Protecting Source Codewith ANDF

Stavros M acrakis
OSF Research I nstitute

January 25, 1993

Binary protects source code but is architecture-
dependent. ANDF protects source equally well,
but is architecture-independent.

1. Introduction

Software source code is a highly valuable commodity, and software vendors
go to great lengths to protect it. In particular, software is generally
distributed in only object form, which is copyable and executable but does
not give away engineering methods and techniques. Binary is, however,
specific to each target architecture. OSF’s Architecture-Neutral Distribution
Format (ANDF) is independent of target architecture yet protects
engineering methods and techniqties.

Software is typically written in a high-level programming language, which
makes it easy to design, create, understand, modify, and correct the
program; translating (compiling) it to object form makes it efficient to
execute. Compilation removes most of the information needed to understand
the program, and therefore to modify it, reuse its components, or take its
best implementation ideas.

1. ANDF is based on the TDF technology from the U.K. Defense Research Agency.

6/29/93 05:00 pm macr akis@osf.org 1lof 17

The value of source code

The ANDF technology introduces a third form of a program: the
architecture-neutral ANDF form. ANDF contains just the information
needed to compile a program on a variety of machines, and therefore
excludes the information needed to modify it or reuse its components.

This paper discusses the information carried by ANDF form, and possible
reverse engineering attacks on programs starting from binary and from
ANDF. ANDF provides somewhat more information about the source
program than does binary, but in none of the attack scenarios does this make
a substantive difference in the ease of attack.

2. The value of source code

Software source code is complex, expensive, and valuable.

Software is a complex engineered product: source code embodies much of
the detailed engineering design, and binary code is the finished product. As
with other engineered products, the design documents are valuable
intellectual property, and software vendors guard them closely as trade
secrets.

Continuing engineering on a product requires access to the design
documentation. With the design documentation, functionality can be
enhanced, design elements can be reused for other products, and new
interfaces can be added.

Source code is expensive: it reflects the extensive engineering work
necessary to take an idea from a concept to a working product; it contains
ameliorations invented to improve performance based on analysis and
experience; it incorporates corrections to errors discovered through testing
and actual usage.

Source code is valuable: with it, variants can be created for particular
market requirements; with it, new products can build incrementally on old
ones; with it, engineering techniques used in one product can be applied to
others; with it, interfaces can be created between products. Without it,
programs cannot evolve to meet new needs.

Protecting Sour ce Code with ANDF 20f 17

Overview of software artifacts

Losing control of source code can be costly. With knowledge of source
code, a competitor can incorporate much of the know-how embedded in an
application into his own; he can study competitors’ weaknesses and exploit
them in his own products; he can create interfaces which allow his products
to piggy-back on the other.

Thus, application developers protect their source code jealously.

Protection of source code

Source code is protected by limiting its distribution to those with a “need to
know”, by using legal protection mechanisms (law of copyright and trade
secret), and by minimizing the information about it in object code. (In
particular, object code is invariably stripped of its symbol table.)

3. Overview of software artifacts

So far, we have been talking of program source and object. Actually,
software that is designed to be maintained over time usually has many other
pieces, starting with design documentation.

Design documentation takes many forms. Some software producers have
very formal procedures, where every function and every module has an
associated design document defining its interfaces and behavior. Other
software producers rely on more informal design documentation. Comments
in the code itself often replace separate design documentation.

Software has build files (Makefiles in Unix) which describe how the system
IS put together. Some source components are generated automatically from
specifications written in some other language; for instance, most compilers’
parsers are generated by parser generator programs directly from the
specification of the grammar.

Revision control (SCCS, RCS, etc.) keeps track of program versions. As
programs evolve, revision control information is important to keeping track
of bugs, bug fixes, and changes.

Protecting Sour ce Code with ANDF 3of 17

Rever se engineering and decompiling

Libraries of tests ensure that old bugs have been fixed, and catch some new
bugs.

Finally, we come to source code itself. Source code must compile into
running object code. At the same time, it must be understandable by the
programmer writing the code and those maintaining it. Thus it contains
many hints about the programmer’s intent, some explicit--variable and
function names, comments, and type definitions--and others implicit, like
the choice of looping constructs, and the scope of variables.

To be executed, source code must be translated into object code, which is
machine- and environment- dependefibject code contains only that
information needed by the computer to execute the program, and not the
information needed to understand it or modify it.

