
7/12/93 12:53 pm macrakis@osf.org 1 of 10

Overview ofANDF Validation

Stavros Macrakis
Open Software Foundation

Applications distributed with ANDF must have
consistent semantics across platforms. OSF and
its partners are developing validation methods
and tools which will give a high level of
confidence to application vendors and users.

1. Introduction

An ANDF producer translates programs from a source language toANDF form,
and anANDF installer translates fromANDF form to a machine language. The
ANDF form itself is architecture-neutral, and is defined independently of any
particular language or machine by a specification [TDF92] [Macr93a]. The
producer depends on an abstract specification of an API (platform-
independent header file), and the installer on its instantiation on the platform
(platform-dependent token definition library).1

OSF and its partners are involved in several efforts to assure that all steps in
this process conform to their specifications, and that the specifications
themselves are well-defined. These efforts should lead to more precise
specifications, and tools for checking conformance to specifications.

A precise specification and effective testing tools will increase confidence
that applications distributed inANDF will execute correctly upon installation.

1. See [Macr92a], [Macr93b].

Overview of ANDF Validation

The importance of validation to ANDF

2 of 10

2. The importance of validation toANDF

Validation is an important kind of quality control for software. It is
particularly important for software which interoperates with other software
written to the same specification.ANDF tools, like (for instance) network
protocol implementations, must work correctly with all otherANDF tools,
regardless of their provenance.

OSF is thus engaged in a variety of validation activities forANDF. The goal is
to demonstrate that the technology correctly implements application
programs regardless of the combination of producer, installer, and header
files used.

3. End-to-end testing: language tests and sample applications

The first kind of validation testing we undertook was compiling and running
C language validation suites such as Plum-Hall under theANDF technology.
These discovered some minor errors, and gave us confidence that the
technology covered the full C language to first approximation.

We then proceeded to port a variety of applications toANDF [Macr93a] and
run them through the compilation chain on a variety of machines. In
particular, we successfully ported major applications such as Informix’s
Wingz [John92] and Gnu Emacs [John91]. Work on Oracle is ongoing
[Watt93a] Other experiments have been performed with Postgres [Watt92],
Ghostscript [Ford92], and Cscope [Macr92].

This work has contributed to our understanding of portability issues, and has
found surprisingly few bugs in the technology itself.

Although such informal testing does find real bugs, and measures the
robustness of the technology when confronted with full-size software, it does
not provide systematic coverage.

4. Correctness and completeness of theANDF specification

TheANDF specification itself must be correct and unambiguous, since any
other validation depends on this.

Overview of ANDF Validation

Correctness and completeness of the ANDF specification

3 of 10

ANDF is currently defined by an English-language specification written by
DRA. There are several ways that OSF and its partners are working to
improve it: independent implementations, formal specification, and test
writing.

— Implementation

Independent implementations of producers and installers are a good test of
the specification. The Gandf project is an example, which has pointed out
some difficult areas. [Ford93]

— Formal specification

As part of the Esprit project GLUE, DDC-I (Lyngby, Denmark) is developing
a formal specification of theANDF language using RSL in an Action
Semantics style. [Hans92] [Toft93]

We expect that, besides the intrinsic value of having a formal specification,
the process of creating it will bring up questions which need to be resolved in
the informal specification.

— Test writing

The producer and installer validation efforts at OSF Research Institute
(Grenoble) and its GLUE partners should also produce feedback on the
specification.

Improved ANDF specification

At the end of the Esprit project, theANDF specification will have received
comments from producer writers, installer writers, formal specifiers, and test
writers. The informal specification, formal specification, and tests should
reflect precisely the same semantics. The cross-checking possible among the
three forms should increase confidence in each one. Moreover, a side product

Overview of ANDF Validation

Independent validation of producers and installers

4 of 10

of these specification and test writing efforts will be an implementor’s guide
which points out tricky or surprising aspects of the language.

