
7/12/93 12:48 pm 1 of 18

Building applications using ANDF

Stavros Macrakis

An ANDF-based application is built in two
main steps: building target-independent
modules, and building target-dependent load
files from them and target-dependent modules.
This paper shows how.

1. Introduction

The standard C compilercc  translates a set of C source modules into a
runnable program.

The ANDF C compilertcc  consists of two parts. The C producertdfc
translates portable C source modules1 into ANDF2; the ANDF installers
xtrans  translate ANDF into a runnable program.

In both cases, the compilation depends on system libraries. But unlike
traditional C, ANDF C permits specifying fully abstract interfaces
separately from their machine-dependent instantiations.

A distributable ANDF module is built by an ANDF producer with an
abstract environment such as POSIX. A runnable application is built by an
installer from the distributable module and the concrete system library
interfaces and implementations which instantiate that abstract environment.

1.  See the paperPorting to ANDF for a discussion of portable programming issues.
2.  See the paperThe Structure of ANDF for a discussion of the internal form of ANDF.



Building applications using ANDF

Basic use of tcc

2 of 18

This paper shows how to use ANDF tools to build applications. We
concentrate on the common, important cases: many other facilities are
documented in theman pages.

2. Basic use of tcc

tcc  is the driver for the ANDF tools. It can be thought of as an ordinary
compiler which happens to use ANDF as its intermediate language. In fact,
tcc  can be used as a plug-compatible replacement for the nativecc
compiler:

> tcc -Ysystem prog.c
> a.out

-Ysystem specifies that the system’s own header files will be used to define
the programming environment.

More interestingly,tcc  can stop after producing the ANDF form:

> tcc -Ysystem -Fj prog.c

-Fj  stops the compilation process after producing the.j  file

This produces the machine-independent fileprog.j , which can then be
translated to a runnable program:

> tcc prog.j

(Like cc , tcc  uses the file type as encoded in the filename extension to
determine the appropriate operation.3)

Compiling with the -Ysystem  flag abstracts from the host machine’s
instruction set, but not the programming environment defined by its header
files, so in general the.j ’s will not be installable on other platforms.

3.  See “File types” (p. 3) for more details.



Building applications using ANDF

Environments

3 of 18

3. Environments

Ordinary C compilers implicitly use the environment of the host machine as
the environment for the program. This is true not only for data
representations and instruction set, but also for system libraries.4

The tcc  compiler allows explicit choice of the environment using the-Y
flag. Currently supported standard environments include:

ansi Strict ANSI C, including the ANSI C library. This is the
default. Note that the ANSI C library provides only
minimal file primitives, and no directory primitives, in
order to be independent of the operating system.

posix The environment defined by POSIX P1003.1, a superset
of theansi  environment.

xpg3 The environment defined by the X/Open Portability
Guide, version 3, a superset of theposix  environment.

Besides environments defined by standards,tcc  also supports the native
environment:

system The local (native) environment.

Although the system environment may be a superset of a standard
environment, it also allows the application to depend on implementation
choices, extensions, or even errors in the interface. Thus, it should be
avoided when developing portable programs.

A portable application compiled in a givenstandard environment should
install correctly on all platforms supporting that environment.5

An ANDF environment defines available library interfaces and the minimal
acceptable run-time environment (e.g. integer range). Standard
environments are defined abstractly, which means that different concrete
realizations are possible.

4.  Most compilers provide some mechanism for overriding the default include and load paths which
define the environment.

5.  See our paper on environment validation (forthcoming).



Building applications using ANDF

Concrete and abstract interfaces

4 of 18

4. Concrete and abstract interfaces

ANDF defines interfaces abstractly, and specifies their concrete form and
implementation separately. C supports separating the concrete interface and
the implementation for most entities (prototype declarations and external
variables), but not all (notably macros). And C provides no mechanism for
separating the abstract interface and the concrete interface.