4. Reverse engineering and decompiling

In any branch of engineeringgver se engineering takes a finished product

and recreates the engineering knowledge necessary to reproduce it. In the
case of software, simply reproducing is trivial (you just copy the3pits)

what is difficult is recreating the engineering knowledge necessary to
modify, cannibalize, or interface to a program. So a good definition is:

Reverse engineering of software means reconstructing sufficient engineering
knowledge to modify a program, reuse parts of it in other contexts, and interface
to it.

Looking at the software process as a whole, reconstructing source is only
part of reverse engineering, since source does not in general contain enough
engineering knowledge. In the case of a spreadsheet, for instance, the
formula interpreter may have been generated automatically (by a tool like
yacc) from a grammar description; it may be very difficult to add a new
operator by hand to the automatically generated state machine.

Indeed, reconstructing engineering knowledge may even be necessary when
source codeés available. In software engineering, “reverse engineering” in

2. | use “object code” to refer to programs that are ready to load (a.out, not .0).

3. This is a significant difference from manufactured products, where recreating manufacturing
processes and tools is non-trivial.

Protecting Sour ce Code with ANDF 40f 17

Rever se engineering of ANDF

fact typically refers to the process of understandougce code better, not
reconstructing source code from object code!

Still, reconstructing source from object is an important step in reverse
engineering of object code, and is usually catlembmpiling. There has

been some research on decompiling, and the technology is fairly mature:
from an arbitrary object binary, a decompiler can reconstruct a program in a
source language which has the same effattis typically is done by
reconstructing straight-line code, and then analyzing control flow to abstract
traditional control structures. Although the result is more or less readable as
code, its intent is usually difficult to understand in the absence of
meaningful variable names, comments, and so on.

5. Reverse engineering of ANDF

Now, the issue is whether ANDF provides additional information which
makes reverse engineering easier or more effective.

The key observation is that no source or intermediate form of a program can
beless easy to reverse engineer than its object binary: if it were, it would
suffice to complete the installation of binary, and then reverse engineer the
binary.

Thus the question becomes: whdtlitional information does ANDF
provide that object binary does not?

The next section will show that decompiling ANDF into C is somewhat
easier than translating from binary to C (especially for data structures), and
produces a bit more information on control and data structures. On the other
hand, the resulting C program is close to incomprehensible for any realistic
commercial program, just as is a C program decompiled from binary.

Structure and presentation of ANDF

For an introduction to the internal structure of ANDF, please refer to the
paperThe Sructure of ANDF: Principles and Examples®. That paper goes

4. Products include “decomp” for the VAX, “exe-to-C” for MS-DOS.

Protecting Sour ce Code with ANDF 50f 17

Decompiling ANDF to C

into detail on the mechanisms used by ANDF to represent various language
constructs.

For this paper, the detailed structure of ANDF is not relevant, and we will
use examples in pseudo-C syntax which reflect the information carried in
the ANDF without the details. Additional information contained in ANDF
itself guarantees C semantics (or Fortran or Ada or Cobol semantics, as the
case may be) for various constructs, but does not contain additional
information about the source code.

6. Decompiling ANDF to C

ANDF can be decompiled to C just as object code can. In both cases, this
requires intimate knowledge of the language to be decompiled. For machine
language, the instruction set architecture must be well understood, and tools
for interpreting instruction formats must be available (disassemblers). For
ANDF, the ANDF language must be well understood, and tools for

decoding it must be available (ANDF readers).

Although ANDF readers are more difficult to construct than disassemblers,
and certainly not widely available, we will assume that a decompiler has
access to this tool and to the complete specification. Without the tools and
specification, reliable decompiling would be almost impossible, especially
since the encoded form of ANDF is tightly packed in an unfamiliar way.

Given such tools, we examine how much easier it is to decompile ANDF
than object code.

M odule and function structure

C programs have a simple module structure: top-level function and object
declarations can be either local to a source file or global. The separation into
files gives some hint as to the global structure of the program. ANDF has
essentially the same module structure. Object code has no module structure.

5. The Sructure of ANDF: Principlesand Examplesis an introduction to the structure of the ANDF
interface through graduated examples and is written for language implementors and designers.
It is available from OSF as report number RI-ANDF-TP1-1.

Protecting Sour ce Code with ANDF 6 of 17

Decompiling ANDF to C

As a general rule, functions which are contiguous in source modules are
contiguous in ANDF and object modules. This gives a small amount of
information about the source code's structure.

