
6/29/93 05:04 pm macrakis@osf.org 1 of 18

From UNCOL to ANDF:
Progress in Standard Intermediate Languages

Stavros Macrakis
Open Software Foundation

1. Introduction

ANDF is an architecture- and language- neutral distribution format
resembling a compiler intermediate language. Architecture- and language-
neutral intermediate languages were first discussed in the UNCOL project
of 1958-1962. UNCOL was never fully defined nor implemented. This
paper takes a look at the history of UNCOL and shows why ANDF can
succeed where UNCOL failed. The paper presupposes an understanding of
comparative programming language semantics and implementation, and is
addressed to programming language implementors.

The UNCOL section describes the history and nature of UNCOL. UNCOL
was a very ambitious project for its day, and would have required
innovations in many areas. But later work on compilers and intermediate
languages in fact fulfilled many of the promises of the UNCOL work. Those
innovations, together with the widespread use of portable software and open
systems made a universal distribution format economically worthwhile. But
the technical groundwork had been laid by the compiler community.

The Fortran, C, and Lisp sections discuss a different approach to a universal
language—the use of existing programming languages. They have been
used as an intermediate language for Ada, Modula-3, and other compilers.

From UNCOL to ANDF: Progress in Standard Intermediate Languages

UNCOL

2 of 18

An examination of these compilers shows the strengths and weaknesses of
this approach.

The final section discusses the relationship between portability and a
universal distribution format: ANDF cannot make programs portable; it
provides the mechanisms necessary to support portable programs.

2. UNCOL

What was UNCOL?

UNCOL, aUniversalComputer-OrientedLanguage, is the general name
for a group of proposals for a universal intermediate language for compilers.

UNCOL’s goal was quick and economic production of compilers for a full
range of languages on new machine architectures. Steel presents the
economic justification clearly:

Th[e] capital investment in a translator [i.e. compiler] would be well advised if our concern were
for a single machine and a single problem oriented language…. In our firm insistence on many
machines and many languages, however, the requisite investment is increased multiplicatively….
A primary objective of the effort whose direction is outlined in the following pages is a reduction
in the time and money required to live in this changing environment.

…if one is presented with M problem languages and N machine languages, M + N translation pro-
grams are required in the UNCOL scheme of things, while M× N translation programs are neces-
sary in the traditional mode…. [Steel61, p. 371]

UNCOL, then, was a means to an end: compiler production. UNCOL was
never intended to be a mechanism for porting programs; indeed the very
notion of a portable program was hardly mentioned in the UNCOL
literature!

According to [Share58], the concept of a universal intermediate language
had “been discussed by many independent persons as long ago as 1954. It
might not be difficult to prove that ‘this was well-known to Babbage,’ so no
effort has been made to give credit to the originator, if indeed there was a
unique originator.” The most usual bibliographic reference is to Steel’s
papers [Steel60, 61] and the [Share58] report.

From UNCOL to ANDF: Progress in Standard Intermediate Languages

UNCOL

3 of 18

Various UNCOLs were proposed, but none in detail. Some concepts were
utopian:

[the data description] language includes the first order predicate calculus with identity…. In such
languages non-constructable [sic] items occur…. In order to circumvent trouble from this source,
a set of rules for generator writers must be given which limits the complexity and character of the
definitions; rules which the careful framer of definitions will follow instinctively. [Steel61, p. 374]

UNCOL was only one approach proposed to solve the compiler
construction problem. An alternative was the compiler-compiler, of which
Steel says:

A single program is written,exactly once, which takes as input descriptions of a problem oriented
language and a machine language and then proceeds to produce as output a compiler that trans-
lates the given problem language statements into the given machine language. The trouble with
this approach is that nobody has even the vaguest idea about how to do it despite occasional state-
ments to the contrary. [Steel60, p. 20]

The compiler-compiler is a more dignified solution…. [It] will be a program that accepts as input
a description of a problem oriented language, a description of a compilation machine and a de-
scription of an object machine and produces as output a program which runs on the first machine
and translates the problem language into the language of the second machine. This is all very sim-
ple conceptually. The trouble is that nobody knows how to do it. One of the hoped-for byproducts
of the UNCOL effort is sufficient insight into the mechanisms of translation to permit a beginning
on [the compiler-compiler]. Until then UNCOL will have to do. [Steel61, p. 344]

But Steel’s prediction was incorrect. In fact, progress on intermediate
languages and on compiler-compilers has gone hand in hand.

