
6/29/93 04:57 pm macrakis@osf.org 1 of 22

Porting to ANDF

Stavros Macrakis
Open Software Foundation

Version of January 22, 1993

From strictly portable applications, ANDF
produces strictly portable distributions. Most
applications are not strictly portable, and must
be adapted to ANDF before distribution. ANDF
provides abstraction mechanisms which
support portability.

1. Introduction

OSF’s Architecture-Neutral Distribution Format (ANDF) allows distributing
a single binary application to multiple platforms. To do this successfully, the
application must be portable.

A strictly portable application does not depend on any platform-specific
behavior, but only on standard language semantics and standard
programming interfaces. It can be compiled and run with no modifications
on any conforming platform. It can also be compiled by an ANDF producer
and installed and run on any conforming platform.

Very few applications are strictly portable: Only recently have the necessary
standards been published and widely implemented. Application writers
exploit platform-specific features. Verifying portability is not always easy.
And sometimes, portability has not been a goal during development.

Porting to ANDF

Degrees of Application Portability

2 of 22

Still, many applications are easily portable. This paper gives some advice on
how to move them onto the ANDF technology. Some applications are
portable by being parameterized by platform, that is, they use the
preprocessor to compile a somewhat different program for each platform.
We show how to handle this situation in ANDF. Some applications expect
extensions to standard interfaces. We show how to handle this within ANDF.

With these techniques, most applications can be ported once to ANDF and
thereafter be installed on a wide range of conforming platforms with no
additional porting effort.

2. Degrees of Application Portability

Before open systems, applications could only be made to run on many
platforms by creating a different variant for each platform, that is,porting it.
Applications which can be or have been ported to many systems are called
portable.

With open systems, applications can run on many platforms without
variants if they rely only on industry-standard languages and application
programming interfaces (APIs). We call such applicationsstrictly portable.
For instance, an application written in portable ANSI C, using only XPG/3
operating system calls and Motif user interface calls, is strictly portable to
all open system platforms which support these standards—as most now do.1

— Strictly portable source yields strictly portable ANDF

The source of a strictly portable application can be compiled and run
without modification on any compliant platform. It can also be compiled by
an ANDF producer on one platform into the ANDF form, and installed by
an ANDF installer on any other compliant platform. That is, if the source is
strictly portable, the ANDF form is also strictly portable.

1. Both application and platform must strictly respect the semantics and the syntax of the interfaces.
Also, applications must rely on standard header files, and not attempt to declare interfaces them-
selves.

Porting to ANDF

Degrees of Application Portability

3 of 22

So, any strictly portable application can be distributed using ANDF by
simply substituting the ANDF producer and installer for the various native
compilers.

A good example of a strictly portable application is the ANDF C producer
itself (tcc). We have successfully installed it on all platforms with ANDF
installers with no modifications.

— New applications can easily be strictly portable

Applications written today can easily be strictly portable. By using standard
and well-documented languages and interfaces, and following widely-
understood portability guidelines, they will be strictly portable, and thus
installable as source or as ANDF on all conforming open system platforms.

With a disciplined use of ANDF features, portable applications can also
take advantage of platform-specific features.

— Many legacy applications are portable, but not strictly portable

Unfortunately, fewexisting applications are strictly portable, for many
reasons.

Many existing applications were written before open system standards were
published. After all, ANSI C was only standardized in 1989. Motif’s
specification was published in 1989. And in both cases, there was some lag
between publication of the specification and full implementation by a wide
range of vendors. Existing applications often rely on versions of Unix which
do not completely conform to current industry standards.

Some programs have a continuing requirement to be backwards compatible
with pre-ANSI compilers or non-standard APIs, because an important part
of their market does not yet support open systems standards.

Programs often exploit platform-specific features for additional
functionality or performance. Sometimes, necessary functionality is not
covered by the standards, and must be provided in a different way on each

Porting to ANDF

Degrees of Application Portability

4 of 22

platform. This was especially true in earlier versions of open systems API
standards.

Many legacy applications are, however, portable with a modicum of effort
to ANDF, and once ported to ANDF, are strictly portable to all platforms
supporting ANDF.

An example of such a portable commercial legacy application is Wingz,
which was ported to ANDF with little effort, and now runs on all ANDF
platforms.

