
July 6, 1993 macrakis@osf.org © 1993 OSF 1 of 13

Delivering Applications to Multiple Platforms
using ANDF1

Stavros Macrakis

Open Software Foundation
Research Institute

June 1993

Open systems promise developers a large range
of target platforms through standard API’s.
This promise has only partially been realized,
because porting and distribution remain
difficult. The Architecture-Neutral Distribution
Format (ANDF) is a portability and
distribution technology being investigated by
OSF Research Institute, that allows a single
virtual binary to run on all conforming
platforms. We present the technology, discuss
its applications, and examine open issues.

1. Introduction

Software developers want applications to run on many platforms. End users
want free choice of both applications and platforms. Platform vendors want
the freedom to improve their platforms over time.

1. To appear inAIXpert, August 1993.AIXpert is a publication for AIX developers.

Delivering Applications to Multiple Platforms

Defining the ANDF Technology

2 of 13

Open systems standards can make this happen through standard Application
Programming Interfaces (APIs). But developers have discovered that APIs
by themselves cannot guarantee application portability in the absence of API
conformity checking and rigorous portability checking. Moreover, even if the
source code of an application is portable, each platform requires its own
binary version.

ANDF technology proposes a solution to these problems. ANDF checks
applications’ conformity to an API and translates them into a virtual binary
format which can be installed on any platform supporting that API.

2. Defining the ANDF Technology

As an independent organization promoting open systems, the Open Software
Foundation (OSF) is the natural forum for providing portability and
distribution technology for open systems applications.

OSF thus initiated a request for technology (RFT) for an architecture-neutral
distribution format and its associated tools. After defining the problem and
design goals, a variety of proposed solutions were evaluated, and one was
chosen for further investigation.

The Problem

Software and hardware development, marketing, and purchasing decisions
are closely linked today. Software vendors pay heavy porting and distribution
costs for each additional hardware platform, so concentrate their efforts on a
few, and are restricted to the least common denominator of programming
methods and languages available on target platforms. Hardware vendors
avoid innovation for fear that applications will not be available, and must
build development environments for each new combination of architecture
and language. End users are locked into software-hardware combinations
where individual components cannot be procured competitively.

Delivering Applications to Multiple Platforms

Defining the ANDF Technology

3 of 13

Design goals for ANDF

ANDF was thus specified to provide technology to support the development
of portable code and to distribute it in an architecture-neutral format.

The major design goals for ANDF were:

• Architecture neutrality—easy to install on new architectures;

• Language neutrality;

• Easy extension to any given API;

• Protection from reverse engineering—hard to reconstruct a source program;

• Efficient code—comparable to native compilers;

• Small size—comparable to usual executables; and

• Openness to future evolution and innovation in software, hardware, and
APIs.

Proposed solutions

Three classes of solution were proposed: shrouded source, compiler
intermediate languages, and annotated object. Shrouded source is C code
where meaningful identifiers are replaced with generated arbitrary symbols
and control structure is flattened. It solves the reverse engineering problem,
but not the language and architecture neutrality problems. Annotated object
is machine code (typically for the 80x86 family) with additional information
added to make it decompilable and recompilable. This clearly does not solve
architecture neutrality in a satisfactory way.

The ANDF Solution

The solution chosen for further study was a compiler intermediate language,
the TDF technology from the U.K. Defence Research Agency2. TDF/ANDF
is a compiler technology that has been designed from the start to guarantee
neutrality.

2. formerly the Royal Signals and Radar Establishment

Delivering Applications to Multiple Platforms

How ANDF works

4 of 13

3. How ANDF works

An ANDF producer translates from the source language into the ANDF
intermediate language, as shown in Figure 1. The ANDF producer is
language-dependent but machine-independent. The ANDF intermediate
language is language-independent as well as machine-independent. Finally,
an ANDF installer translates from ANDF to machine language. Typically, the
producer runs on the developer’s machine, and the installer on the user’s
machine.