Computer Technology in 1958

A striking feature of the UNCOL papers is the number of innovations that
would have been needed to make it work.

Since there was no standard character code, UNCOL would have had to
define one. One proposal included over 500 characters thought useful for
mathematical notation (including,e.g., black-letter subscripts). On the other
hand, no thought was given to national language support.

Bootstrapping was a novel technique. Many critics of UNCOL could not
understand how it would be possible to bring an UNCOL compiler up on a
new machine. Thus, much of the text of UNCOL papers describes
bootstrapping and defends its feasibility. [Steel62]

From UNCOL to ANDF: Progress in Standard Intermediate Languages

UNCOL

4 of 18

Indeed, the very notion of an intermediate language for compilers (as
opposed toad hoc data formats to pass information between compiler
passes) was rather novel.

At the same time, programming language technology was in its infancy.
Concepts that we now take for granted were novel or even non-existent,
such as records, pointer types, and for that matter data types in general.

Developments in Compiler Technology

Compiler technology has been an active area of research from the 1960’s to
the present. It is useful to review the chronology of developments to put
universal intermediate languages into context.

late 1950’ Inventon of regular languages and finite-state automata—basis for lexicall
analysis

Invention of context-free languages, pushdown automata, and Backus
form—basis for syntactic analysis.

1960’s: Development of lexing and parsing algorithms.

Elaboration of efficient run-time structures for Algol.

1970’s: Development of theory of semantics

First table-driven code generators.

Broader use of ILs.

First compiler-compilers.

1980’s: Application of semantic theory to front-end construction (experimental).

In the open literature, compiler intermediate languages are presented as
novel well into the 1970’s. This is misleading, since many proprietary
compilers used this technique. But it does show that ILs were not fully
assimilated into the computer science culture.

Automatic generation of back ends for compilers began in the 1970’s and is
now the dominant mode of production of compiler back ends.

From UNCOL to ANDF: Progress in Standard Intermediate Languages

UNCOL

5 of 18

Front ends are currently not as automated. Although lexical and syntax
analysers are routinely generated from formal specifications (regular
expressions and BNF), semantics is usually treated by explicit program.

But even for semantics, innovations of the 1970’s and 1980’s now make it
possible to produce a full compiler-compiler: given the syntax (in BNF) and
semantics (in some denotational formalism) of the language on the one
hand, and the machine description on the other, a compiler can be produced
completely automatically. However, runtime performance is currently poor
in this fully automatic denotational approach.

Compiler-compilers are routinely used today1. Their intermediate
languages, though not standard, are constant for a particular compiler-
compiler, with minor variants for new machines or languages.

These ILs meet the primary requirement for an UNCOL (to make compiler
writing easier), but not all the requirements for ANDF. A design process
driven by the specific requirements of ANDF would incorporate IL
portability and machine and architecture neutrality from the beginning. This
is precisely what the UK Defence Research Agency has done with TDF, the
technology selected by OSF as the basis of ANDF. Thus the danger of
continual incremental modifications for new languages and machines is
averted.

Using existing languages for distribution

A different approach to intermediate languages for distribution is the use of
existing programming languages.

The advantage is that they already have compilers on many machines, and if
the source language is the same as the chosen distribution language, then
the front end becomes trivial.

However, there are disadvantages both on the producer (front-end or
preprocessor) and installer (back-end) sides.

1. although the term ‘compiler-compiler’ is outmoded

From UNCOL to ANDF: Progress in Standard Intermediate Languages

Fortran

6 of 18

The front end must translate source language semantics into the
intermediate language. Sometimes, this is straightforward. But more often,
there are hidden complications. For instance, languages’ treatment of loop
termination conditions may be different. More subtly, languages’ treatment
of variable values after error conditions may be different. Often, a language
feature available in the source language is not available in the target, and
must thus be emulated. Such an emulation may mean premature
implementation decisions. Also, machine-dependent implementation
techniques not used by the IL’s compiler are not available to the source
language translator. These complications make producer design more
difficult, reduce the quality of the installed code, and favor the particular
language over others.