— Many applications are parameterized by platform

Many applications are portable by being parameterized, that is, they use
makefiles and preprocessor conditionals and macros to compile a somewhat
different program for each platform. This is often true of applications which
started out on one platform, and were ported successively to others.
Parameterization is also useful when applications want to take advantage of
platform-specific features while remaining portable.

Parameterized portability is handled in the ANDF framework by conditional
compilation and the token mechanism, which are described in greater detail
below.

An example of a heavily-parameterized portable application is Gnu Emacs.
Gnu Emacs uses a variety of tricks to ensure efficient application on a wide
range of platforms. Also, it adds functionality whose implementation is
highly platform-dependent (notably unexec). Gnu Emacs has been
successfully ported to ANDF.

— Some applications are not very portable

Some applications are hard to port.

This may be because the developers were unaware of portability techniques,
or because they considered portability unnecessary. Some developers may
have considered “tuning” for a particular platform more important than

Porting to ANDF

Degrees of Application Portability

5 of 22

portability. Of course, applications that depend critically on non-standard
interfaces cannot be portable.

The marks of a hard-to-port application are extensive reliance on proprietary
features or enhancements to standard interface, or on the details of its
implementation (“piercing the veil of abstraction”).

Strict portability

The ANDF model of strict portability is very simple. The program should
be written in ANSI C or another language supported by ANDF, and use
only standard interfaces. In additional, all external procedures must be
declared before use.2

ANDF can support any standard interface, since interface definitions are
written in a special sublanguage—the token mechanism—available to all
ANDF users; they are not built into the technology. Currently, the following
interfaces are supplied with the technology:POSIX, XPG/3, SystemV.4, and
the OSF Application Environment Specification (currently incomplete).
Other interfaces, such as WindowsNT, Macintosh OS, orVMS could equally
well be defined, with no modifications to the producer or installer.

When compiling a program using ANDF, ANDF header files are used rather
than normal header files. Using the token mechanism described in this
paper, ANDF header files declare only the visible part of the interface while
deferring its implementation. This not only produces an ANDF form which
can be installed on any platform, but also provides a high level of API
interface checking. Applications could also use the token mechanism to
provide more abstract interfaces—and therefore better type checking—
between program modules.

2. Implicit declarations, although tolerated by ANSI C, are known to be a common source of error.
See Harbison and Steele or any of the portability handbooks.

Porting to ANDF

Degrees of Application Portability

6 of 22

Partial portability

There are two main ways in which a program can be partially- or non-
portable: it can be written using non-portable language constructs; or it can
use non-standard programming interfaces (or use standard ones incorrectly).

— Language problems

Most programming languages have dialects and implementation
dependencies. Dialects are different versions of the language, with non-
standard extensions or restrictions. Implementation dependencies are
features of a language which are not guaranteed to have the same meaning
in different implementations.

In the C world, two important dialects are the original C language as
presented by Kernighan and Ritchie, (K&R C), and ANSI Standard C. Since
there is in fact considerable variation in pre-standard C compilers, which
usually go somewhat beyond K&R C, ANSI C is more portable. ANSI C
also provides additional mechanisms (notably function prototypes) which
permit stricter static portability and interface checking. (ANDF C can give
the K&R or the ANSI interpretation of a program.)

Still, ANSI C has not resolved all the implementation dependencies of C.
For instance, C integer declarations remain imprecise. C allows declarations
of integers as “short”, “int”, or “long”. Shorts must be at least 16 bits, longs
must be at least 32 bits, and ints must be no smaller than shorts and no
larger than longs. Thus portable programs cannot assume anything more
than this. The ANDF technology contains additional mechanisms for
specifying ranges of integers more precisely, but C programs cannot take
advantage of them without adding ANDF-dependent constructs (pragmas).

Worse, many compilers are permissive, and although they may implement
conforming C programs correctly, they also accept nonconforming C and,
rather than give errors, generate interpretations that programmers find useful
(this is not an accident; it typically comes from the programmer being aware
of “typical” compiler behavior). This means that even code that compiles
and runs correctly on many compilers may contain non-portable constructs.3

3. See “Porting Postgres...”, Watt, 1992.

Porting to ANDF

Degrees of Application Portability

7 of 22

— Programming interface problems

Standards documents define standard application programming interfaces
by specifying the abstract interface, that is, the characteristics that an
application programmer can depend on.

