
6/29/93 11:10 pm macrakis@osf.org © 1993 OSF 1 of 7

Reliable interface definition and checking:
ANDF for COSE

Stavros Macrakis

Open Software Foundation
Research Institute

May 1993

COSE defines a standard Applications
Programming Interface. ANDF technology can
specify this interface precisely and check
applications’ conformance to it. This
implementation-independent specification
enhances portability.

1. Introduction

COSE is a common application programming interface. Unlike existingde
facto andde jure standards (Posix, XPG/3), it is intended to cover the full
interface of commercially available Unix-derived systems.

Current plans call for COSE to be documented in English and defined using
parameterized C header files. Parameterized headers cannot be validated for
consistency across platforms, nor can applications be validated for portability
across conforming platforms.

This paper proposes using OSF’s ANDF C to define COSE. ANDF tools can
then check that the COSE interfaces are indeed consistent across platforms,
and can check that applications are portable across platforms.

ANDF for COSE

COSE interfaces in C are parameterized by implementation

2 of 7

2. COSE interfaces in C are parameterized by implementation

COSE interfaces are specified as C definitions

COSE interfaces are currently documented in traditional Unix-styleman
pages. Functional interfaces are described with C prototypes, which may use
C built-in types (int, char, …) or interface-specific types. In the program
itself, the prototypes and interface-specific types are defined byinclude’ing
a header file (.h) specified in theman page.

Header files define interface-specific types in terms of built-in types and type
constructors, and functional interfaces in terms of the interface-specific types.

COSE’s C header files are parameterized

All implementations will probably use the same prototypes to define
functional interfaces1. However, the interface-specific types will vary. Thus
there cannot be a standard set of COSE header files across all
implementations. Instead of having completely disjoint header files, however,
COSE proposes parameterized header files with appropriate compile-time
conditionals (#ifdefs). In effect, each platform will have a somewhat
different header file, parameterized by its characteristics.

The advantage of this approach is that these parameterized header files can be
used with current compilers.

However, they have several severe disadvantages.

Parameterized header files cannot be validated for internal consistency

Since the header files will be complicated, errors will be hard to find, and
maintaining them will be difficult.

1. Actually, some functional interfaces may be defined as macros on some implementations. Since
macros and functions belong to different namespaces, this complicates matters.

ANDF for COSE

COSE interfaces in C are parameterized by implementation

3 of 7

Since the header files are parameterized by platform, tools cannot verify that
they are consistent between platforms.

Parameterized header files specify too much

Since the header files can only use the C type system, certain aspects of type
behavior have to be made explicit even the published specification leaves
them undefined. Applications may take advantage of them (with no checking
possible) and be incompatible with some future implementation. The best
possible check is against all possible parameterizations of the header file,
which may not reflect all the implementation freedom defined by the
specification.

Parameterized header files do not specify enough

Since the header files must define prototypes in terms of C types, they cannot
specify what the desired semantics are, only one implementation of them.
They do not reflect the full intent of the COSE specification.

Parameterized header files do not support conformance checking

The only way to assure that an application is portable to a given COSE
platform is to compile it on that platform. An application would have to be
compiled on every existing platform for conformance checking, and that
would only check currently available platforms.

Parameterized header files restrict future development

Since parameterized header files specify too much about existing
implementations, not enough about the interface itself, and do not support
conformance checking against the standard, they restrict future
implementations to be like present implementations. To validate an
application against a future implementation of COSE would require
compiling it on that implementation.

ANDF for COSE

COSE interfaces in ANDF are constant across implementations

4 of 7

3. COSE interfaces in ANDF are constant across
implementations

Unlike C header files, ANDF header files specify the interface itself, and not
one implementation of it.

COSE interfaces can be specified as ANDF C definitions

Using ANDF, functional interfaces would continue to be specified by
prototypes (possibly in token syntax). Types, however, would be abstracted
using ANDF mechanisms. Only the properties of a type specified by the
COSE standard would be reflected in the header.

COSE’s ANDF C header files are implementation-independent

All implementations would use identical header files, with no compile-time
ces. Types are specified abstractly; macro and function implementations
share the same abstract declaration.

Implementation-specific bindings would be supplied at installation time. The
install-time headers would be identical to current platform-dependent header
files.

ANDF header files can be validated for internal consistency

ANDF header files are identical across implementations, so the ANDF
semantic analyzer can identify any internal inconsistencies or errors.

Since ANDF header files are unparameterized, errors need only be corrected
once for all platforms, and extending and maintaining them is easy.

ANDF header files specify exactly enough

ANDF header files specify exactly what the interface requires, no more, no
less. Thus applications cannot depend, intentionally or unintentionally, onI

ANDF for COSE

COSE interfaces in ANDF are constant across implementations

5 of 7

nonstandard features of their development environment. For instance,
“internal” structure fields simply do not exist in the ANDF header files.

ANDF header files support conformance checking for implementations

ANDF supports checking of platform-dependent header files against the
platform-independent header files. Thus the conformance of target platforms
to the COSE standard can be checked independently of particular
applications.

ANDF header files support conformance checking for applications

ANDF supports checking of applications against platform-independent
header files. Thus the conformance of applications to the COSE standard can
be checked independently of particular platforms.

ANDF header files encourage future improvement

Since ANDF header files separate the specification of the interface from its
implementation, they are open to innovative implementations. Such
innovations are not constrained to be among the alternatives reflected in the
parameterized header files.

ANDF for COSE

The next steps

6 of 7

4. The next steps

COSE should choose between token syntax and tspec syntax

ANDF C currently offers a choice of two formalisms for interface definition:
the token syntax and associated#pragma extensions and thetspec syntax
and tool.

The token syntax is stable, general, and well-validated. The current snapshot
of ANDF uses it to specify all relevant API’s:ANSI C, POSIX, XPG/3, System
V.4. On the other hand, its syntax is somewhat clumsy, and in particular
completely different from C syntax.

Thetspec syntax is more recent and less general, since it is designed
specifically for specifying traditional C interfaces. In most cases,tspec
syntax is identical to C syntax, thus making it easier to convert existing
specifications. Moreover, vanishingly few interfaces need the full generality
of token syntax.

Barring unforseen difficulties, tspec appears to be the appropriate formalism
for COSE interface definition.

Real COSE interfaces should be translated into ANDF

As of this writing, COSE header files have not been released.

When they are released, it would be useful to check that they can be
converted to ANDF header files.

It would also be useful to have concrete examples of the difference between
parameterized header files and platform-independent header files.

ANDF for COSE

Conclusion: ANDF is the best way to specify COSE

7 of 7

5. Conclusion: ANDF is the best way to specify COSE

ANDF can specify COSE interfaces precisely and flexibly.

ANDF tools can check that platform-dependent header files conform to
COSE.

ANDF tools can check that applications conform to COSE interfaces.

The industry can only benefit from common interfaces if there are operational
ways to validate correct use and implementation of these interfaces.

ANDF is thus appropriate technology for specifying COSE interfaces.

Copyright 1993 by Open Software Foundation, Inc.

All Rights Reserved

Permission to reproduce this document without fee is hereby granted, provided that the copyright notice and
this permission notice appear in all copies or derivative works. OSF MAKES NO WARRRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for any direct or indirect, incidental, special or consequential
damages in connection with the furnishing, performance, or use of this material.