For instance, many file operations in ANSI C require an argument of type
FILE. C header files defineFILE  as,e.g.:

typedef
struct {

unsigned char *_ptr; /* accessible to all users of FILE */

int _cnt; /* accessible to all users of FILE */

…
}

FILE;

ThatFILE  is a type (typedef  … FILE ;) is an important part of the abstract
interface; the fact that it is a structure with certain fields (the italicized text)
is part of the concrete interface, and should not be visible to the application,
since it may well vary from implementation to implementation. Although
convention dictates that fields beginning with “_” are private, the language
and environment provide no support for this distinction.

Newer programming languages support this distinction in the language and
environment. For instance, Ada divides package specifications into a public
part (abstract interface), and a private part (concrete interface):

package stdio is
type FILE is private; ...

private
type FILE is

record
ptr : int; — Not visible outside package

cnt : int; — Not visible outside package

...
end record;

end stdio;



Building applications using ANDF

Building and dependencies

5 of 18

ANDF C goes beyond this, and provides a pragma extension to C which
allows specifying the abstract and the concrete interfaces in completely
different places. It definesFILE  as an abstract type in the producer’s header
files (similar to the public part of a specification), and defers its
implementation to the installer’s header files (similar to the private part of a
package specification).6

5. Building and dependencies

An application must refer to the abstract interface when it is translated by
the producer, the concrete interface when it is compiled by the installer, and
the implementation when it is linked.

In C, modules are referred to by filenames ininclude  statements.tcc  uses
the environment/filename pair to identify a particular abstract interface. At
installation, the package must link to particular concrete interfaces. This is
done bytcc  using tld . Finally, after translation to .o form, tcc links the
module to native libraries usingld .

6. Using tcc  for application delivery

For delivering applications to users, it is desirable to package the target-
independent .j files into an archive. This is done with the-prod  flag, which
creates a single target-independent ANDF archive. Besides linking with
platform-dependent token definition libraries, the installation script may
wish to use target-dependent object code (.o ), typically derived from
assembly code.

In order to discourage reverse engineering, it is usually desirable to suppress
all identifier names. This is done with the -MA flag.

6.  For more details, see the paperPorting to ANDF.



Building applications using ANDF

Using tcc for libraries

6 of 18

7. Using tcc  for libraries

Unlike applications writers, library writers need to provide external
interfaces which can be linked to at installation time, just like standard
environments. These should be abstract interfaces, and can be defined using
ANDF C’s abstraction mechanisms.

The -hlib  flag of the ANDF linker tld  allows delivering platform-
independent code with only the required interfaces exposed at install time.

8. Dialects of C

tcc  supports various dialects of C. Although we recommend using ANSI C
(the default), older code can be compiled using the-X x flags. Finer control
is possible with the-not_ansi  and -nepc  (no extra portability checks)
flags. Even finer control of the implementation-defined features of ANSI C
is available using specialized pragmas, but this should not be necessary.

Since using ANSI C and retaining full portability checking gives a higher
level of confidence in application portability, we recommend using ANSI C.

9. File types

tcc , like standard C compilers, distinguishes various forms of a program by
their filename extension. In addition to.c  (C source),.h  (header files),.i
(preprocessed C source),.o  (object), .a  (object archive), and.out
(runnable load file), tcc also defines:

.j target-independent ANDF

.ta archives of target-independent ANDF

.t target-dependent ANDF

.tl target-dependent (concrete) interfaces defined in ANDF



Building applications using ANDF

File types

7 of 18

Appendix A. tcc  man page

Crown Copyright, 1993

NAME

tcc user interface to the TDF system

SYNOPSIS

tcc  [ options ] files

DESCRIPTION

tcc  is the user interface to the TDF system. It accepts several types of arguments as files:

• Arguments whose names end in.c  are understood to be C source files.

• Arguments whose names end in.i  are understood to be preprocessed C source files.

• Arguments whose names end in.j  are understood to be target independent TDF capsules.

• Arguments whose names end in.ta  are understood to be archives of target independent
TDF capsules.