The back end must translate the intermediate language into machine
language. For the result to be predictable, the intermediate language must be
fully specified in a portable way. This means not only specifying the
semantics independently of the machine, but also providing a complete and
portable set of environment inquiries, which can be used either at
installation time or at runtime. Full specification and complete environment
inquiries are found in few languages.

Many compilers do not handle program-generated code well. Program-
generated code often contains peculiar constructs and often exceeds
compilers’ capacity limits. For that matter, compilers are tuned to provide
good code for typical hand-written programs, and not necessarily for
translations of programs written in other languages.

Another important objection to using existing languages is the problem of
reverse engineering. If protection of proprietary programming is required,
the front end is no longer trivial even if the source language and the
intermediate language are the same, since it must obscure or ‘shroud’ the
source code.

3. Fortran

Fortran has often been used in the past as an intermediate language because
of its simple semantics, relatively good standardization, and wide
availability. Nowadays it would usually not be considered because of its

From UNCOL to ANDF: Progress in Standard Intermediate Languages

C

7 of 18

lack of such fundamental features as records and pointers and weak support
for character manipulation.

But writing portable Fortran is difficult. Indeed, such major producers of
portable Fortran as IMSL and NAG have extensive software toolkits to
support the process (cf. [Boyle77]). Depending on such elaborate
preprocessing defeats the purpose of a standard intermediate language.

4. C

C as an Intermediate Language

Many language implementations generate C as an IL, both for C extensions
(e.g. C++) and other languages (Ada [Meridian], Cedar, Eiffel, Modula-3,1

Pascal [Bothe89], Sather [Lim91], Standard ML [Tarditi91]).

C is widely available and generally compiles into efficient code. Moreover,
C’s low-level pointer constructs and weak typing allow easy emulation of
many other languages’ constructs (e.g. passing parameters by reference).

C is a particularly appropriate intermediate language for prototyping (in the
absence of a standard intermediate language). In prototype implementations,
portability and standardization are often not issues. But experimentation
shows that good efficiency requires careful choice of idiom in C to translate
source language features.2

Disadvantages of C as IL

For an intermediate language, many areas of C semantics are
implementation-dependent, that is, underdefined. For instance, there is no

1. cf. the discussion about the use of C as an intermediate language for Modula-3 compilers on the
comp.compilers newsgroup. David Chase’s remarks <1990Aug14.163258.2094@esegue.segue.-
boston.ma.us> are particularly pertinent.

2. The Sather work shows this quite clearly.

From UNCOL to ANDF: Progress in Standard Intermediate Languages

C

8 of 18

way of specifying integer or floating-point precision, nor for that matter of
querying them.

Other areas are overdefined; for instance, parameter passage is always by
value, although reference passage or copy-in/copy-out may be more
appropriate on some architectures. It is possible to implement these other
mechanisms explicitly, but that precludes the installer from choosing an
implementation strategy as a function of the target architecture.

C’s data definition mechanisms are weak. There is no way, for instance, to
declare a variant record with discriminant nor a variable-size array. They
can of course be emulated, but this means committing to a particular
implementation which may not be appropriate for the target machine.

Many constructs needed for other languages are missing from C. Lexical
scope is missing. Exceptions are missing. Safe pointers (for garbage
collection) are missing. All of these can be emulated in C, but only by
committing to a particular runtime model.1 Such overspecification reduces
efficiency. Also, invariants preserved by the emulation are unknown to the C
compiler and thus cannot benefit optimization.

For all of the above reasons, although C has been useful for prototyping
extensions to itself (C++) and for producing code rapidly for other
languages, C is not an ideal intermediate language.

Discussion: C as a Distribution Format

As an intermediate language for languages other than itself, C is not very
strong. C does have a specific advantages as a distribution format, however:
if source code is distributed, the mechanisms for pre-processing and
machine-dependent static quantities are handled with no additional effort.

