
6/29/93 05:02 pm macrakis@osf.org 1 of 15

The Structure of ANDF:
Principles and Examples

Stavros Macrakis
Open Software Foundation

ANDF is a language-independent and machine-
independent intermediate language. It is
organized by some fundamental principles,
which we explain and illustrate.

1. Introduction

ANDF (the Architecture-Neutral Distribution Format) defines the data
passed from an ANDF producer (which is language-dependent and machine-
independent) to an ANDF installer (which is language-independent and
machine-dependent). ANDF is both language-independent and machine-
independent. An ANDF producer is like a compiler front end (syntax and
semantics analyzer), and an installer is like a compiler back end (code
generator and optimizer). ANDF itself is thus a sort of compiler
intermediate language. This paper presupposes an understanding of
compiler intermediate languages in general, and should be useful to
compiler writers and language designers.

ANDF is organized by a few fundamental principles which give it
coherence and universality. This paper introduces them one by one, with
examples from a C or other language source and an example ANDF
equivalent (other translations may also be valid).

The Structure of ANDF: Principles and Examples

Requirements

2 of 15

The ANDF in this document is formatted for easy reading. Much of it is
syntactic sugar, notably the keywords identifying fields. The discussion of
its linear, binary form near the end explains how it is efficiently encoded
into roughly the same space as object code.

There are several layers to the explanation. An example follows each one.
In the examples, ‘... ’ represents parts that aren’t relevant to the particular
point being made. ‘<<...>> ’ means ‘the ANDF for that C construct’. This
document is based on a pre-release version of ANDF, so details may
change; however, the general principles remain valid.

2. Requirements

Neutrality

ANDF makes no commitment to a particular source language or target
machine. When different languages or machines have different
requirements, the differences are usually covered by parameterization of
ANDF constructs, not by special-purpose code.

Complete information

ANDF preserves the information in the source program that could be useful
to the code generator. Thus the installed code can be as efficient as normally
compiled code.

For instance, if an array index is of a type which makes it impossible for
indexing to fail, this fact will be preserved in the ANDF, and the
unnecessary range check eliminated.

Wide spectrum for transformation

ANDF can be used as a high-level or low-level intermediate language. Thus
most optimizations (whether machine-specific or not) can be expressed as
ANDF-to-ANDF transformations. The optimization engine can remain
constant across implementations, even if the particular optimizations are

The Structure of ANDF: Principles and Examples

General Structure

3 of 15

different. In particular, ANDF can represent both machine-independent data
types specified semantically and machine-dependent data types specified
operationally (number of bits).

3. General Structure

ANDF is tree-structured

ANDF is a tree built out of constructors likeplus (integer addition) and
integer (specifies integer types). Every constructor belongs to a category,
or “sort”, and specifies the sorts of its constituents. Constructs are nested
within one another, so the full definition of a top-level object (e.g. a
procedure) is a single tree.

Constructs have values

Executable code is represented by constructors of sort EXP. Each such
constructor specifies the concrete type, or “shape”, of its value and its EXP
arguments. A void value is of shape Top. Constructs which do not return
(such as goto’s) have a notional return value of shape Bottom.

ANDF constructs are orthogonal

ANDF constructs mean the same thing no matter where they are used. Any
entity (e.g. a local variable) a construct defines is meaningful only within its
body, and not outside of it. (A special mechanism is used for global
definitions.)

C version:

{
int i; — declaration looks just like
i = 0; — a sequential statement in C
...

}

The Structure of ANDF: Principles and Examples

General Structure

4 of 15

ANDF version:

variable(...
tag 2, — variable ‘name’
value make_value(INTEGER,...),
body — body is nested in ANDF

sequence(<<i = 0>>,
<<...>>)

)

Rationale:

Unambiguous. Simplifies high-level optimizations.

All attributes are explicit

When a construct has options or attributes, they are all explicit. Most
constructs have a fixed number of parameters (fixed arity), except for lists
of uniform meaning (e.g. the statements of a block). There are no globally-
set defaults which modify ANDF semantics for various languages.

