructs corresponding to most of 
those in XANDF apart from constructs concerned with 
capsule level representation and install time computa- 
tion. 

Once all AS phase hypotheses have been validated 
we may translate the assembler program into IF. 

The registers and various special memory locations 
are translated into variables wherever appropriate. We 
generally represent separately the smallest units in 
which registers can be addressed, e.g. bytes for the 
280 16-bit registers in order to allow liveness analysis 
the most freedom and re-unite the pieces in a later ana- 
lysis. The status registers are generally translated to 
separate boolean global variables. The literals in the 
code stream become static constants. 

The code translation is a semantic equivalent of the 
assembler instructions subject to the constraints of the 
engineering model selected. So, for example, the Intel 
8051 instruction 

MOV A .  84 

would be translated to: 
2The environment pointers used to provide access to outer 

scopes are exceptional but there use is strongly constrained to 
avoid violating the independence of original spaces. 
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sequence 
( assign(obtain-tag(A), 

make_int(*unsigned_byte() ,make_signed_nat(false,4))), 
assign(obtain_tag(parity) ,make-parity(contents(A) )) 

) 

A and parity are allocations of data spaces in 
the representation of the Intel 8051 memory model. 
obtain-tag returns the pointer to such a data space; 
contents retrieves the contents at that pointer. 
make-parity is a token standing for determination of 
parity. 

Micro-controllers often provide optimised functions 
that cannot be recognised by their compilers from a 
source coding of their semantics. Our translation for 
functions like make-parity is an identifier which can be 
treated as a C macro but for which the analyses have re- 
spected the semantics in carrying out transformations. 

7. Analysing IF 

This form of translation leads to a far more compact 
intermediate representation than the use of a full pro- 
cessor description but one which is still verbose com- 
pared to the original. We therefore introduce a number 
of analyses to reduce the size of the code. These elim- 
inate dead global variables, dead expressions and dead 
jumps using inter-procedural analyses. We also remove 
unnecessary movement of data. We identify multi-word 
arithmetic operations and shifts and group smaller vari- 
ables which are used in common multi-word operations. 
This analysis is inevitably to some extent heuristic and 
is similar in some respects to the more general class ab- 
straction processes used in identifying objects in code. 

The code is also simplified by a novel intra- 
procedural control flow normalisation algorithm for IF, 
the principles of which are described in [9]. 

The obligation to verify the remaining parts of the 
engineering model should be discharged in this repres- 
entation. We are not yet far enough advanced in the 
analysis of data representations to support this effect- 
ively by automatic tools. Analysis of data representa- 
tions would also allow information on portability and 
the non-portable constructs to be reported. 

At this point an effective translation to C can be pro- 
duced. The method involves transformations of the IF 
to a normal form easily mapped to C control constructs 
and then direct translation. 

Plessey Semi-Conductors. The system has 7000 lines of 
assembler source, which assembles to 14K of Intel 8051 
code. We also show translations for Z80 as drawn from 
a live aerospace system. 

8.1. 8051 Assembly Language Representation 

The source code conforms to our model for Intel 8051 
after engineer’s assertions: the stack is not misused 
(the stack pointer is not reset, subroutines return to the 
point of call, etc); the register bank is identifiable; the 
data pointer (DPTR) is used only for referring to static 
data; and the static data accessed offset from the PC is 
unambiguously identifiable. There are a few places in 
the code at which the engineer must place an assertion 
to add information. We illustrate with the treatment 
of a cavalier use of returns in a routine, which we term 
unconventional returns. 

This case affords a simplification of the structure in 
translation to IF. The subroutine chkint manipulates 
the call stack by popping off the return address and is- 
suing a return, effectively performing a return from its 
caller. Our control flow analysis can support such un- 
conventional exits from subroutines. A problem arises 
when the return from the routine, via the instruction 
labelled with nochk, is shared between both the nor- 
mal exit path from the routine and the double return 
path. The analysis is flexible enough about the order of 
instructions to allow it to deal with patched code and 
hence has no real way of knowing whether the instruc- 
tion after popping the return address from the stack 
belongs to the same routine or to its caller. Our default 
assumption is that it belongs to the caller. But the use 
of a common instruction with the normal return path 
causes the assembler routine to be considered as part 
of the IF procedure including its caller on translation 
to IF. A human engineer can easily determine what is 
intended in simple cases, but this judgement is based 
on heuristic knowledge and common sense - which our 
analysers as yet do not possess. 