Application source may be written in any programming language supported
by some ANDF producer; it must of course be portable code. The ANDF
producer transforms this source code into ANDF form. This form removes all
language dependencies by translating them into ANDF constructs. The
ANDF format is language- and platform- independent, is tightly encoded,

ANDF
Producer

ANDF
Installer

Application
Executable

Application
ANDF

Application
Source

Language
Dependent

Platform
Dependent

Program representations

ANDF tools

Language and Platform
Independent

Data flow

Figure 1. Simplified block diagram of the ANDF technology

Delivering Applications to Multiple Platforms

How ANDF works

5 of 13

and does not contain the information necessary to reverse engineer the
application. The ANDF installer is platform-specific, and creates a platform-
specific executable.

This simple scheme would work if programs did not refer to outside libraries.
But any realistic program refers to a multitude of libraries defined by the API.
And each platform defines the library interfaces concretely, that is, with
platform dependencies. But the true definition of interfaces as defined by
standards is abstract. It contains only that information necessary to use them,
and no information about their implementation.

An important innovation in ANDF is a mechanism for separating the abstract
interface into two concrete interfaces: the language-dependent interface, and
the platform-dependent interface, as shown in Figure 2. The producer uses
the abstract interfaces as expressed for the programming language to check
the application’s use of the interfaces, and generate appropriate ANDF code.
The installer uses a platform-dependent version of the interfaces to translate
the ANDF code into native code.

Besides using standard APIs, an application may also wish to take advantage
of specific non-standard interfaces on particular platforms. The ANDF
technology manages this by providing for platform-dependent libraries and
conditional compilation.

The ANDF producer can thus be considered to be a compiler for an ideal
platform, which supports strictly standard programming language semantics,
and strictly standard library interfaces. The ANDF representation of a
program contains only the information needed to run on that ideal platform.
The ANDF installer implements the ideal platform by filling out the abstract
form with the concrete details of its platform-specific implementation.

The internal structure of the ANDF intermediate language

As we have seen, programs are translated from the source language (e.g. C)
into the ANDF language. ANDF is a tree-structured language with
unambiguous and clean semantics. This makes it architecture- and language-
independent, and easy to process internally.

Delivering Applications to Multiple Platforms

How ANDF works

6 of 13

For instance: when a construct has options or attributes, they are all explicit;
all operations are completely specified for both normal and exceptional cases
independently of target machine; there are no scope rules, since all names are
guaranteed unique; ANDF only represents the concrete aspects of types.

One of the major departures of ANDF from conventional compiler
intermediate languages is the provision of a general syntax macro facility3.
Unlike ordinary C compilers, where macro expansion precedes all further

3. Similar to Lisp macros, where a program subtree expands to a subtree; and unlike C macros,
where a sequence of tokens expands to another sequence of tokens.

ANDF
Producer

ANDF
Installer

Application
Executable

Abstract
Interfaces

Platform
Interfaces

Native
Linker

Application
Object

Library
Object

Application
ANDF

Application
Source

Language
Dependent

Platform
Dependent

Language
Interfaces

ANDF
Transformers

Data flow

Dependency

Program representations

ANDF tools

Abstraction

Language and Platform
Independent

Figure 2. Abstract and concrete interfaces in ANDF

Delivering Applications to Multiple Platforms

Portability and ANDF

7 of 13

processing, ANDF producers can pass along unexpanded macros to the
installer. Thus platform-dependent macros can define platform-dependent
implementations of standard interfaces. These syntax macros are also used to
save space in the ANDF representation by abbreviating common sequences.

ANDF also supports static conditions (#if), which can be used to
parameterize program behavior depending on platform.

Besides being powerful, the ANDF representation is also compact, and is
comparable in size to machine binaries.

4. Portability and ANDF

The ANDF technology cannot make a non-portable program more portable;
however, it performs the important function of checking portability and
defining standard interfaces portably.

The installation environment

ANDF itself is independent of the installation environment. This does not
automatically imply that all programs distributed in ANDF will be
independent of the installation environment. For instance, a program may
require particular numerical libraries or operating system interfaces. It may
require floating-point precision higher than that provided on the target
platform. In these cases, the ANDF installer will report that it cannot install
the application.