Still, many of C’s disadvantages as an IL carry over to C as a distribution
format.

1. Consider the programming conventions required to support safe pointers in GNU Emacs Lisp.

From UNCOL to ANDF: Progress in Standard Intermediate Languages

How about Lisp?

9 of 18

In addition, the complete semantics of a C program are not specified by the
C language; parameters to linkers and loaders may change symbol
interpretations.

In principle, many of these objections could be overcome by re-engineering
of compilers, careful definition of standard special-purpose datatypes
(int_12, int_13, …), standardization of linkers, and more flexible
optimizers. But if standard C compilers cannot be used, why use the
standard C language for a purpose for which it was not intended?

5. How about Lisp?

Sometimes Lisp is suggested as a universal intermediate language. Indeed,
ANDF has some superficial resemblances to Lisp.

Which one?

There are apparently three different things meant when people speak of
using Lisp as an intermediate language:

• Using a fully parenthesized notation.

• Using traditional dialects of Lisp.

• Using Scheme as an object-oriented language.

Fully parenthesized notation

The major classes of intermediate languages are linear (triples, quadruples,
tuples), tree-structured, and graph-structured. In all cases, a key decision is
the actual operators used and their exact semantics.

ANDF is in fact a tree-structured language. Its operators have been carefully
chosen to be architecture- and language- neutral.

Lisp is tree-structured as well, but its particular set of operations is specific
to Lisp semantics. Replacing the operators with another set of operators
would result in a different tree-structured language, not Lisp.

From UNCOL to ANDF: Progress in Standard Intermediate Languages

Portability and Distribution

10 of 18

Using traditional dialects of Lisp

Lisp, as a programming language developed for human use, shares several
of C’s shortcomings as an intermediate language, in particular
underspecification (implementation-dependence) for some constructs, and
overspecification for others.

An example of underspecification is the lack of a machine-independent way
of specifying the range of integers. As for overspecification, Lisp parameter
passing is by value for certain primitive types and by sharing for composite
types. Other languages may require different semantics. On a more practical
level, no commercial Lisp compiler allocates composite objects (records,
arrays) on the stack.

So using an existing dialect of Lisp would require radical reworking both of
the language and of its compilers.

Scheme-like object orientation

Scheme used as an object-oriented language has several good properties: it
is well-defined, it is abstract and thus uncommitted to a particular
implementation style, it has very general control structure.

However, it has two fatal flaws: lack of concrete data typing facilities and
requirement for garbage collection. Also, none of its implementations are as
efficient as implementations of traditional sequential programming
languages.

6. Portability and Distribution

Portability is best designed into a software product, and not added on later.
Sometimes ANDF is thought of as a portability tool which will
mechanically turn a non-portable program into a portable one. If ANDF
claimed this, it would be justly criticized for trying to solve an unsolvable
problem.

But ANDF is a distribution format for portable software. ANDF is not a tool
for making non-portable software into portable software, but a tool for

From UNCOL to ANDF: Progress in Standard Intermediate Languages

Portability and Distribution

11 of 18

distributing portable software, which must thus providemechanisms needed
by portable software.

Barriers to portability

Portable software is defined as software that can easily be moved from one
execution environment to another. Software can be portable as source or as
binary of some kind (object, load module, etc.).

At the source level, portability can be blocked by language incompatibility
(supersets and subsets), compiler incompatibility (bugs or extensions), non-
portable assumptions about the runtime environment (e.g. precision of
numbers), or use of unavailable or incompatible interfaces.

Language and compiler incompatibility is usually solved by writing in a
subset of the language known to be correctly implemented by a wide range
of compilers. This subset is typically more restrictive than the official
standard, and is determined empirically (!). Sometimes conditional
compilation is used to avoid compilers’ weak spots.

Environment assumptions are treated by parameterizing the software
(preferably at compile time), often using macros. Many languages do not
provide standard environment queries, so programs must be explicitly
parameterized by installation machine or determine environmental
parameters throughad hoc mechanisms.