C version:

 int i;

ANDF version:

variable(visible true,
tag 2,
value make_value(INTEGER,...),
construct_in_scope ...

)

Note thatvisible controls the visibility of the variable after exceptions
and in (e.g.) nested procedures, and is always true for C variables.

Rationale:

Unambiguous. Requires no reconstruction in the installer (back end).

Wide-spectrum and mixed-language programs may have different values for
attributes within the same expression tree (e.g. mixed-language inlining).

⇒
⇒

⇒

⇒
⇒

⇒
⇒

The Structure of ANDF: Principles and Examples

General Structure

5 of 15

Different languages may use different values for attributes.

Potential size problem dealt with by clever binary format. (q.v.)

Operations are completely specified

All operations are completely specified for both normal and exceptional
cases independently of target machine. Where the source language specifies
machine-dependent behavior, this is stated explicitly in the ANDF code.
When producer analysis of the program determines that errors are
impossible, this information is passed along to avoid unnecessary error
checks.

C version:

 i + 1

ANDF version:

plus(
ov_error wrapped,
contents(

INTEGER(~signed_int),
obtain_tag(2)

),
make_int(~signed_int, 1)

)

The behavior ofplus on overflow demonstrates the explicitness of
exceptional behavior. C semantics specify that overflow should result in the
wrapped (modular) result; other languages may raise an exception. Thus
ANDF must specify which behavior is required.

Rationale:

Program semantics can be uniform, despite target machines’ varying
behavior, yet can take advantage of target-specific behavior when this is
acceptable.

Optimization benefits from information on impossible cases.

⇒

The Structure of ANDF: Principles and Examples

Names and values

6 of 15

4. Names and values

Identifiers are replaced with unique Tags

Identifiers are replaced with unique ‘tags’. There are no scope rules for tags
(or tokens) because they are guaranteed unique within an ANDF capsule
(unit of distribution).

C version:

int authorization_number;
resolve_constraints(...)

ANDF version:

variable(..., tag 2341, ...)
make_proc(..., tag 3833, ...)

Pascal version:

integer shadowed;
begin

integer shadowed; — not the same variable
...

ANDF version:

variable(..., tag 501, ...)
variable(..., tag 299, ...)

Ada version:

function “*” (a,b: integer) return integer;
— Unusual function name

function “*” (a,b: view_matrix)
return view_matrix;

— Overloading

⇒
⇒

⇒
⇒

The Structure of ANDF: Principles and Examples

Names and values

7 of 15

ANDF version:

make_proc(..., tag 7211, ...)
make_proc(..., tag 2007, ...)

Rationale:

Syntax and semantics of tags are perfectly uniform. Lookup of tags is
efficient. Language-dependent rules of scope, overloading, and so on are all
treated by the producer. Tags are character-set independent.

Installer doesn’t need any other information, and this representation is more
compact.

Inhibits reverse engineering.

Simplifies transformation.

Fetching of name’s content is always explicit

Tags for variables always represent the name (L-value) of the identifier, and
must be explicitly dereferenced to get the value.

C version:

 i = j

ANDF version:

assign(...
ptr obtain_tag(2),
val contents(..., obtain_tag(3))
)

Rationale:

Preserves orthogonality of language. Also recognizes different kinds of
value fetching (cf. contents_of_volatile).

Types always explicit

Types of all objects, intermediate expressions, and constants are explicit.

⇒
⇒

⇒
⇒

The Structure of ANDF: Principles and Examples

Types and storage

8 of 15

C version:

100

ANDF version:

 make_int(~signed_int,100)

C version:

 i

ANDF version:

contents(..., INTEGER(~signed_int),
obtain_tag(2))

5. Types and storage

Concrete types are specified by their attributes

ANDF only represents the concrete aspects of types. These concrete types
are called ‘shapes.’

The static semantics of types in general, and static type safety in particular,
are language-specific, and so are handled by the producer.

Integer shapes are specified by their minimum and maximum values;
floating point shapes are specified by their extreme exponent values and
their precision.