• Arguments whose names end in.t  are understood to be target dependent TDF capsules.

• Arguments whose names end in.s  are understood to be assembly source files.

All other arguments (but particularly those whose names end in.o  and.a ) are
understood to be binary object files.

The compilation process is as follows. Depending on the options given, it may halt at
any stage:

TDF archives are split into their constituent target independent capsules.

C source files (including preprocessed C source files) are compiled into target
independent TDF capsules usingtdfc (1tdf).

Target independent TDF capsules are linked, usingtld (1tdf), with the TDF libraries to
produce target dependent TDF capsules.

Target dependent TDF capsules are translated into assembly source files using one of
mipstrans (1tdf) (q.v.—things are not quite so simple in this case),vaxtrans (1tdf) etc.

Assembly source files are compiled into binary object files usingas(1).



Building applications using ANDF

File types

8 of 18

Binary object files are linked with the precompiled libraries, usingld (1), to produce a
final executable.

With the exception of binary object files, intermediate files are not preserved unless
explicitly instructed.

The standard file suffixes,c, i , j , t , s, ando, together withp (pretty-printed TDF
capsule), are used to indicate file types in some options. Also the various compilation
phases are identified by letters in some options. These are :

c C to TDF producer

p Preprocessor

L TDF builder (or linker)

t TDF translator

a System assembler

l System linker

d TDF pretty-printer

OPTIONS

The following options are supported bytcc . All options are scanned before input files
are dealt with.

-Bstatic Tells the system linker to link statically.

-Bdynamic Tells the system linker to link dynamically.

-Dstring Where string is of the formmacro or macro=defn, is equivalent to
inserting the preprocessor directives#define macro 1  or
#define macro defn  at the start of each C source file. This is
implemented bytcc  writing this directive into a start-up file.

-E Invokes the C preprocessor only, putting the result into a file with
a .i  suffix if other options indicate that preprocessed C files are to
be preserved, or onto the standard output otherwise.

-F letter Tells tcc  to stop after producing the files indicated byletter, and
to preserve these files.letter is a single character corresponding to
the suffix of the files to be preserved.

-I string Tells the C to TDF producer to search the directorystring for
included files. The producer searches the directories in the order
given, followed by the system default directories.



Building applications using ANDF

File types

9 of 18

-J string Tells the TDF builder to search the directory string for TDF
libraries. The builder searches the directories in the order given,
followed by the system default directories.

-L string Tells the system linker to search the directorystring for libraries.
It searches the directories in the order given, followed by the
system default directories.

-M Specifies that the TDF builder should link all the given target
independent TDF capsules into one. This is done between stages 2
and 3 above. The default name for the produced capsule isa.j .

-MA Specifies that the TDF builder should link all the given target
independent TDF capsules into one and also hides all the defined
tag and token names from the resultant TDF (except “main”). This
should only be used to compile complete programs. The default
name for the resulting capsule isa.j .

-Map_letter_to_letter
Not documented.

-O This flag has no effect other than to cancel any previous
diagnostics flag and is included only for compatibility with other
compilers. All TDF optimizations are on by default. All
optimizations are believed to be correct, any bug which occurs in
the fully-optimized state is a genuine bug.

-P Invokes the C preprocessor only, putting the result into a file with
a .i  suffix if other options indicate that preprocessed C files are to
be preserved, or onto the standard output otherwise.

-Pa Preserves all intermediate files.

-P letter... Tells tcc  to preserve those files indicated byletter. Each letter is a
single character corresponding to the suffix of the files to be
preserved. Thetcc  startup-file can be preserved as
tcc_startup.h  usingh.

-S Tells tcc  to stop after producing an assembly source file.

-S letter, string,...The specifies that the list of input filesstring all have typeletter,
whereletter is a single character giving the normal suffix of the
file type. This gives an alternative method of passing input files to
tcc , one which does not depend on it having to recognise suffixes
to find the type of a file.