Alternatively, a non-portable program may depend on dynamic behavior left
explicitly undefined by the ANDF specification, such as the transient
behavior of a variable which has not been declared as volatile or the result of
an unsafe conversion (a C ‘cast’). The ANDF translator does do a good job of
flagging unportable constructs, but cannot guarantee identical behavior if
programs depend on undefined constructs.

Delivering Applications to Multiple Platforms

The History of ANDF

8 of 13

Standard interfaces

ANDF is only useful in the presence of standard interfaces. Today, standard
interfaces exist for operating system primitives (XPG,etc.) and for certain
classes of graphic user interfaces (e.g. Motif). There is a natural synergy
between ANDF technology and wider interface standards. Since the ANDF
technology can deal with source-code conditionals, it can handle multiple
incompatible interfaces, but at the cost of complicating application
programming.

5. The History of ANDF

The idea of a universal intermediate language goes at least as far back as
1958, under the name “UNCOL” (UNiversal Computer-Oriented Language).
The primary motivation for UNCOL was the high cost and slow delivery of
compilers for new machines. At the time, compilers were universally written
in machine language from scratch, and were thus neither easy to write nor
portable.

Regrettably, the project was too ambitious for the technology of the day.
UNCOL was never fully defined and certainly never implemented. UNCOL
is remembered as the first attempt at a universal intermediate language, but
none of its particular ideas have survived it.

Since UNCOL, a great deal of progress has been made in compiler
technology in general, and intermediate languages in particular. Most
compilers today are divided into two major pieces, the front end, which
handles language syntax and semantics, and the back end, which translates to
machine language. Compiler porting has become a routine software
engineering activity: front ends require only minor modifications; back ends
are often table-driven, so retargeting them is relatively straightforward
(although tuning for performance is still difficult).

Although intermediate languages are machine-independent in their overall
design, almost all practical compilers assume a particular target during front
end processing and intermediate code generation, since architecture-
neutrality has not been a goal.

Delivering Applications to Multiple Platforms

Distribution of software

9 of 13

TDF/ANDF uses the same fundamental approach, but applies it directly to
the problem of neutrality. The ANDF front end is completely target-
independent, as is the intermediate language. This is not a radical departure
from today’s standard compiler technology, but a goal-directed evolution.

6. Distribution of software

ANDF’s motivating application is software distribution. Distribution of
standard applications by software vendors is the most visible use, but many
others are possible.

Distribution of Applications

Before ANDF, a software vendor had to produce a different version of
software for each target platform. Even on the same target machine, different
operating systems or versions of the operating system might require different
binary versions.

With ANDF, a software vendor can distribute a single package, which can
then be installed on a wide variety of platforms. This greatly simplifies the
software vendor’s development and reduces marketing and distribution costs.
At the same time, it provides real benefits for end users and hardware
vendors, creating a free market by making execution platforms
interchangeable and encouraging innovation and competition.

Distribution of Libraries and Modules

Because of its linking mechanisms, ANDF can also be used to distribute
software libraries.

Thus end user organizations can build new software out of modules provided
by vendors. This would be useless if interfaces were not well-defined, but the
increasing importance of object-oriented software design promises to make
such standard interfaces more and more common.

Delivering Applications to Multiple Platforms

Some Open Issues

10 of 13

Even for standard applications such as X clients and numerical libraries,
ANDF makes possible a plug-compatible replacement business.

Single-user “distribution”

A single user nowadays may use many different machines. In particular, in
the high-performance computing area, users will often develop and debug
programs on one machine as preparation to executing them on another.
Today, such users have problems with uniform behavior of their applications
across these platforms.

ANDF solves this problem, and gives them even greater flexibility in choice
of execution machines.

In particular, a user could call for benchmarks of the execution of a program
on a wide variety of target architectures. When the most cost-effective
solution was found, the production code could be moved to it with no risk of
anomalous behavior.

