
A Tutorial on Action Semantics

{ DRAFT {

Peter D. Mosses

1

Computer Science Department

Aarhus University

Ny Munkegade Bldg. 540

DK{8000 Aarhus C, Denmark

October 1992

N.B. This draft is incomplete and unpolished .

It is not to be copied without the written permission of the author.

1

Internet: pdmosses@daimi.aau.dk

Contents

1 Introduction 1

1.1 Motivation : 1

1.2 Requirements : 2

1.3 Features : 3

2 Concepts 5

2.1 Syntax : 5

2.1.1 Concrete Syntax : 6

2.1.2 Abstract Syntax : 6

2.1.3 Context-Sensitive Syntax : 7

2.2 Semantics : 8

2.2.1 Semantic Functions : 8

2.2.2 Semantic Entities : 9

2.3 Pragmatics : 11

3 An Illustrative Example 13

3.1 Abstract Syntax : 14

3.1.1 Expressions : 15

3.1.2 Statements : 16

3.1.3 Declarations : 16

3.1.4 Programs : 17

3.2 Semantic Functions : 17

3.2.1 Expressions : 19

3.2.2 Statements : 23

3.2.3 Declarations : 26

3.2.4 Programs : 30

4 Conclusion 32

A An Illustrative Example, ctd. 33

B Action Notation 38

C Data Notation 49

i

Abstract

Formal semantics is a topic of major importance in the study of programming languages. Its

applications include documenting language design, establishing standards for implementations,

reasoning about programs, and generating compilers.

This tutorial is about action semantics , a recently-developed framework for formal seman-

tics. The primary aim of action semantics is to allow useful semantic descriptions of realistic

programming languages.

Action semantics combines formality with many good pragmatic features. Regarding com-

prehensibility and accessibility, for instance, action semantic descriptions compete with informal

language descriptions. Action semantic descriptions scale up smoothly from small example lan-

guages to full-blown practical languages. The addition of new constructs to a described language

does not require reformulation of the already-given description. An action semantic description

of one language can make widespread reuse of that of another, related language. All these prag-

matic features are highly desirable. Action semantics is, however, the only semantic framework

that enjoys them!

Action semantics is compositional , like denotational semantics. The main di�erence between

action semantics and denotational semantics concerns the universe of semantic entities: action

semantics uses entities called actions , rather than the higher-order functions used with deno-

tational semantics. Actions are inherently more operational than functions: when performed ,

actions process information gradually .

Primitive actions, and the various ways of combining actions, correspond to fundamental

concepts of information processing. Action semantics provides a particular notation for express-

ing actions. The symbols of action notation are suggestive words, rather than cryptic signs,

which makes it possible to get a broad impression of an action semantic description from a

super�cial reading, even without previous experience of action semantics. The action combina-

tors , a notable feature of action notation, obey desirable algebraic laws that can be used for

reasoning about semantic equivalence.

This tutorial provides a quick (half-day) introduction to action semantics. It should be

accessible to senior undergraduates, and to professional programmers. No previous knowledge

of formal semantics is assumed. For further study, a full exposition of the framework and an

extended example are provided in [Mos92].

Chapter 1 sketches the background for action semantics, motivating the formal description of

programming languages by considering the requirements of various potential users. Chapter 2

recalls the notions of abstract syntax and compositional semantics, and introduces the novel

concept of actions as used in action semantics. Chapter 3 takes a walk through an illustrative

description, explaining all the notation that it uses. Chapter 4 assesses the pragmatic qualities of

action semantic descriptions, and compares the framework to VDM and RAISE. The Appendices

provide a full algebraic speci�cation of the special notation used, together with an informal

summary of the standard notation.

Chapter 1

Introduction

This chapter provides some background for the topic of this tutorial, namely the action semantic

description of programming languages. We start by identifying some important uses for descrip-

tions of programming languages. Although various uses require di�erent features of descriptions,

these requirements are not necessarily con
icting. Formality is a particularly important feature.