Using an interface means including a header file of definitions, which are
required to be fully specified. Header files typically include data type
definitions, function definitions, macro definitions, and variable
declarations. Although the function definitions are abstract (that is, they
contain no more information than that needed to use them), type and macro
definitions are not.

Applications programmers thus can take advantage of the internal structure
of these interfaces, intentionally or unwittingly. For instance, although the
internal structure of astdio buffer is not part ofstdio’s interface, it is
typically present in the header file, since it is used by macros such as
putchar.

Checking for these dependencies is difficult because many
implementations’ concrete definitions are similar or identical, so even
porting to multiple platforms will not detect non-standard use of APIs.

The ANDF technology introduces a mechanism for defining only the
abstract interface, and then later checking for the conformance of the
concrete to the abstract interface. This is part of the token mechanism (q.v.).

Further reading on portability in C

There are several books available on writing portable code in C. They
present both general principles and particular traps.

The general principles are simple: never say the same thing in two different
places; only rely on the standard properties of data types; don’t use obscure
features. The detail is what makes these books valuable. We have found
Rabinowitz and Schaap particularly useful for C language issues, and
Horton for reference material on portability within Unix variants.

Porting to ANDF

Support for Portability in ANDF C

8 of 22

Harbison and Steele has excellent discussion of machine dependencies and
traps in the C language, but portability advice is less prominent than a
complete description of language semantics.

3. Support for Portability in ANDF C

ANDF C supports portability in two ways: interface abstraction and
conditional compilation.

Interface abstraction is also a well-known technique, but is often thought of
primarily as a software engineering method rather than a portability
technique. ANDF C adds a general-purpose interface abstraction
mechanism to C, called tokens. Tokens’ interfaces are declared when the
program is compiled by the producer, but their definitions are only supplied
when the program is installed.

Conditional compilation is a traditional way of parameterizing applications.
ANDF C supports it fully. In particular, the conditional can depend on
tokens which are only defined at install time, thus allowing install-time
conditional compilation.

Tokens are abstract interfaces

Tokens are ANDF’s key abstraction and therefore portability mechanism.4

Tokens define abstract interfaces which are later instantiated by concrete
interfaces. The abstract interfaces are used by the producer, and the concrete
interfaces by the installer. The process of compiling token definitions
guarantees that the concrete interfaces are type-correct implementations of
the abstract interfaces.

For instance, considergetc. Abstractly, it is simply a function of a file
pointer returning an integer. It is almost always implemented as a macro for
efficiency, and that macro refers to the internal structure of a file structure.
But that internal structure differs from implementation to implementation,

4. Some writers use “token” as a synonym for “lexeme” or “lexical element.” The ANDF use of
token is completely different: it is an interface specification whose implementation is deferred to
installation.

Porting to ANDF

Support for Portability in ANDF C

9 of 22

and should not be visible to the user of getc. Yet although C provides
function declarators, it does not provide macro declarators—that is, there is
no way to separate the declaration of agetc macro from its
implementation. An ANDF function token is precisely what is needed: a
macro declarator.

— Tokens abstract program elements

Tokens can abstract many kinds of program element, including identifiers,
types, and macros.

Tokens must be declared before use. Tokens can replace any part of a C
program, not just a statement or an expression. For instance, tokens can
represent a type or a structure field.

Uses of tokens can be checked for type correctness from just their
declaration, without looking at the body. This is critical to their usefulness,
since they typically have different bodies on different targets.

These abstract interfaces are a useful facility for modern software
engineering practice, and become crucial for the definition of portable
interfaces: the abstract interface is the portable interface, and the concrete
interface is a particular implementation of the interface.

In the C producer, tokens are an extension to C’s definition facilities. Tokens
allow separating the declaration of types, macros, constants, and other
entities from the actual values they take. This is necessary because types,
macros, and constants are visible parts of library interfaces. Although
standards such asPOSIX specify these interfaces abstractly, there is no
provision in the C language for declaring them abstractly, that is, without
committing to a particular implementation. Thetime_t type is a good
example of the problem.