ANDF for Cross-development

All ANDF development is, in some sense, cross-development: the
development environment is different from the delivery environment. This
means that, unlike most traditional compilers, the ANDF tools are tuned to
cross-development. In particular, the ANDF Producer incorporates one of the
most sophisticated portability checkers available. The very fact that a single
ANDF producer is used for all targets guarantees that language semantics are
uniform across platforms.

7. Some Open Issues

ANDF has thus met most of the goals defined by OSF and its members at the
beginning of the RFT process. Yet ANDF has not yet been adopted by
industry. Continued analysis at the OSF Research Institute, and discussions
with OSF member companies have helped us identify several key open
issues, and to take steps to resolve them.

Delivering Applications to Multiple Platforms

Some Open Issues

11 of 13

Performance

OSF has performed rather extensive performance measurements on the
ANDF technology. For a wide range of platforms and applications,
performance is comparable to native compilers (±5%). However, certain
applications (notably floating-point intensive ones) are systematically slower
on some platforms.

OSF and its partners are investigating the causes of this discrepancy and
working towards improving installers.

Language neutrality

ANDF was originally designed to be usable for a wide range of languages,
including C, C++, Fortran, Cobol,etc. But as of today, ANDF producers are
only available for C. Although C is the most important programming
language for open systems applications, it is not the only important one.

OSF and its partners are thus actively developing Fortran 77, C++, Ada, and
other ANDF producers. Several issues have been identified in these
languages which may require ANDF extensions in order to provide good
performance while preserving language neutrality. On the other hand, it
appears that no changes will be needed to the base technology.

Confirmation of this will have to await validation and performance testing of
the completed implementations.

Precision of the definition

ANDF is currently defined informally by an English-language specification.
It is also implicitly defined by the existing producers and installers.

As ANDF gains wider use, more precise specifications will be necessary. For
this reason, OSF’s partners are developing a formal definition of ANDF, and
OSF is developing validation methods and suites for ANDF producers and
installers. As these efforts progress, confidence in the precision of the
specification increases.

Delivering Applications to Multiple Platforms

Some Open Issues

12 of 13

Data portability

ANDF does not address the issue of data portability and binary file formats.
In particular, ANDF provides no support for hiding the byte ordering of the
platform.

OSF is currently investigating this issue.

Reuse of existing compilers

Until recently, all ANDF producers and installers came from the same source
code base. Hardware vendors typically have large investments in existing
compilers and especially the optimizer phase, so would like to reuse
components in their ANDF implementations.

One widely distributed compiler is the Gnu C compiler (gcc), which runs on
many different platforms. An OSF demonstration project calledgandf
reuses thegcc compiler’s back end by translating ANDF intogcc’s
intermediate language. It then generates native code using thegcc back end.
Not only does this demonstrate the feasibility of reusing back ends, it has also
permitted the rapid creation of new back ends. Currently, this back end has a
performance penalty of approximately 10% compared to nativegcc
compilers. OSF has also begun work in reuse of existing language front ends.

Delivering Applications to Multiple Platforms

Conclusion

13 of 13

8. Conclusion

ANDF provides a way of defining an applications programming interface in
an architecture-neutral way, then compiling an application to the abstract
interface. Compiled programs are thus guaranteed to conform to the
interface, and not just some implementations of it.

The resulting ANDF capsule is an architecture-independent representation of
the program which can be installed on any of a wide range of machine
architectures. ANDF thus helps realize the potential of standard APIs.

Although a great deal of progress has been made in ANDF, it has not yet been
adopted by industry. OSF’s ongoing research program continues to examine
the potential and the limitations of ANDF technology.

The OSF Research Institute encourages hardware vendors and ISV’s to work
with us to realize ANDF’s potential.

Copyright 1993 by Open Software Foundation, Inc.

All Rights Reserved

Permission to reproduce this document without fee is hereby granted, provided that the copyright notice and
this permission notice appear in all copies or derivative works. OSF MAKES NO WARRRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for any direct or indirect, incidental, special or consequential
damages in connection with the furnishing, performance, or use of this material.