1.1 Motivation

Programming languages are arti�cial languages. Programs written in them are used to control

the execution of computers. There are many programming languages in existence. Some are

simple, intended for special purposes; others are complex and general-purpose, for use in a wide

variety of applications.

Even though programming languages lack many of the features of natural languages, such

as vagueness, it is not at all easy to give accurate, comprehensive descriptions of them. Which

applications require descriptions of programming languages|and hence motivate the study of

appropriate frameworks for such descriptions?

First, there is the programming language design process. Designers need to record decisions

about particular language constructs, especially when the design is a team e�ort. This amounts

to giving a partial description of the language. At a later stage, the formulation of a complete

language description may be useful for drawing attention to neglected details, and for revealing

irregularities in the overall design.

Once a language has been designed, it usually gets implemented , although in practice, design

and implementation are often interleaved and iterated. A comprehensive description of the

language is needed to convey the intentions of the language designers to the implementors|

unless the designer and the implementor are the same person, of course. It is also needed for

setting a de�nitive standard for implementations, so that programs can be transported between

di�erent implementations that conform to the standard, without modi�cation.

A programmer needs a description of any new language in order to relate it to previously-

known ones, and to understand it in terms of familiar concepts. The programmer also needs a

description as a basis for reasoning about the correctness of particular programs in relation to

their speci�cations, and for justifying program transformations.

Finally, theoreticians can obtain new insight into the general nature of programming lan-

guages by developing descriptions of them. This insight can then be exploited in the design of

new, and perhaps more elegant, programming languages.

1

2 CHAPTER 1. INTRODUCTION

So we see that there are plenty of applications for descriptions of programming languages.

But not all kinds of description are suitable for all purposes. The various applications mentioned

above require di�erent properties of descriptions, as we consider next.

1.2 Requirements

Which properties might language designers require of language descriptions? Well, design is an

iterative process, so to start with, designers need partial descriptions that can easily be extended

and modi�ed. They also need descriptions that provide clear and concise documentation of

individual language design decisions. For economy of e�ort, they might want to be able to reuse

parts of descriptions of existing languages in the description of a new language. Finally, their

completed language description should provide an appropriate basis for conveying the design to

the implementors, and for setting standards.

The implementors of a language require a complete and unambiguous description of it|

except that certain features, such as the order of subexpression evaluation, may have been

deliberately left unspeci�ed. Explicit indication of implementation techniques in the description

may be helpful, but it might discourage alternative, perhaps more e�cient, implementations.

Ideally, the conformance of a purported implementation to a standard imposed by a language

description should be veri�able.

A long-term aim is to generate complete, correct, and e�cient implementations automatically

from language descriptions, in the same way that parsers can be generated from grammars.

There have already been some encouraging experiments in this direction. This application

requires that the language descriptions can be directly related to machine operation.

What do programmers require? A language description should be easy to understand, and

to relate to familiar programming concepts, without a major investment of e�ort in learning

about the description technique itself. It should support program veri�cation. And it shouldn't

take up too much space on the shelf : : :

Theoreticians may require clear and elegant foundations for the exploited description tech-

nique, to support tractable reasoning about equivalence and other program features. They may

take a prescriptive view of language description, considering only a restricted class of program-

ming languages|those amenable to their favourite description technique|in the hope that this

will prevent the design of `big, bad, and ugly' languages. Or they may take a more liberal,

descriptive view, requiring a universal description technique that can cope with any conceiv-

able programming language, and hoping that poor language design will be evident from its

description.

It seems highly unlikely that all the above requirements can be fully satis�ed simultaneously.

Certainly none of the previously available frameworks appears to be suitable for use in all the

above applications. This has led to the proposal of so-called complementary language descrip-

tions, where several di�erent techniques are used to give independent, but hopefully relatable,

descriptions of `the same' language.

The topic of this tutorial, action semantics, avoids the need for complementary descriptions

by making a compromise between the above requirements. An action semantic description

is extremely modular, providing the high degree of extensibility, modi�ability, and reusability

required by language designers. It is also strongly suggestive of an operational understanding

of the described language, and it has been found to be very well suited for generating compilers

1.3. FEATURES 3

and interpreters, so implementors should be content. Programmers should �nd action semantic

descriptions almost as easy to read as the usual reference manuals, without much preparation.