Availability of interfaces can be dealt with either by restricting oneself to
the least common denominator interfaces or by providing a platform-
dependent layer which translates to native mechanisms. When it is not the
interface that varies, but the functionality itself (e.g. shared memory or
threads), software must sometimes be extensively parameterized or even
redesigned.

At the binary level, software is of course only portable among machines of
the same instruction set architecture. Moreover, the object or load format
must be compatible, as must all system interfaces, including device registers
(when accessible to the software),etc. When these interfaces are ill-defined,
binary compatibility can be a major restraint on architectural innovation, as
witness MS-DOS.

From UNCOL to ANDF: Progress in Standard Intermediate Languages

Portability and Distribution

12 of 18

When software is distributed as a linkable module, global names must be
guaranteed to be unambiguous. This can be a particular problem when
several large systems are linked together.

ANDF support for portability

A distribution format such as ANDF cannot make software portable. ANDF
provides themechanisms needed for writing and distributing portable
software.

Language and compiler incompatibility are avoided by using the same
translator (front-end) for all machines. This has the important side-effect of
allowing software implementors to use the full power of their programming
language, rather than restricting themselves to the subset known to be
correctly implemented by all compilers. Back-end validation is of course a
critical link in this chain, but since the intermediate language is better-
defined than most programming languages, this is feasible.

ANDF provides a full set of environment inquiries to support compile- and
run-time parameterization. ANDF also provides explicit specification of
numerical precision.

ANDF provides install-time conditions and parameterization of both
executable code and of data definitions, thus supporting explicit
parameterization when necessary.

ANDF’s modular structure also allows for target-specific libraries of code,
data definitions, and macros which can present a standard interface for
varied low-level interfaces. Of course, ANDF cannot create new
functionality where it does not exist, but it can conditionally use different
mechanisms in different environments.

ANDF completely eliminates the problems associated with distribution of
programs in binary. Naturally, it is independent of instruction-set and load-
format. But it also guarantees uniqueness of names for library entry points.

From UNCOL to ANDF: Progress in Standard Intermediate Languages

Conclusion

13 of 18

7. Conclusion

A universal intermediate language has been a dream for many years.

UNCOL was an ambitious effort for the early 1960’s. An attempt to solve
the compiler-writing problem, it ultimately failed because language and
compiler technology were not yet mature.

In the 1970’s, compiler-compilers ultimately contributed to solving the
problem that UNCOL set itself: the economical production of compilers for
new languages and new machines. Although their intermediate languages
were fairly invariant by language and machine, this was not their principal
goal.

With the growth of open systems, distribution of portable programs became
more important. Neither UNCOL nor compiler-compiler technology had
addressed this issue. But a standard intermediate language would permit
true open systems, where programmers could choose their language
independently of the implementation platform, and hardware vendors could
choose their hardware implementation independently of the installed base of
program binaries.

Programming languages solved part of the problem: Fortran and C were
often used as intermediate languages. But they did not solve it all: neither
was really suitable as an intermediate language.

A closer analysis of the specific needs of portable programs showed that
particular mechanisms were essential. By designing an intermediate
language from scratch which took account of these requirements, ANDF
succeeds as a universal intermediate language.

UNCOL was the first step in three decades’ work in software portability and
compiler design whose culmination is ANDF.

From UNCOL to ANDF: Progress in Standard Intermediate Languages

Bibliography

14 of 18

8. Bibliography

UNCOL

[Conway58] Melvin E. Conway, “Proposal for an UNCOL,”Commun. ACM
1:3:5 (1958).

Suggests using a single-address model for UNCOL. Sketchy.

[Sammet69] Jean E. Sammet,Programming Languages: History and Funda-
mentals,Prentice-Hall, 1969. Chapter X.2: UNCOL (Significant
Unimplemented Concepts), p. 708.

[Share58] Share Ad-Hoc Committee on Universal Languages (J. Strong, J.
Olsztyn, J. Wegstein, O. Mock, A. Tritter, T. Steel), “The Problem
of Programming Communication with Changing Machines,”Com-
mun. ACM1:8:12 (August 1958) and1:9:9 (September 1958).