— An example: the problem withtime_t

POSIX defines several functions which manipulate values of typetime_t,
defined as the number of seconds since midnight, 1 Jan 1970. POSIX
guarantees that it will be an arithmetic type, but does not commit to any

Porting to ANDF

Support for Portability in ANDF C

10 of 22

particular type. On the other hand, the include files which define the
interface for a normal C compilation must commit to a particular type,
typically long, double, orlong double :

typedef long time_t;

Thus if an application writer unwittingly assumes that time_t is a long, the
native compiler cannot catch the portability error in a piece of code like:

time_t clock; ...
if (clock & 1) ... /* Odd second? */

sincetime_t is simply another name forlong to it.

— The token solution fortime_t

ANDF provides a mechanism to define time_t as an arithmetic type
without specifying which one:

#pragma token ARITHMETIC time_t #

This definition is used in the platform-independent header files read by the
producer. The tokentime_t can now be used anywhere a type name could
be used, for instance in the definition of a structure or the declaration of a
function.

On the other hand, the platform-dependent header files contain the
corresponding concrete interface, specified as usual with atypedef.

The kinds of tokens used for C

Tokens can abstract pure expressions (r-values), object references (l-values),
integer constants, types, member selectors, certain kinds of macros, and
functions.

A token can be used anywhere the corresponding type of expression could
be used in standard C. For instance, a type token can be used not only to
declare variables, but also to build up structures and unions, or to define
function parameters.

Porting to ANDF

Support for Portability in ANDF C

11 of 22

The full syntax and semantics of tokens in the C producer are discussed in
the documentThe token syntax for the C producer5. The current token
definition syntax corresponds closely to the internal structure of tokens in
ANDF, rather than to C’s syntax; an alternative syntax is being studied
which follows C more closely, and thus makes it easier to rewrite existing
interfaces in terms of tokens.

Here, we summarize the different kinds of tokens and their uses.

— Expressions

A token of typeEXP can replace aprimary-expression. All EXPs have a
specified storage type (lvalue or rvalue) and type. Only lvalueEXPs may
appear on the left-hand side of an assignment.

RvalueEXPs are often used to define platform-dependent constants such as
MAXFLOAT andstdin. MAXFLOAT is of course of type double (a built-in
type) butstdin is of typeFILE *, whereFILE is a type token.

LvalueEXPs are often used for variables such aserrno orcurscr
(curses.h). Again,errno is defined by ANSI as anint, butcurscr is of
typeWINDOW *, whereWINDOW is a type token.

— Integer constants

Constants used for array sizes and bitfield widths must be natural numbers
(non-negative integers), and are defined as NAT tokens. To allow the use of
unmodified platform-dependent header files, the ANDF installer is
particularly clever at handling implicit declarations of such constants.

5. Core, 1992.

Porting to ANDF

Support for Portability in ANDF C

12 of 22

— Types

Types can be tokenized at several levels of specificity.

A completely abstract type is simply aTYPE. Variables and parameters can
be declared of type TYPE, but no operations which require knowledge of
the type may be used. This is useful for opaque types such as FILE, whose
internal structure is not defined by standards, and must be free to vary
across implementations.

Abstract integer, float, and arithmetic types can be declared, and have the
corresponding operations.

Struct and Union types can be declared, and support any defined member
selectors (see the next section).

A tokenized type T can be used to build up composed types, such as pointer-
to-T, a struct with a field of type T, and so on. Sincestdin is of type
FILE *, it is legal to dereference it, but not to examine its internal fields
using->.

— Member selectors

Standards often require that a type be a structure or union containing certain
fields. They usually leave the order of the fields undefined, and permit
implementations to support additional, internal, fields.

ANDF tokens permit declaring individual fields’ names and types without
specifying the complete structure or union, and without specifying the order.

— Functions and certain kinds of macros

Tokens can replace functions and certain kinds of macros. To be precise,
they can replace macros which expand to expressions or to sequences of
statements. They cannot replace arbitrary sequences of lexemes (e.g.
#define begin {). (However, that kind of macro is rarely if ever
platform-dependent.)