C version:

enum status {off, on}
enum binding {hardback, paperback}
char
enum Latin_1 {L1_null, ... L1_xxx}

The Structure of ANDF: Principles and Examples

ANDF supports deferred decisions

9 of 15

ANDF version:

Integer(0,1)
Integer(0,1)
Integer(0,255)
Integer(0,255)

Ada version:

type binding is (paperback, hardback);
type discount is (textbook, paperback,

hardback, used);

ANDF version:

Integer(0,1)
Integer(0,3)

Rationale:

Data type semantics vary from language to language, so should not be
represented in ANDF.

Data layouts are not specified

ANDF provides primitives for constructing compound data types, such as
structures, unions, and arrays. Data layout is the installer’s responsibility, as
this is machine-dependent. This is a major difference with traditional
compiler intermediate languages, where data layout is performed in the
front end (or ‘middle’).

A corollary of this is that concrete data attributes such as size and relative
position are not known at translation time in general, and thus must be
deferred to installation time.

6. ANDF supports deferred decisions

In a distribution format, unlike a compiler intermediate language, no
machine dependencies are tolerable in the front end or producer. Thus,
many things must be deferrable to installation time in an unambiguous way.

The Structure of ANDF: Principles and Examples

ANDF supports deferred decisions

10 of 15

Unambiguous unique identifiers support linking

Any portable program must depend on a variety of libraries specific to each
machine. Identifying procedures (and other entities) in these libraries is
crucial. On different machines, the same procedure may have different
names, or procedures may have the same name but different functions.

ANDF provides for the registration of unique names (cf. Internet addresses)
so that global symbols are completely unambiguous.

C version:

void invert_matrix(); — NAG? IMSL? other?

ANDF version:

Make_uniq(245,732) — 245 registered to NAG (e.g.)

ANDF supports install-time code parameterization

Not only identifier references, but also values, concrete types (shapes), and
even macros must often be deferred to installation. Examples are
configuration parameters and data types for libraries (header files in C),
where different implementations may have different definitions.

This requirement is completely foreign to compiler intermediate languages,
which typically expand out data definition early on.,

ANDF tokens provide general syntax-macro functionality. Syntax macros,
like those found in ANDF or Lisp, and unlike the lexical macros found in C
and other languages, operate on syntactically meaningful program
fragments such as expressions and type definitions.1 ANDF provides the
additional, critical, capability of separating token declaration (similar to C
prototypes) from token definition, and allows definitions to be deferred to
installation time.

Tokens thus become an abstraction mechanism allowing target-independent
specification of interfaces in the source code. The target-dependent

1. See B.M. Leavenworth, “Syntax Macros and Extended Translation”Commun. ACM 9:11:790
(November, 1966).

The Structure of ANDF: Principles and Examples

ANDF supports deferred decisions

11 of 15

implementation of types and macros is “linked in” at installation time, just
like library procedures.

Producers may also use tokens to translate common constructions, thus
reducing ANDF size, just as regular macros can be used as shorthands.

Tokens are also an important mechanism for extensions to ANDF.

Example:

In most Unix implementations, getchar is a macro, for efficiency. However, the
text of this macro varies from implementation to implementation.

The Token mechanism allows leaving the macro call in the intermediate code, to
be substituted at installation. This preserves both neutrality and efficiency.

ANDF supports static conditionals (conditional compilation)

An important mechanism used for writing portable code is conditional
compilation. Traditional compilers eliminate such static conditionals in the
preprocessor. This of course is incompatible with ANDF’s goals. ANDF
thus provides for explicit conditionals. Code is then selected at install time
through dead code elimination.

C version:

#if VAX
printf(“Running on a Vax”);

#endif

ANDF version:

exp_cond(
integer_test_i(equal,...,

<<VAX>>),
<<printf(“Running on a Vax”);>> ,
make_void())

The Structure of ANDF: Principles and Examples

Control structure

12 of 15

7. Control structure

Control structures are escapes from blocks

ANDF provides primitives with which conventional control structures may
be built. Most classic control structures (do, for, while) are represented as
blocks with escapes, rather than as arbitrary goto’s. This simplifies the
design of the ANDF producer. ANDF installers may use ANDF-to-ANDF
transformations to reduce these to the equivalent goto’s.