Describes the requirements for UNCOL, the general concept, and the idea of
bootstrapping. No proposal for the language itself.

[Steel60] T. B. Steel, Jr., “UNCOL: Universal Computer Oriented Language
Revisited,”Datamation (January/February 1960), p. 18.

Presents the UNCOL concept, but no technical details.

[Steel61] T.B. Steel, Jr., “A First Version of UNCOL,”Proc. Western Joint
Computer Conference19 (Los Angeles, May 9-11, 1961), p. 371.

Proposes an elaborate character set, the first-order predicate calculus for a kind
of syntactic data description, a notation for indirect addressing and indexing, a
set of machine-level primitives, and a vague description of macros and declara-
tives.

[Steel61AP] T. B. Steel, Jr., “UNCOL: The Myth and the Fact,”Ann. Rev. in Au-
tomatic Programming2 (1961), p. 325.

Discusses primarily the economics of UNCOL and the concept of bootstrapping.

Intermediate Languages

[Brosgol80] Benjamin M. Brosgol, “TCOLAda and the ‘Middle End’ of the
PQCC Ada Compiler,” Proc. ACM-Sigplan Symposium on the

From UNCOL to ANDF: Progress in Standard Intermediate Languages

Bibliography

15 of 18

Ada Programming Language (Boston, December 9-11, 1980) in
Sigplan Notices15:11:101 (November 1980).

[Brown72] P. J. Brown, “Levels of Language for Portable Software,”Com-
mun. ACM15:12:1059 (December 1972).

High and low level macro languages as intermediate languages.

[Chow83] Frederick C. Chow and Mahadevan Ganapathi, “Intermediate Lan-
guages in Compiler Construction—A Bibliography,”Sigplan No-
tices18:11:21 (November 1983).

See also [Ottenstein84].

[Coleman73] S. S. Coleman, P. C. Poole, and W. M. Waite, “The Mobile Pro-
gramming System, Janus,”Software—Practice and Experience5:5
(1974).

[Ganapathi84] Mahadevan Ganapathi and Charles N. Fischer, “Attributed Linear
Intermediate Representations for Retargetable Code Generators,”
Software—Practice and Experience14:4:347 (April 1984).

[Griswold77] Ralph E. Griswold, “An Alternative to SIL,” in [Brown77], p. 291.

[Haddon78] B. K. Haddon and W. M. Waite, “Experience with the Universal
Intermediate Language Janus,”Software—Practice and Experi-
ence8:601 (1978).

[Kornerup80] Peter Kornerup, Bent Bruun Kristensen, and Ole Lehrmann Mads-
en, “Interpretation and Code Generation Based on Intermediate
Languages,”Software—Practice and Experience10:635 (1980).

[Lamb87] David Alex Lamb, “IDL: Sharing Intermediate Representations,”
ACM Trans. Prog. Lang. and Sys.9:3:297 (July 1987).

A formalism for describing data structures. Has been used to describe intermedi-
ate languages (cf. TCOL.Ada).

[Nelson79] Philip A. Nelson, “A Comparison of PASCAL Intermediate Lan-
guages,” Proc. Sigplan Symposium on Compiler Construction
(Denver, August 6-10, 1979) inSigplan Notices14:8:208.

[Ottenstein84] Karl J. Ottenstein, “Intermediate Program Representations in Com-
piler Construction: A Supplemental Bibliography,”Sigplan Notic-
es19:7:25 (July 1984).

A supplement to [Chow83].

From UNCOL to ANDF: Progress in Standard Intermediate Languages

Bibliography

16 of 18

[Teller80] J. Teller, “Intermediate Languages,” unnumbered Siemens techni-
cal report (November 1980).

[Waite76] W.M. Waite, “Intermediate Languages: Current Status,” Portabili-
ty of Numerical Software (Oak Brook, 1976) inLecture Notes in
Computer Science57: 269.

Portable Compilers

[Elsworth78] E. F. Elsworth, “Compilation via an Intermediate Language,”Com-
puter J.22:3:226 (1978).