On the other hand, although the foundations of action semantics are �rm enough, the theory

for reasoning about actions (and hence about programs) is still rather weak, and needs further

development. This situation is in marked contrast to that of denotational semantics [Mos90],

where the theory

1

is strong, but severe pragmatic di�culties hinder its application to realistic

programming languages.

Some of these claims for the virtues of action semantic descriptions can be supported by

looking at an example. Let us postpone consideration of the extent to which action semantics

meets the stated requirements until Chapter 4, after we have seen action semantics in action!

1.3 Features

One especially signi�cant feature of language descriptions is whether or not they are formal . Let

us distinguish between formal and informal descriptions as follows. Purely formal descriptions

are expressed in well-de�ned, established notation, often borrowed from mathematics. Note that

this notation itself may have been established either formally, using some previously-established

meta-notation, or informally (but rigorously) as in most mathematical texts. Purely informal

descriptions are expressed in natural languages, such as English.

Currently, the only comprehensive description of a programming language is usually its

`reference manual', which is mainly informal. Unfortunately, experience has shown that, even

when carefully worded, such reference manuals are usually incomplete or inconsistent, or both,

and open to misinterpretation. This is obviously undesirable, especially when such descriptions

are used to guide implementors and to set standards. The existence of procedures for requesting

clari�cation of international standards, which are generally based on reference manuals, con�rms

that misinterpretation is a problem. Moreover, informal descriptions can never provide a sound

basis for reasoning about program correctness or equivalence.

To compensate for the vaguenesses of an informal language description, a formal validation

suite of programs is sometimes used as the �nal arbiter of implementation correctness. By

itself, however, such a validation suite is not much use as a language description. In any case,

the correct processing of a validation suite by an implementation cannot guarantee analogous

performance on other programs.

It might be imagined that informal descriptions should be easy to read, because they are

written in a natural language; but in fact the (vain) attempt to be precise in a natural language

leads to a rather stilted literary style that is tedious to read on a large scale. When well-written,

however, informal descriptions can provide an easily-accessible guide to the fundamental concepts

underlying a programming language; this seems to be their only real strength.

Formal descriptions have almost the opposite qualities to informal ones. They can be com-

plete and consistent, and can be given a precise interpretation, appropriate for setting de�nitive

standards. Questions about their consequences are answered by the theoretical foundations of

the formal notation used. Formal descriptions can be used as the basis for systematic develop-

ment and automatic generation of implementations. And it is one of their main strengths that

they can provide a basis for sound reasoning about program correctness and equivalence.

1

at least for dealing with deterministic, sequential programs

4 CHAPTER 1. INTRODUCTION

On the other hand, it is often di�cult to relate a formal description of a programming

language to fundamental concepts, and to grasp the implications of the description for the

implementation of programs. Poor notation, or excessively large and complex formulae can also

lead to obscurity. Inferior formal descriptions can be unintentionally ambiguous or incomplete|

even inconsistent! The mere use of formality does not ensure success.

One could consider the text of a compiler , or of an interpreter, as a formal de�nition of the

language that it implements. The language used for writing it should already have a well-de�ned

interpretation, of course: a so-called meta-circular interpreter, written using the language itself

being interpreted, doesn't formally de�ne anything at all! Unfortunately, practical compilers for

realistic programming languages are somewhat unwieldy objects, and demand familiarity with

particular target codes. Interpreters are generally more accessible, but still tend to have many

details that are incidental to the implemented language.

So much for the background of formal descriptions.

Chapter 2

Concepts

This chapter explains the concepts underlying action semantic descriptions of programming

languages. It considers the factorization of language descriptions into syntax and semantics,

and discuss the pragmatic issue of setting standards for programming languages. Readers who

are already familiar with other semantic description frameworks, e.g., denotational semantics,

may skip to Section 2.2.2.