Porting to ANDF

Support for Portability in ANDF C

13 of 22

The abstraction provided by tokenized macros is valuable not only for
portability, but also for static checking. In effect, the arguments and result of
ANDF tokenized macros are tagged for type and storage class, so error
messages can in many cases be given in terms of the macro application
rather than the macro expansion.

There are actually two kinds of function token,FUNC andMACRO. The
distinction is necessary becauseFUNCs cannot return lvalues, andMACROs’
names cannot be passed as function parameters. On the other hand,FUNCs
can be implemented as macros andMACROs by functions (as long as they
don’t return lvalues).

Conditional compilation

ANDF C supports ANSI C conditional compilation using C’s #if and
#ifdef constructs. Although#ifdef is reserved for traditional
preprocessing,#if has additional functionality.

If the condition can be fully evaluated at production time, standard C
preprocessor semantics are applied. In particular, the contents of each
branch of the#if can be arbitrary lexeme sequences. Syntactic analysis
then happens after the branch of the#if is chosen.

On the other hand, if the condition cannot be fully evaluated at production
time because it contains deferred constants or expressions in the form of
tokens, its evaluation is deferred to installation time. In this case, ANDF C
compiles both branches of the#if, and evaluates the conditions and selects
a branch at installation time.

For this to work, the branches of the#if must be syntactically complete
program fragments. Moreover, the branches must be statically consistent. In
particular, this means that inconsistent declarations cannot be contained
within target-dependent conditions. Thus, complicated conditional
declarations are best handled using the token mechanism.

Porting to ANDF

Defining libraries

14 of 22

— Applications of conditional compilation

Programs often contain configuration constants. ANDF deferred constants
(tokens) can replace these constants where they are unresolved until install
time.

Install-time conditional compilation is typically used for target-dependent
constructs. But it can also be used to configure an application for a user’s
needs. For instance, the user could turn security features on or off, or
preallocate fixed-size buffers corresponding to the expected load or
available memory.

4. Defining libraries

ANDF supports defining libraries which are only linked to an application on
installation. System service libraries are of course implemented this way,
but other common libraries such as graphic user interfaces and numerical
packages can be, as well.

As always, interface definitions used by the applications programmer and
the library programmer must agree. If the interface consists only of
functions, static variables, and explicit types, it may be defined simply using
C prototypes and declarations.

If the interface also includes macros or opaque types, ANDF’s token
mechanism should be used to define them abstractly.

One of ANDF’s special features is a name space of unique identifiers,
similar to Internet addresses, so that there is no possibility of namespace
clashes.

Thus, ANDF supports separately distributed libraries.

Advantages of tokenized libraries

Target-dependent compilation is powerful, but tokens have many advantages
over it.

Porting to ANDF

Suggested procedures

15 of 22

Target-dependent compilation in fact gives source which has many variants.
Both static analysis and dynamic testing of such code is much harder than
with single-source code.

Tokens force a clean definition of an interface.

Tokens improve error-checking because they are abstract.

Tokens make it more likely that the interface will be robust.

5. Suggested procedures

In our porting experience at OSF, we have developed procedures for porting
existing software to ANDF.

The general outline of this procedure is:

• check-out of the ANDF compiler;

• survey of the application’s portability;

• modification of the application to increase its portability;

• validation of the result;

• tuning on particular platforms.

The first step is simply a “sanity check”.

The portability survey, the second step, is critical. It usually allows
estimating the amount of porting effort necessary. For some applications,
this effort may be prohibitive. For others, it may be negligible. The
portability survey should give sufficient information to permit an informed
go/no-go decision on the ANDF port.

The third step modifies the application to make it portable and represents
the bulk of the time investment.

Validation, the fourth step, recognizes that no technology is perfect. There
may be installer bugs, or hidden platform dependencies in the application.

Finally, the ANDF technology does allow tuning for particular platforms
through the use of platform-specific library definitions.

Porting to ANDF

Suggested procedures

16 of 22

Compiler check-out

The first step of porting to ANDF is checking that the application’s
language usage is accepted by the ANDF compiler. (We assume that the
application compiles successfully using the standard compiler available on
the machine.) The possible problems here are that the application uses non-
standard constructions, or that the compiler has bugs.