8. Beyond C

ANDF supports conventional languages

The features of ANDF presented so far are common to all languages, and
sufficient for most conventional sequential procedural languages. Although
examples have been drawn from C, the same mechanisms suffice for other
languages with similar run-time structures, such as C++, Algol 60, Fortran,
Pascal, ….

Some conventional sequential languages may need additional ANDF
constructs or standard token libraries. Cobol and PL/I, for instance, may
benefit from special support for decimal arithmetic.

Other languages may be covered in future extensions

The design process leading to ANDF covered a wide spectrum of
languages, from C to Ada, Common Lisp, and ML. The base constructs
present in the current version of ANDF are believed to be appropriate for all
these languages.

If and when other constructs or standard token libraries become necessary
to support other languages, they may be added to the definition of ANDF
after technical and business analysis. Of course, full upward compatibility
will always be preserved.

The Structure of ANDF: Principles and Examples

Binary form is compact but flexible

13 of 15

9. Binary form is compact but flexible

The presentation form of ANDF used so far in this paper is designed for
easy reading by engineers. ANDF’s machine form, on the other hand, is
designed to be a compact and efficient encoding for storage, transmission,
and processing. It is isomorphic to the presentation form, but is highly
compressed. Several techniques are used for compression.

Bit-packed encoding

ANDF is fully packed.

Encodings for elementary constants and constructors whose maximum size
is knowna priori are encoded bit-efficiently. For instance, there are only
four possible values for a boolean constant: false, true, Token-Nat (a local
symbolic constant), and Token-Unique (a global symbolic constant). Thus
the encoding is performed in 2 bits (with a following Token code if
necessary).

No arbitrary size limits

Fields whose maximum size cannot be knowna priori have a size
determined in the header for the ANDF capsule. For instance, if there are
423 different tags in a given capsule, precisely 9 bits will be reserved to
specify each tag for that capsule.

Unlike conventional approaches which must guess at the maximum useful
size of a field, and then apply this maximum to all uses, including those that
need only a small fraction, space is not wasted, nor is capacity limited.

Tree structure is implicit

Constructs are represented in Polish prefix form. Since most constructs are
of fixed arity, no explicit parenthesization is needed. Constructs of variable
arity are immediately preceded by a length specification.

The Structure of ANDF: Principles and Examples

Conclusion

14 of 15

Tokens compress common subtrees

The Token mechanism described as a portability feature is also used to
compress commonly-occurring idioms. For instance, the C constructx++ is
represented in ANDF as(temp = x; x = x+1; temp) . Rather than
copy this tree whereverx++ is written, an ANDF producer for C may use a
token which expands to the full definition. The reference producer does this.

Extensible

Despite its compactness, the binary form is extensible. All potentially
extensible fields include an escape value, which allows extending to
additional values in the future.

10. Conclusion

ANDF was specifically designed as a multi-language, multi-architecture
portability and distribution format.

Unlike adaptations of existing compiler intermediate languages, it is not
distorted by a language- or machine- specific history.

Unlike low-level programming languages, it does not need to make
concessions to human users.

Unlike either, its semantics are defined by a specification, and not by
particular machines or tools.

On the contrary, its designers have produced a wide-spectrum intermediate
language with many desirable properties:

• Uniform structure

• Language independence

• Machine independence

• Complete and unambiguous definition

• Compact encoding

• Extensibility

The Structure of ANDF: Principles and Examples

Conclusion

15 of 15

For further information please contact:

Stavros Macrakis
macrakis@osf.org
(617) 621-7356

Copyright 1993 by Open Software Foundation, Inc.

All Rights Reserved

Permission to reproduce this document without fee is hereby granted, provided that the copyright notice and
this permission notice appear in all copies or derivative works. OSF MAKES NO WARRRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for any direct or indirect, incidental, special or consequential
damages in connection with the furnishing, performance, or use of this material.