Building applications using ANDF

File types

10 of 18

-Ustring Is equivalent to inserting the preprocessor directive#undef
string at the start of each C source file. This is implemented by
tcc  writing this directive into a start-up file. The only macros
built into the C to TDF producer are__LINE__  , __FILE__  ,
__DATE__ , __TIME__  and__STDC__ .

-Wletter, string,...
This passes the list of optionsstring to the compilation phase
indicated byletter.

-Xa This option specifies that the given program is written in ANSI C.
This is default.

-Xc This option specifies that the given program is written in “K&R”
C.

-Xt This option specifies that the given program is written in
“traditional” C.

-Y string Specifies the environment to use. An environment is a file telling
tcc  to modify its defaults. If the full pathname of env is not
given, the file is searched for along thetcc  environments path
which is a list of directories separated by colons. There are certain
standard environments, for example,ansi , representing the ANSI
standard, is the default environment,posix  represents the POSIX
standard, andxpg3  the XPG3 standard. Thesystem  environment
allowstcc  to behave likecc (1), using the system header files etc.
Seetcc_env (1tdf) for more details about environments.

-b Stops the librarylibc.a  being used by the linker by default.

-c Tells tcc  to stop after producing the binary object files.

-clean By default, if more than once binary object file is produced during
the compilation process, they are all preserved. This option
overrides this.

-dry Makestcc  print information on what system commands it would
execute with the given files and options (as in verbose mode) but
not actually perform them.

-disp Runs the TDF pretty-printer on all files at stage 2 or 3 and then
terminates. The results are put into files with.p  suffixes.

-disp_t Runs the pretty-printer on all files at stage 3 and then terminates.
This differs from the previous option in that it displays the TDF
after linking with the target-dependent TDF libraries rather than
before. The output in put into a file with a.p  suffix.



Building applications using ANDF

File types

11 of 18

-e string Is equivalent to inserting the preprocessor directive#include
string at the end of each C source file.

-f string Is equivalent to inserting the preprocessor directive#include
string at the start of each C source file.

-g Tells tcc  to produce diagnostic information compatible with the
system debugger.

-hide_names Tells tcc  to hide capsule names when constructing a TDF archive.

-i Tells tcc  to stop after producing the target independent TDF
capsules.

-j string Tells the TDF builder to use the TDF librarystring.tl .

-keep_errors By default, if an error occurs during the production of a file,tcc
will remove it. This option will preserve such files.

-l string Tells the system linker to use the librarylibstring.a .

-make_up_names
Causestcc  to make up names for all intermediate files rather than
forming them from the basenames of the input files.

-no_startup_options
Not documented.

-nepc Tells the C to TDF producer to allow certain non-portable
constructs through.

-not_ansi Tells the C to TDF producer to allow certain non-ANSI features
through.

-o string If a final executable is produced, call itstring (the default is
a.out ). Otherwise, if only one file is preserved, call itstring.

-p Produces profiling data for use withprof (1) on those machines
for which this command is available.

-prod Specifies thattcc  should stop after producing the target-
independent TDF capsules and combine them into a TDF archive.
The default archive name isa.ta .

-q

-quiet Specifies thattcc  should work silently. This is default.

-show_errors Makestcc  report on the command it was executing when an error
occurred.



Building applications using ANDF

File types

12 of 18

-show_env_path
Prints thetcc  environments path. This is a list of directories
separated by colons. The first element of the list is always the
system default environments directory and the last element is
always the current working directory. The other elements may be
specified by the user by means of theTCC_ENV system variable.

-target string No effect (allowed for compatibility withcc (1) on some systems).

-time Makestcc  print information on what system commands it is
executing (as with verbose mode) followed by the time taken for
each.

-verbose Specifies thattcc  should work in verbose mode, sending
information on what system commands it is executing to the
standard output.

-version Makestcc  report its version number.

-w Suppresses alltcc  warning messages.

-work string Specifies that all preserved intermediate files are placed in the
directorystring rather than where they are placed by default, in
the current working directory.