ANDF does preserve information about the beginnings and ends of
functions, unlike object code. However, on most architectures, procedure
entry and exit code is rather stereotyped and can be identified automatically
even in object code.

ANDF also preserves explicit references to standard libraries. Decoding this
does require understanding token definition libraries, but once this is done,
both macro and procedural references to libraries can be resolved easily.
Procedural references to standard libraries in object code are relatively easy
to decompile, since the same libraries are usually available separately with
their named entry points; shared libraries make this even easier. On the
other hand, macro entries are more opaque.

Thus, ANDF does give additional information about the module structure of
an application. In principle, tools could be written to hide this structure, but
they do not exist today. ANDF also gives additional information about
standard library references.

Straight-line executable code

Straight-line executable code is notably easy to reconstruct from object
code, as from ANDF. Straight-line code reconstructed from ANDF is likely
to be closer to source because fewer optimizations are performed in ANDF
producers than in optimizing compilers.

Control structures

Programs written in higher-level languages use a variety of control
constructs in order to express the programmer's intention clearly. Thus, in C,
loops can be expressed as while loops, do/while loops, for loops, and of
course combinations of goto's. C labels are local to a procedure. ANDF
flattens the space, and provides only goto's and unconditional repeat loops
(of the formwhile (1) {...}).

Protecting Sour ce Code with ANDF 7of 17

Decompiling ANDF to C

In most architectures, object code uses only (conditional) goto’s, and their
scope is global.

Unlike binary, ANDF does identify loops, but not the choice of loop
constructs. In binary, all backwards jumps must be analyzed to reconstruct
loops.

Representation of elementary types

Source, ANDF, and binary must somehow represent much of the same
information about data types. For instance, every arithmetic operator must
specify which operation to execute (addition, multiplicateta), and on

what data type. In C, the data type is specified in the data declaration, and
the operation in the executable statemenqt;

I nt net, gr oss, expenses,
net = gross - expenses;

In abstract ANDF (as it comes out of the producer), the data type is
specified in the data declaration, and the type of operation in the executable
statement. The implementation of the data type is specified by the installer,

eg.:

int vO, vl, v2;
vO = integer_subtract(vl, v2);

Abstract (tokenized) ANDF does distinguish between data types which may
be implemented differently on different machineg.(l ong and

I nt eger), whereas object code only preserves differences relevant to its
architecture.

In concrete ANDF -- after target-specific tokens have been instantiated by
the installer -- the data size is specified in the data declaration, and the type
of operation in the executable statemery.,

int[-32768..32767] vO, v1, vZ2;
vO = integer _subtract(vl, v2);

Protecting Sour ce Code with ANDF 8of 17

Decompiling ANDF to C

In object code, the individual data items are typically not declared
separately, and the type and size of the operation is specified in the
executable statement:

byt es v|[6]
v[0..1] =
I nteger_subtract _16(v[2..3], vv[4..5]);

Thus, for scalar variables, essentially the same information is available
(except of course the names), although in the ANDF it is in principle easier
to separate variables than in binary. In practice, it is rather easy to determine
variable slots, and even their type, from binary. Any typedefs and macros
used to give mnemonic names to data types are unavailable both in object
and in ANDF.

Compound data types

Most interesting data structures are composed of compound data types such
as records and unions. In source code, the names of fields and their types are
important documentation. For instance, a cell in a sparse spreadsheet might
be represented as:

struct cell {
struct cell *up, *down, *right, *left;
fornmul a contents;
di splay_style style;
}

This expresses the intent of the program writer clearly and simply. In
ANDF, most of the intent is gone. The ANDF equivalent is roughly
(depending on whdtor nul a anddi spl ay_st yl e are):

Protecting Sour ce Code with ANDF 9of 17

Decompiling ANDF to C

struct sl {
void *f1;
void *f2;
void *f3;
void *f4;
void *f5;
voi d *f6;
}

Actually, the information is not quite this explicit in the ANDF, but it is
relatively easy to reconstruct it in the case of simple records. Variant records
(unions) are more difficult.

In object code, reconstructing the structure of records is less straightforward.

Thus, ANDF gives considerably more information about the general shape
of compound data structures than does object code: reconstructing the
concrete representation of data types is relatively straightforward. On the
other hand, it gives no information about thient or meaning of that

shape, as do declarations in the source, which use typedefs, struct names,
and so on to document usage.