An assertion of the form AssertReturnOK by the en- 
gineer prevents the merging of the routine chkint with 
its callers into a single IF procedure. AssertReturnOK 
acts like an artificial return instruction, ensuring that 
there is no fall through between the chkint and nochk 
code blocks. Consequentially, the called routines and 
calling routines are not merged by the control flow ana- 
lysis. 

8. Example 
8.2. Intermediate Code Representation 

In this section, we present an extended example of 
the use of the REAP reverse engineering tool on an 
Intel 8051 Teletext Control System, provided by GEC 

Once all hypotheses for the AS phase requirements 
have been satisfied we are free to translate to IF. The 
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chkint: mov a,tflag 
an1 a,#OFH 
jz nochk ;TOP acquisition? .... 
jb ie.0,nochk ;EVENT? ... 

setb t imf lag. 7 ;Abandon flag 
pop acc ;Yes, balance stack 
pop acc 

8 

;..and return from previous 
; interrupt 

AssertReturnOK 1 
nochk: ret 

Figure 2.8051 Assembler Example 

TdfExp-Label(: chkintt8,TdfMake-Proc( 
TdfInteger(TdfVar-WidthCTdfFalse ,32) ,2849), C1 ,N/A, 
TdfLabelled(TdfCoto(TdfMake-Label(! chkint18),2851), 
C TdfExp-Label(: chkint'8,TdfSequence( 

C Tdf Sequence ( 
C TdfAssign(TdfObtain-Tag(-A.mov A tflag,2856), 

TdfContents(TdfInteger(-,-,-), 

mov A tflag,2855), 

TdfParity(TdfContents(-,-,-,-,-),mov A tflag,2862), 
mov A tflag,2860)l,mov A tflag,2854), 

TdfSequence(C TdfAssign(TdfObtain-Tag(-A,anl A #15,2868), 

TdfObtain-Tag(-,-,-,_),mov A tflag,2857), 

TdfAssign(Tdf0btain-Tag(-PAFLITY,mov A tflag,2861), 

TdfAnd(TdfContents(-,-,-,-,-), 

an1 A #15.2867), 
TdfMake-Int (-,- ,- ,- ,-) ,an1 A #15,2869), 

TdfMake-Proc(TdfStructure( 
C Tdf Integer(TdfVar_Width(TdfFalse,32) ,4), 
TdfInteger(TdfVar_Width(TdfFalse,8) ,5)1,3), C3 ,N/A, 

TdfVariable (N/A .TdfMake-Tag(JO), 
TdfMake-Value (Tdf Integer( 

TdfSequence(C TdfMake-Top(iO), 
TdfVar_Width(TdfFalse,8),8),: chkintI0,l). 

TdfAssign(Tdf0btain-Tag(30,anl A #15,12), 
TdfAnd(TdfC0ntents ( 

TdfInteger(TdfVar-Width(TdfFalse,8),15), 
TdfObtain-Tag(tflag,mov A tflag,l6),mov A tflag,14), 

TdfMake-Int (TdfVar-Width(TdfFa1se .8), 15 ,an1 A #15,17), 
an1 A #15,13),anl A #15,11), 

TdfConditional(TdfSequence( 
c 
TdfInteger-Test(TdfNot-Equal,: nochk!O(: nochk'0). 

TdfContents(TdfInteger(TdfVar_Width(TdfFalse,8),22), 
TdfObtaln-Tag(30,Jz nochk'0,23),jz nochkt0,21), 

TdfMake-Int(TdfVar-Width(TdfFalse,8),O,Jz nochk!0,24), 
jz nochkt0,20), 

TdfConditional (TdfSequence ( 
c 
TdfInteger-Test(TdfEqua1,LABEL 56, 

TdfChange-Bitfield-To-Int( 

Figure 4. IF program fragment, post analysis 

struct-chkint, chkint-() 
TdfAssimiTdfObtain-Tap(_PARITY.anl A t15.2875). t " -  - " .- 

TdfParity(TdfContents( -,-,-,-,-) ,an1 A #15,2876), 

TdfContents (Tdf Integer (TdfVar-Width(Tdf False ,a) ,2882) , 

BYTE -A-30; 
/* TOP acquisition? .... 
EVENT?. . . 

an1 A #l5,2874)l,anl A #15,2866), 
TdfInteger-Test(TdfNot-Equal,TdfMake-Label(: nochk!8), 

tdf-browse> 

Figure 3. IF tree browser 

REAP tool suite includes an interactive IF tree walker, 
so that the engineer can determine the correspondence 
between the IF and the original assembler. Figure 3 
given a typical output from the tool. Note that the tool 
maintains links to the original assembler by including 
the original assembler instructions in the IF primitives 
derived from them. 