This check is performed by compiling the application with the ANDF C
compiler in “native mode”. In this mode, it uses the libraries available on
the local platform rather than the tokenized libraries. Thus issues of correct
interface usage are separated from issues of correct language usage.

Compiling and testing the application compiled in native mode is a sanity
check for the application, the C producer, and the local installer and often
detects trivial errors.

— Other tools

There are stand-alone C portability checkers on the market. The tcc (ANDF)
compiler itself is, however, an excellent static portability checker and strict
ANSI C compiler, and generally gives good error messages.

Portability survey

The portability survey, the second step, is critical. It usually allows
estimating the amount of porting effort necessary. For some applications,
this effort may be prohibitive. For others, it may be negligible. The
portability survey should give sufficient information to permit an informed
go/no-go decision on the ANDF port.

The primary emphasis of this step is on correct usage of the API, including
the effects that an abstract interface has on types used within the program.

Porting to ANDF

Suggested procedures

17 of 22

— Tools

As for interfaces, the ANDF header files for the various APIs are maximally
abstract, that is, they contain no information other than that specified by the
specification of the interface. Thus any dependence on internal fields is
detected at production time, even if every actual implementation supplies
consistent additional information.

One area where style and portability checkers such as lint, and OSPC,6 and
ProQA are stricter than tcc is inter-module consistency. This is useful
whenever applications do not use common header files, but instead declare
externals explicitly. Although it is considered to be poor practice, it is
allowed by ANSI C and tcc.

Also, tcc performs no dynamic checking as do tools such as CenterLine C7

and the Model Implementation C compiler.8 These tools can be useful for
development and debugging.

Portability engineering

In the third step, target dependencies are eliminated.

There are two main strategies to follow:

One is rewriting code to make it respect the standard APIs. This can be a
long and arduous process.

Another possible approach is to create a “translation” layer. A set of tokens
is defined in place of the interfaces the application expects, and target-
dependent token definition libraries translate these tokens to appropriate
operations.

Our experience is that translation layers are cost-effective when a large
application has been written to a non-standard interface. They are also a

6. Open Systems Portability Checker from Knowledge Software, 62 Fernhill Road, Farnborough,
Hants GU14 9RZ England; OSPC@knosof.uucp.

7. CenterLine C (formerly Saber C) from CenterLine Software, 10 Fawcett St., Cambridge, Mass.
02138, USA.

8. Also from Knowledge Software.

Porting to ANDF

Suggested procedures

18 of 22

cost-effective way of emulating widely-usedde facto standards such as BSD
header files.

In both the rewriting and the translation strategies, it is often the case that a
parameterized application has one target platform which is much closer to
standard interfaces than others. This is often a good starting point for
porting to the standard APIs.

Validation

Validation, the fourth step, recognizes that no technology is perfect. There
may be installer bugs, or hidden platform dependencies in the application.
We therefore recommend that an application ported to ANDF be validated
on all convenient platforms. Our experience so far is that producer and
installer bugs are rare. They should become rarer, and confidence in
producers and installers should increase, once the ANDF validation suites
are put in place. Still, per-platform validation gives additional confidence,
and we would not recommend shipping software without such testing.

Platform-specific tuning

Finally, the ANDF technology does allow tuning for particular platforms
through the use of platform-specific library definitions.

The two main areas where tuning can be effective are data declarations and
use of system services. As always, the tradeoff of tuning is harder
debugging and validation: naturally, validation procedures should be
performed after tuning on all variants of the code.

— Tuning data declarations

The ANDF installer usually does a very good job of selecting layouts for
data. However, it must respect the semantics of the original C program. This
means for instance that struct fields must be in the same order as in their
declaration. It is sometimes advantageous to pack structs differently on
different machines. This can be done cleanly in ANDF by tokenizing the

Porting to ANDF

Conclusion

19 of 22

struct members, and only committing to a particular layout in a platform-
dependent header file. Alternatively, different declarations can be compiled
conditionally.

The same techniques can be used for applications which want packed field
widths to vary so as to exploit a target machine most efficiently. An example
of this is Gnu Emacs’s Lisp_Object, which is used to represent every object
visible to its extension language. In this case, the effort required to support
parameterized code is worthwhile.