[Hennessy86] John Hennessy and Mahadevan Ganapathi, “Advances in Compil-
er Technology,”Ann. Rev. Computer Science1:83 (1986), p. 83.

[Johnson78] S. C. Johnson, “A Portable Compiler: Theory and Practice,”Proc.
Fifth Annual ACM Symposium on Principles of Programming Lan-
guages (Tucson, January 23-25, 1978).

The Portable C Compiler (pcc).

[Lecarme78] Olivier Lecarme and Marie-Claude Peyrolle-Thomas, “Self-com-
piling Compilers: An Appraisal of their Implementation and Porta-
bility,” Software—Practice and Experience8:149 (1978).

[Leverett80] Bruce W. Leverettet al., “An Overview of the Production-Quality
Compiler-Compiler Project,”Computer (IEEE) (August 1980), p.
38.

[Richards71] M. Richards, “The Portability of the BCPL Compiler,”Software—
Practice and Experience1:135 (1971).

[Richards77] M. Richards, “The Implementation of BCPL,” in [Brown77], p.
192.

[Tanenbaum83] Andrew S. Tanenbaum, Hans van Staveren, E.G. Keizer, and Jo-
han W. Stevenson, “A Practical Tool Kit for Making Portable Com-
pilers,” Commun. ACM26:9:654 (September 1983).

The Amsterdam Compiler Kit: perhaps the best-known compiler-compiler.

[Waite77T] W. M. Waite, “Theory,” in [Brown77], p. 7.

[Waite77J] W. M. Waite, “Janus,” in [Brown77], p. 277.

From UNCOL to ANDF: Progress in Standard Intermediate Languages

Bibliography

17 of 18

[Wirth71] N. Wirth, “The Design of a Pascal Compiler,”Software—Practice
and Experience1:309 (1971).

Portability

[Boyle77] James M. Boyle, “Mathematical Software Transportability Sys-
tems—Have the Variations a Theme?,” in [Brown77], p. 357.

[Brown77] P.J. Brown, ed.,Software Portability: An Advanced Course, Cam-
bridge University Press (1977), p. 357.

[Brown77B] P. J. Brown, “Basic Implementation Concepts,” in [Brown77], p.
20.

[Newey72] M. C. Newey, P. C. Poole, and W. M. Waite, “Abstract Machine
Modelling to Produce Portable Software—A Review and Evalua-
tion,” Software—Practice and Experience2: 107 (1972).

[Waite75] W. M. Waite, “Hints on Distributing Portable Software,”Soft-
ware—Practice and Experience5: 295 (1975).

Mostly about distribution media and character codes.

C as an Intermediate Language

[Bothe89] Klaus Bothe, Christian Horn, “Übersetzung zwischen höheren Pro-
grammiersprachen: eine Lösung des UNCOL-Problems?,”An-
gewandte Informatik (September 1989), p. 283.

Proposes C as UNCOL.

[Lim91] Chu-Cheow Lim, Andreas Stolcke, “Sather Language Design and
Performance Evaluation,” Computer Science Division, U.C. Berke-
ley TR-91-034 (May 1991).

Implementation of an object-oriented language via a C intermediate language.
Sather programs pay a small penalty compared to C source programs, but it is
not clear how much of this is due to Sather’s features and how much to going
through C.

From UNCOL to ANDF: Progress in Standard Intermediate Languages

Bibliography

18 of 18

[Tarditi91] David Tarditi, Anurag Acharya, Peter Lee, “No Assembly Re-
quired: Compiling Standard ML to C,” Unpublished technical re-
port, School of Computer Science, Carnegie-Mellon University.

Using C as an intermediate language, ML is successfully implemented with a
factor of 2 loss in speed, while preserving portability and true tail-recursion.

For further information please contact:

Stavros Macrakis
macrakis@osf.org
(617) 621-7356

Copyright 1993 by Open Software Foundation, Inc.

All Rights Reserved

Permission to reproduce this document without fee is hereby granted, provided that the copyright notice and
this permission notice appear in all copies or derivative works. OSF MAKES NO WARRRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for any direct or indirect, incidental, special or consequential
damages in connection with the furnishing, performance, or use of this material.