We can now validate the IF hypotheses; and reduce 
the complexity of the program through various ana- 
lyses. The program fragment given in figure 3 could be 
reduced to the code shown in figure 4: 

At this point, we can translate the program to C. 
The resulting C for the subroutine chkint is given in 
figure 5.  

Abandon flag 
Yes, balance stack 

- A-30 = (*tflag- & 15); 
if (-A-30 != 0) 

*/ 

if (BIT-VALUEO(*ie-) == 0) 

BIT-SET7 (*t imf lag-) = I ; 
/* ..and return from previous 

interrupt 
*/ 
chkint--return (I ,-A-30) ; 

3 
nochk- : ; 

3/* chkint- */ 
chkint--return (O,-A-30); 

At the two return points from the subroutine, there is 
a differing ret0 field value: one signifies an unconven- 
tional return; the caller will test this value and perform 
a subsequent return as a result, thereby modelling the 

Figure 5. C program fragment, post analysis 
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A-TO-HL: LD H,A 
LD L,O 
SRL H 
RR L 
SRL H 
RR L 
SET 7,H 
RET 

BOUND : 

BNG : 

PNV : 

BGS : 

BIT 7,D 
JR 2,PNV 
BIT 6,D 
JR 2,BNG 
BIT 5,D 
JR 2,BNG 
RET 
LD A, 80H 
RET 
BIT 6,D 
JR N2,BGS 
BIT 5,D 
JR NZ,BGS 
RET 
LD A, 7FH 
RET 

re le 

original double return control flow construct. 

Two small utility routines from a 280 aerospace ap- 
plication are shown - first in assembler and then in their 
C translation. We see how the inter-procedural analysis 
gives a clear indication of the dataflow at calls and re- 
turns. 

. Conclusions and pros 

The suitability and orthogonality of the constructs of 
XANDF and the availability of machine readable syntax 
for it has allowed us to proceed rapidly in constructing 
transformations and analyses based on XANDF. This 
is a key advantage in using XANDF as an intermedi- 
ate form for reverse engineering. We make use of the 
publicly available definition for XANDF and have pro- 
duced our own toolsets for its manipulation. A long 
term advantage in using XANDF is it gives us the abil- 
ity to interoperate with other tool chains, potentially 

SHORT A-TO-HL-(BYTE -A-) 
c 

SHORT -H-L-69 ; 
- H-L-69 = ((((SHORT) -A-) << 8) >> 2); 
BIT7((BYTE-I(-H-L-69, 1))) = 1; 
r e t u r n  (-H-L-69) ; 

/* A-TO-HL- */ 3 

BYTE BOUND-(BYTE -A-, BYTE -D-) 

if (BIT7(-D-) == I) 
c 
if (BITG(-D-) == I) 
c 
if (BIT5(-D-) == I) 

r e t u r n  (-A-) ; 
3 

3 

r e t u r n  (128);  
BNG-: ; 

3 
PNV-: ; 
if (BIT6(-D-) == 0 )  
c 

if (BIT5(-D-) == 0 )  
c 
3 

r e t u r n  (-A-) ; 

r e t u r n  (127) ; 
3 /* BOUND- */ 

Figure 7. C program fragment, post analysis 
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allowing reverse engineering tools to become a stand- 
ard facility in a developer's toolset. 

We now have automated translations to C from 280 
and 8051 code, as our examples demonstrate, and the 
means to introduce new processor architectures with 
limited effort. The C code produced is good quality 
and clearly exhibits the intent of the original program- 
mers. We can deal with theoretically any size of well en- 
gineered code conforming to the currently fairly simple 
engineering models that we support (i.e. no dynamic 
jumps, a single stack etc). Practically, we have been 
automatically translating medium sized embedded ap- 
plications of about 10000 lines. 

We 
have a tool chain which supports translation from 8051 
and Z80 to C via XANDF. We have a number of IF 
analyses, related to code restructuring and code elim- 
ination. We are adding analyses connected to data in- 
dependence and original spaces. Of particular interest 
will be analysis which supports the creation of portable 
code by typing constructs derived from assembler code. 

We also expect to be using our inductive framework 
to give evidence of the behaviour of critical codes. 

Development of the REAP tools is on-going. 
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