— Tuning use of system services

Another area where platform-specific tuning can be appropriate is in the use
of system services. For instance, an application which makes heavy use of
file directories may wish to work on their internal representation. This is
clearly a non-portable technique, but may be worthwhile for important
target platforms.

Another example is interprocess communication and locking mechanisms.
Different platforms may have vastly different performance characteristics
for these operations, so it may be appropriate to provide for target platform
parameterization of these operations.

6. Conclusion

Strictly portable applications can be as easily distributed in ANDF form as
in source form, probably more so.

Taking existing portable, but notstrictly portable, applications and moving
them onto the ANDF technology requires removing target-dependent
language constructs and limiting non-standard API use. It is possible,
however, to interface to non-standard APIs, since ANDF’s definition
mechanism (tokens) is available to the library writer.

ANDF is a technology for distributing applications. Portable applications
can be moved onto ANDF through a well-defined porting process, which
then makes them installable on a wide range of platforms. New applications,

Porting to ANDF

Conclusion

20 of 22

and existing strictly portable applications, can benefit from ANDF with
almost no modification.

The ANDF technology makes easily portable applications into easily
distributed applications.

Porting to ANDF

Bibliography

21 of 22

7. Bibliography

C Language

Samuel P. Harbison, Guy L. Steele, Jr.,C: A Reference Manual (3rd edition).
Prentice-Hall, 1991.

X3 Accredited Standards Committee,Programming Language C (American
National Standard for Information Systems), Doc. No. X3J11/90-012,
February 14, 1990.

Portability in C

L.W. Cannon et al.,Recommended C Style and Coding Standards. Available
by anonymous FTP from cs.washington.edu as ~ftp/pub/cstyle.tar.Z.

A. Dolenc, A. Lemmke, D. Keppel, G.V. Reilly,Notes on Writing Portable
Programs in C. Available by anonymous FTP from sauna.hut.fi as
~ftp/pub/CompSciLib/doc/portableC. {tex, sty, bib, ps.Z} or from
cs.washington.edu as ~ftp/pub/cport.tar.Z.

Mark R. Horton,Portable C Software. Prentice Hall, 1990.

Rex Jaeschke,Portability and the C Language. Hayden Books, 1989.

Andrew Koenig,C Traps and Pitfalls. Addison-Wesley, 1989.

Henry Rabinowitz and Chaim Schaap,Portable C. Prentice-Hall, 1990.

Thomas Plum,C Programming Guidelines (2nd edition). Plum Hall, Inc. (1
Spruce Ave., Cardiff, NJ 08232), 1989.

Application Programming Interfaces

Open Software Foundation,Application Environment Specification (AES),
multiple volumes, Prentice Hall, 1990.

X/Open Company, Ltd.,X/Open Portability Guide (Issue 3), 7 vols., Prentice
Hall, 1988.

IEEE Std 1003.1-1988,IEEE Standard Portable Operating System for
Computer Environments, IEEE, 1988.

Porting to ANDF

Bibliography

22 of 22

Donald Lewine, POSIX Programmer’s Guide: Writing PortableUNIX

Programs. O’Reilly and Associates, Inc. (103 Morris St., Suite A,
Sebastopol, Calif. 95472), 1991.

ANDF Tokens

P.W. Core,The token syntax for the C producer. DRA Malvern, 1992.

P.W. Core,#pragma extensions to the C producer, DRA Malvern, 1992.

Thomas J. Watt, Jr.,Tokenizing Applications in the ANDF Prototype. OSF
Research Institute, February 1990.

Application porting to ANDF

Andrew Johnson,Application Development Using ANDF. (slide presentation)
OSF Research Institute, 1992.

Thomas J. Watt, Jr.,Porting Postgres with the Research Prototype ANDF
Technology. OSF Research Institute, December 1992.

For further information please contact:

Stavros Macrakis
macrakis@osf.org
(617) 621-7356

Copyright 1993 by Open Software Foundation, Inc.

All Rights Reserved

Permission to reproduce this document without fee is hereby granted, provided that the copyright notice and
this permission notice appear in all copies or derivative works. OSF MAKES NO WARRRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for any direct or indirect, incidental, special or consequential
damages in connection with the furnishing, performance, or use of this material.