Summary: decompiling ANDF

ANDF gives a decompiler several additional pieces of information

compared to binary object code. The division into procedures and references
to standard libraries are clear and unambiguous. Control structures and in-
line code are somewhat more transparent, but can generally be reconstructed
even from optimized binary code by a good decompiler. Data types are
probably the area where ANDF gives the most additional information, but
here too the information is low-level.

All this analysis presupposes a mastery of ANDF specification and know-
how. Although this mastery does not exist today, we must assume that it will
in the future.

Protecting Sour ce Code with ANDF 10 of 17

Rever se engineering from decompiled code

7. Reverse engineering from decompiled code

Decompiled object code or ANDF is functionally equivalent to the original
code. That is, it contains all information that is useful to the compiler.
However, it contains almost none of the information that is useful to a
programmer who wishes to understand the program.

Indeed, one proposed way of protecting source code is “shrouding” it, that
Is, performing a source-to-source transformation that removes human-
oriented content. This includes comments, formatting, and identifier names
as well as higher-level control structures and macros.

Although formatting and some higher-level control structures can be
reconstructed by a decompiler, comments and identifier names cannot.
There is a large difference in readability between code with meaningful
names and comments and that without. Consider, for instance, the following
very simple code fragment from a fictional compiler:

case 23:
{ v42 = £71(v3.r5);
f56(12, vi1, v42.r23);
if (v42.r3 '=0)
f56(12, vl + 1, v42.r23 + 1);
return O;

}

and compare it to the form a programmer would have written:

case float to float:
/* Copy floating point nunber */
{ dest reg num = get float reg nun{dest.where);
I ssue_inst(float _copy, dest _reg num
reg_nun{src_req));
I f (dest. doubl ep)
| ssue_inst(float copy, dest reg num+ 1,
reg_nun{src_reqg) + 1);
return SUCCESS; }

Protecting Sour ce Code with ANDF 11 of 17

The goals of reverse engineers

This case might be one of a hundred in a single routine. In the absence of
any explanatory commentary or design documentation, the decompiled code
IS useless.

There do exist tools to help maintenance programmers understand existing,
poorly-documented programs. Patient application of these tools to
decompiled code (from object or from ANDF) could, with time, yield

results. It is doubtful that these results would be very useful.

8. The goals of reverse engineers

Having seen what decompiled code might look like, let us consider some of
the putative applications of decompiling and reverse engineering, and see if
decompiled ANDF can in fact be useful for them.

This is a purely technical discussion; from a legal point of view, most of
these techniques would surely constitute infringements on the intellectual
property rights of the original software vendor.

Extracting algorithms

Some companies are known for having particularly efficient algorithms in
certain critical areas. A competitor may want to use that same algorithm in a
different product. In order to do this, he must understand the algorithm well
enough to adapt it to his own data structures and interfaces.

To do this, the competitor would first have to find this algorithm in the
middle of the code. This can be done by profiling in some cases; in other
cases, large parts of the code would have to be studied.

After the algorithm is located, it will have to be decompiled. This will give
unreadable code (see the section on decompilation). Now, reverse
engineering proper is needed to understand what this code does.

Although published algorithms are usually short and clear, practical
implementations are often long and obscure. For instance, the inner loop of
the original Boyer-Moore fast string search algorithm consists of two lines
of pseudo-Algol. The implementation in GNU Emacs is about 125 lines of

Protecting Sour ce Code with ANDF 12 of 17

The goals of reverse engineers

C code in which Emacs’s data structures and the Boyer-Moore algorithm are
woven together. Understanding the algorithm requires understanding the
usage of the data structures. The C code itself is difficult to understand, and
thus is heavily commented. Comments would of course be unavailable to
anyone reverse engineering the algorithm. Moreover, any particular
implementation of an algorithm may depend on invariants of data structures
or coding conventions which are not evident from examination of the
decompiled code.

It is clear that deciphering such code is a non-trivial exercise. On the other
hand, if the algorithm’s implementation is short and simple, it is likely that
it can be just as well decompiled and reverse engineered from object code.

Extracting data formats and interfaces

Another reason to reverse-engineer a piece of software is to understand its
external interfaces. A vendor may use a proprietary data format to exclude
competitors from producing plug-compatible software.

Some data formats are readily reverse engineered, although the process is
laborious. For a word processing program, a paragraph will typically be
represented with some sort of preamble containing style parameters such as
typeface (with values drawn from the font list), size (with small integer
values), lightness (with values drawn from light/normal/bold), etc. To

reverse engineer this format, one creates paragraphs with a variety of
formats, varying one parameter at a time, and sees how they are represented
in binary.