-wsl Tells the C to TDF producer to make all string literals writable.

FILES

file.c C source file

file.i Preprocessed C source file

file.j Target independent TDF capsule

file.t Target dependent TDF capsule

file.s Assembly source file

file.o Binary object file

file.p Pretty-printed TDF capsule

a.out Default executable name

a.ta Default TDF archive name

a.j Default output file for merge-TDF-capsules option

tcc_startup.h Name of preserved tcc start-up file



Building applications using ANDF

File types

13 of 18

/tmp/tcc * Temporary directory (this may be changed using the TMPDIR
system variable, see tempnam(3)).

SEE ALSO

as(1), cc (1), disp (1tdf), ld (1), prof (1), tcc_env (1tdf), tdf (1tdf), tdfc (1tdf),
tld (1tdf), trans (1tdf).



Building applications using ANDF

File types

14 of 18

Appendix B. tld man page

Crown Copyright, 1993

NAME

tld TDF linking and library manipulation utility

SYNTAX

tld [-ml] [ switches]...

tld -mc [ switches ]

tld -mt [-verbose] library

tld -mx [-nc] [-verbose] library capsule-name...

tld -mv

DESCRIPTION

Thetld  command is used to create and manipulate TDF libraries, and to link together
TDF capsules. It has four modes, selected by one of the-ml  (link TDF capsules),-mc
(create TDF library),-mt  (list library contents) or-mx (extract capsules from library)
switches. The-mv switch can be used to find out the version number oftld  being used.
If provided, these switches must be the first on the command line. If one is not provided,
the-ml  switch is assumed. The different modes are described below. In the description,
tag definitions are referred to as either unique or multiple. A unique definition is a
definition where the defined attribute is set; a multiple definition is one where the
multiple attribute is set (i.e. more than one definition is allowed). A definition may be
both multiple and unique (if both bits are set).

LINKING

In the default mode,tld  tries to link together the TDF capsules specified on the
command line. This consists of the following stages:

1. All of the capsules specified on the command line are loaded, and their token, tag and
other identifiers are mapped into a per-identifier-type namespace. In these common
namespaces, all external tokens with the same name will be mapped to the same
identifier. The same is true for external tags. During this process,tld  will report errors
about any attempt to link together more than one capsule providing a definition for any
token or tag (in the case of tags, the capsules will link successfully as long as no more
than one of them is a unique definition).



Building applications using ANDF

File types

15 of 18

2. If any libraries were specified on the command line and there are tokens or tags which
are used but not defined in the capsules, then the libraries are scanned to see if they can
provide the required definitions. Any cap- sules that provide necessary definitions are
loaded. There must only be one definition for each token or tag in all of the libraries (in
the case of a tag, this may be either one non-unique definition, or one unique definition
with zero or more non-unique definitions; if a unique definition exists, then the non-
unique definitions are ignored).

3. If any tokens or tags require hiding (specified by command line switches), then they
are hidden at this point. Hiding means removing the name of the token or tag from the
external name list. It is illegal to hide undefined tokens or tags.

4. A new TDF capsule is created, consisting of all of the input capsules and the
necessary library capsules. Unless specified with the-o  switch, the output file will be
calledtdf-output.t .

Switches

Tld accepts the following switches in link mode.

-debug Produce a diagnostic trace in the filetld.debug .

-Debug Append a diagnostic trace to the filetld.debug . This is useful
for tracing several links in the build of a large project.

-etok token-name
Ensure that regardless of any other hiding flags the tokentoken-
name is not hidden. A token (or tag) name may be either a string
or a unique. A unique is written as[ component1. component2. …
componentN] . Each component of a unique is a string. A string
consists of any sequence of characters, although some special
characters must be preceded by a backslash character to stop them
being treated specially. These characters are ‘\ ’, ‘ [ ‘, ‘ ] ’ and ‘. ’.
In addition, the following character sequences are treated the same
as they would be in C: ‘\n ’, ‘ \r ’, ‘ \t ’, ‘ \0 ’. Finally, the sequence
‘ \x NN’ represents the character with codeNN in hex.