5. Independent validation of producers and installers

End-to-end tests as described in section 3. on page 2 cannot show that
producers are producing correctANDF, nor that installers are interpreting
ANDF correctly. There are several kinds of problems that might remain
undetected:

• Incomplete coverage in installers;

• Erroneous usage in producers;

• Target-dependent semantics.

The validation project addresses them through an installer test suite, a
producer test suite, and a generalizedANDF interpreter. This work is being
done at the OSF Research Institute (Grenoble) [Brou93] and its partners in
the Esprit GLUE project.

6. Installer testing

Installer testing checks that installers correctly implement theANDF language.
It is essentially the same problem as a classic language validation suite such
as the Ada validation capability [Good86].

End-to-end tests miss many things

Separate installer testing is necessary because end-to-end tests miss many
things. This is because installers used as part of a producer/installer chain are
only exposed to thatANDF which the producer produces.

Currently, there is only one operational producer ofANDF, the DRA C
producer. This producer may not use all the capabilities of theANDF

language; indeed, theANDF language has capabilities which are unlikely to be
necessary for any C producer. Thus,ANDF generated by the DRA C producer
cannot exercise the whole of the installer.

Overview of ANDF Validation

The Generalized ANDF interpreter for producer testing

5 of 10

There may be combinations of constructs which will not be used by any one
existing language. Nonetheless, these combinations must be installed
correctly, because future languages may require them, or hand-writtenANDF

may use them. For that matter, in-line inclusion ofANDF generated from one
language intoANDF generated from another language is a legal and useful
optimization.

Finally, all current producers and installers are partially or wholly based on
DRA engineering. This means that there may be implicit assumptions shared
by producers and installers, which are not documented in theANDF

specification.

The ANDF validation suite offers systematic coverage

Unlike a producer, the validation suite is organized around the list ofANDF

constructions. Each construction is tested in its normal and extreme cases.
Already, preliminary testing has shown undocumented limitations in the
DRA installers which were not detected using producer-generatedANDF.

Some tests are inspired by particular machine architectures’ limitations.

Others are inspired by peculiar combinations ofANDF features which seem
unlikely to be used by producers. Although these cases may appear
pathological, they are typical of the cases which arise in certain applications
such as the output of program generation systems or inlining of code written
in one language into code written in another.

Others are inspired by common optimizer errors.

7. The GeneralizedANDF interpreter for producer testing

Producers are harder to test independently than installers. The problem is that
their output isANDF, and some way is needed of checking whether it is the
correctANDF without depending on a particular installer. Of course,
executing C validation suites compiled with a given producer on multiple
installers is a good first step.

Overview of ANDF Validation

API testing

6 of 10

The solution that has been adopted is a generalizedANDF interpreter (GAI).
Unlike all existing installers, it will have no dependence on DRA technology.
As an independent implementation, it is expected not to share implicit
assumptions with the DRA technology. Moreover, it will have extensive
debugging facilities.

But its greatest value will be that it can create a particular execution
environment which might not exist on any current installer. For instance, it
might emulate a very large word length (128 bits), or a word length which is
not a power of two (40 bits). Itslong’s might be just one bit wider than its
int’s. Its address space may have only the minimal structure defined by the
ANDF specification, rather than being linear or segmented.

The GAI will also attempt to provide “perverse” but legal interpretations of
programs. For instance (depending on the final form of the specification), it
may return random results for overflow calculations rather than the expected
modular result.

The GAI is also expected to support all legal permutations of the order of
evaluation. In effect,ANDF is quite liberal in permitting reordering and indeed
interleaving of expression evaluation. The GAI will take maximum
advantage of this to detect dependence on evaluation order.

The GAI will be used in conjunction with C test programs and validation
suites to detect incorrect assumptions made byANDF producers.