Other data formats (especially those based on the internal representation of
the object) are more difficult. They may contain pointers to other parts of

the structure, which only make sense if the memory organization of the
application is understood. Or they may contain additional internal data

which must be consistent with user-visible data, but is not directly visible to
the user. For instance, there may be a special code for a given font in a given
size and lightness.

In these cases, understanding the underlying program is usually necessary.
Most of the information is contained in the program’s data declarations and
the attached comments. In the absence of meaningful record field names and

Protecting Sour ce Code with ANDF 13 of 17

The goals of reverse engineers

comments, it is usually unenlightening to know that a particular data
structure consists of some large number of short integer fields, integer fields,
and long integer fields.

Still, given sufficient economic motivation, it is perfectly possible to reverse
engineer such interfaces from binary or from ANDF.

Cannibalizing code

Reverse engineering might be useful as a way of avoiding developing code
from scratch. In fact, it is often possible to lift object code directly and reuse
it. But this will only work if the interface is well-understood. For instance,
one could feel confident thasan routine for a given architecture would

work if lifted bodily into another application on the same architecture. The
same is true in ANDF.

On the other hand, it is highly unlikely that any major module of a large
program could be reused in this way, or through decompilation. The main
problem is that the interface is not fully specified: the precise assumptions
being made, the data structures being used, and the conventions being
respected.

Competitive analysis

Reverse engineering could be used to find weak points in a competitor’s
products, or latent but unpublicized functionality.

Finding weak points by reading fully documented code is difficult; trying to
find them by reading decompiled code is unrealistic. System testing is
probably a far more effective way of finding weak points.

Latent functionalityis an area where reverse engineering may be useful.

Once a critical routine is identified, it may well be possible to notice a path
that is only taken under special circumstances. This can also be done using a
debugger, but decompiled code is probably an easier way.

6. For example, Accolade Inc. reverse engineered Sega’s game interface using decompilation. See
Electronic News38:1928:18 (Sept. 7, 1992).

Protecting Sour ce Code with ANDF 14 of 17

Conclusion

Of course, any latent functionality which is conditionally compiled will be
completely invisible to both ANDF and binary versions.

Writing clones

Finally, a decompiled program might be used to write a clone of the original
program. That is, the whole of the decompiled program would be used as a
basis for a new version.

This is highly unrealistic. Maintaining fully-documented source code is
difficult enough. Maintaining poorly-documented source code is a well-
known problem. Maintaining decompiled source code is unthinkable.

9. Conclusion

Like binary object code, ANDF provides sufficient information to execute a
program. Unlike binary, it provides it in an architecture-neutral form,
allowing installation on a variety of machine types.

Like binary, ANDF can be decompiled into an equivalent C program. In
fact, in some areas it makes decompilation somewhat easier:

* ANDF executable code is more structured than object code. However, object
code decompilation is well-enough understood that ANDF provides no
additional useful information.

* In order to be installable on different machines, the ANDF form carries
machine-independent data definitions rather than committing to specific
layouts. These data definitions mirror the overall structure of source code data
definitions more closely than does object code.

* ANDEF library calls are more explicit than object code library calls. But
anyone with access to standard object libraries can extract the same information
from object code.

Protecting Sour ce Code with ANDF 15 of 17

Conclusion

But reverse engineering is much more than just decompilation.
Decompilation produces a program with meaningless identifiers, no
comments, and no higher-level data definitions. Makefiles, test cases, and
design documents are all missing.

Useful reverse engineering requires understanding the functioning of the
program in order to re-engineer it. ANDF provides no more help here than
does binary.

Thus, ANDF allows distributing architecture-neutral code with no
compromise to source integrity.

For further information please contact:

Stavros M acrakis
macr akis@osf.org
(617) 621-7356

Copyright 1993 by Open Software Foundation, Inc.
All Rights Reserved

Permission to reproduce this document without fee is hereby granted, provided that the copyright r
this permission notice appear in all copies or derivative works. OSF MAKES NO WARRRANTY OF
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF st
not be liable for errors contained herein or for any direct or indirect, incidental, special or conseque
damages in connection with the furnishing, performance, or use of this material.

Protecting Sour ce Code with ANDF 16 of 17

Conclusion

Protecting Sour ce Code with ANDF 17 of 17