-etag tag-nameEnsure that regardless of other hiding flags the tagtag-name is not
hidden.

-hdef Hide all tags and tokens that have a definition.

-hdeftok Hide all tokens that have a definition.

-hdeftag Hide all tags that have a definition.

-htok  token-name
Hide the token named token-name.



Building applications using ANDF

File types

16 of 18

-htag tag-name
Hide the tag namedtag-name.

-hlib library Hide all tags and tokens that are not in the librarylibrary.
Libraries are specified in the same way as the-l  flag, and the
same search path is used. Several of these flags may be specified,
in which case all tokens and tags not defined in any of the libraries
are hidden.

-L directory Add directory to the library search path. The direc- tories are
searched in the order specified on the com- mand line.

-l library Use TDF librarylibrary as a source of definitions. Iflibrary is an
absolute path name, then no searching is performed. Iflibrary
contains a ‘/’ character, then thelibrary search path is searched to
find the library. Iflibrary contains no ‘/’ character, then the library
search path is searched for a file calledlibrary.tl .

-nc Don’t remove the output file if an error occurs. Normally the file
would be removed upon error.

-nerr Stop attempts at hiding undefined tokens and tags being errors. If
an attempt is made to hide an undefined token or tag, it will be left
visible (normally this is an error). If the -verbose switch has been
specified, all such tokens and tags will be listed.

-o outfile Causes the output to be written to fileoutfile rather than to the
default output filetdf-output.t .

-verbose Causes verbose output to be produced. This warns of tokens and
tags which have no definition, and of attempts to hide undefined
tokens and tags (when used in conjunction with the-nerr  switch).

LIBRARY CONSTRUCTION

A TDF library is a sequence of named capsules, with an index. The index indicates
which tokens and tags are defined by the capsules in the library, and which capsules
provide the definitions. When invoked with the -mc  switch,tld  produces a library
consisting of the TDF capsules specified on the command line. The library is written to
the filetdf-library.tl , unless the-o  switch is used.

Switches

Tld accepts the following switches in library construction mode.

-debug Produce a diagnostic trace in the filetld.debug .



Building applications using ANDF

File types

17 of 18

-Debug Append a diagnostic trace to the filetld.debug . This is useful
for tracing several links in the build of a large project.

-nc Don’t remove the output file if an error occurs. Normally the file
would be removed upon error.

-o  outfile Causes the output to be written to fileoutfile rather than to the
default output filetdf-library.tl .

-verbose Causes verbose output to be produced.

LIBRARY CONTENTS

When invoked with the-mt  switch,tld  produces a listing of the contents of the library
specified on the command line.

Switches

Tld accepts the following switches in library contents mode.

-verbose Causes verbose output to be produced.

LIBRARY EXTRACTION

When invoked with the-mx switch,tld  extracts capsules from the library specified on
the command line. The names of the capsules to extract should follow the library name.
If no names are specified, all capsules are extracted. If capsule names are specified, they
must match exactly the names of the capsules in the library (use the-mt  mode switch to
find out what the exact names are). The capsules are extracted into the current directory,
using the basename of the capsule as the output file name. They will overwrite existing
files of the same name.

Switches

tld  accepts the following switches in library extraction mode.

-nc Don’t remove the output file if an error occurs. Normally the file
would be removed upon error.

-verbose Causes verbose output to be produced.

SEE ALSO

tcc (1tdf).



Building applications using ANDF

File types

18 of 18

Copyright 1993 by Open Software Foundation, Inc.

All Rights Reserved

Permission to reproduce this document without fee is hereby granted, provided that the copyright notice and
this permission notice appear in all copies or derivative works. OSF MAKES NO WARRRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for any direct or indirect, incidental, special or consequential
damages in connection with the furnishing, performance, or use of this material.