8. API testing

The platform-independent abstract header files and the platform-dependent
concrete header files used with theANDF technology must correspond to the
API they implement. To check this conformance, OSF has run the VSX test
suite for XPG/3 on theANDF technology, and also the gcc technology (as a
baseline). [Watt93b]

Several classes of errors have appeared:

Overview of ANDF Validation

API testing

7 of 10

Specification inconsistencies and errors
The XPG/3 specification contains some internal
inconsistencies and non-ANSI C requirements. These errors
were detected by tcc, where ordinary compilers could not
check them (since they depend on concrete, not abstract,
interface specifications). For instance, thenl_catd type
is left unspecified, yet it is assumed that-1 can be
converted to it to designate an error.

Test suite errors
The VSX test suite contains several non-ANSI C
constructions.

Abstract header errors
We have found two missing interfaces in theANDF

headers.

Producer errors
The macro and function namespaces are not completely
separate.

ANDF language errors
We have not detected any errors in the specification of
ANDF.

Installer errors
SeveralCISC installers commit least-significant digit
rounding errors on floating-point constants.

Concrete header errors
We have not detected any concrete header (platform-
dependent token library) errors.

In several cases, we have not yet determined in which category an error falls.
However, it currently appears that there are more errors in the XPG/3
specification and the VSX tests than in theANDF technology. Many of these
errors were not reported by previous compilers.

Overview of ANDF Validation

Conclusion

8 of 10

9. Conclusion

OSF and its partners are taking multiple approaches to increasing confidence
in theANDF technology.

TheANDF specification itself, producers, installers, and header files are all
being strengthened by the work in Cambridge, in Grenoble, and at Esprit
partners’ sites.

Overview of ANDF Validation

Conclusion

9 of 10

10. Bibliography

[Brou93] Fréderic Broustaut, Christian Fabre, François de
Ferrière, Eric Ivanov,ANDF Validation Suites
Specification. OSF Research Institute, Grenoble, March
1993.

[Ford92] Richard Ford, OSF RI internal report.

[Ford93] —,GANDF: Status and Design, OSF Research Institute,
April 1993.

[Good86] John Goodenough,The Ada compiler validation
capability. Softech, Inc., December 1986.

[Hans92] Bo Stig Hansen, Jørgen Bundgaard,The Role of the
ANDF Formal Specification. DDC International A/S,
Document code 202104/RPT/5, December 1992.

[John91] Andrew Johnson, OSF RI internal report.

[John92] —, OSF RI internal report.

[Macr92a] Stavros Macrakis,The Structure ofANDF. OSF Research
Institute, October 1992.

[Macr92b] —, OSF RI internal report.

[Macr93a] —,Porting toANDF. OSF Research Institute, January
1993.

[Macr93b] —,Building Applications usingANDF. OSF Research
Institute, February 1993.

[TDF92] TDF Specification (December, 1992). Defence Research
Agency, Malvern, U.K.

[Toft93] Jens Ulrik Toft,Feasibility of Using RSL as the
Specification Language for theANDF Formal
Specification. DDC International A/S, Document code
202104/RPT/8, January 1993.

Overview of ANDF Validation

Conclusion

10 of 10

[Watt92] Thomas J. Watt,Preliminary Report of Experience
Porting Postgres with the Research Prototype ANDF
Technology, OSF Research Institute, August, 1992.

[Watt93a] —,Porting Oracle with the ANDF Compiler
Technology—A Progress Report, OSF Research Institute,
March 1993.

[Watt93b] —,A Conformance Comparison betweenANDF and
GCC for X/Open Verification of an OSF/1MK SS

Platform, OSF Research Institute, March 1993.

Copyright 1993 by Open Software Foundation, Inc.

All Rights Reserved

Permission to reproduce this document without fee is hereby granted, provided that the copyright notice and
this permission notice appear in all copies or derivative works. OSF MAKES NO WARRRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for any direct or indirect, incidental, special or consequential
damages in connection with the furnishing, performance, or use of this material.