In programming linguistics, as in the study of natural languages, it is useful to distinguish

between syntax and semantics . The syntax of a programming language is concerned only with

the form of programs: which programs are `legal'? what are the connections and relations

between the symbols and phrases that occur in them? Semantics deals with the meaning of

legal programs.

Ideally, a comprehensive description of a programming language involves the speci�cation

of syntactic entities , of semantic entities , and of a semantic function that maps the former to

the latter. The syntactic entities include the legal programs of the language, and the semantic

entities include representations of the intended behaviours of these programs. To facilitate

reasoning about parts of programs, the semantic function should give semantics not only to entire

programs but also to their component phrases; and it should preferably be compositional , so that

the semantics of a compound phrase is determined purely by the semantics of its components,

independently of their other features.

Most frameworks for language description unfortunately do not provide a clear separation

between syntactic and semantic entities, nor do they exploit compositional semantic functions.

A notable exception is denotational semantics , from which action semantics was developed.

The distinction between the syntax and the semantics of a language is dependent on the

division into structure and behaviour. At one extreme, structure could be trivial|arbitrary

strings over an alphabet of symbols|and then the usual notion of program legality would have

to be considered as a component of behaviour. At the other extreme, behaviour could be

incorporated into a dynamic notion of structure. For comprehensive language descriptions, it

is best to �nd a compromise such that separate descriptions of syntax and semantics provide a

useful factorization of the entire description into parts with a simple interface.

2.1 Syntax

The syntax of a programming language determines the set of its legal programs, and the rela-

tionship between the symbols and phrases occurring in them.

5

6 CHAPTER 2. CONCEPTS

We may divide syntax into concrete and abstract syntax. Concrete syntax involves analysis :

the recognition of legal programs from texts (i.e., sequences of characters) and their unambiguous

parsing into phrases. Abstract syntax deals only with the compositional structure of phrases

of programs, ignoring how that structure might have been determined. In general, it is easier

to de�ne the semantics of programs on the basis of their abstract syntax, rather than on their

concrete syntax.

For comprehensive language descriptions, both kinds of syntax are needed|together with an

indication of how they are related. Here, we are mainly concerned with semantic descriptions,

so we emphasize abstract syntax, giving only a cursory explanation of concrete syntax and its

relation to abstract syntax.

2.1.1 Concrete Syntax

Conventionally, concrete syntax is separated into lexical analysis and phrase-structure analysis.

The task of lexical analysis is to group the characters of a program text into a sequence of legal

symbols , or lexemes . That of phrase-structure analysis is to group these symbols into phrases,

thereby constructing a parse tree, or derivation tree, with the symbols as leaves.

The parse tree produced by phrase-structure analysis of a program represents the recognized

component relation between its phrases. It may also represent how the phrases have been

classi�ed.

Both lexical and phrase-structure analysis are required to be unambiguous : a sequence of

characters making up a legal program must determine a unique sequence of symbols, which in

turn must determine a unique parse tree. In the case of ambiguity, the programmer is left in

doubt about the recognized structure of the program.

2.1.2 Abstract Syntax

Abstract syntax provides an appropriate interface between concrete syntax and semantics. It is

usually obtained simply by ignoring those details of parse tree structure which have no seman-

tic signi�cance|leaving abstract syntax trees that represent just the essential compositional

structure of programs.

For instance, in concrete syntax one usually sub-classi�es compound arithmetic expressions

into terms and factors, in order to avoid ambiguous parsing of sequences such as a+b*c. Factors

are more restricted than terms, in that any additions that occur in factors have to be enclosed in

grouping parentheses, whereas the parentheses are optional when additions occur in terms. The

term a+b is not classi�ed as a factor, so the only possible parsing for a+b*c is the one where b*c

is grouped together. But the only semantically relevant features of an arithmetic expression are

its subexpressions and its operator, so for abstract syntax we can ignore whether the expression

is classi�ed as a term or as a factor.

The symbols used for labeling the nodes in an abstract syntax tree may be the same as the

lexical symbols of the corresponding concrete syntax. This is not essential, though, as the sym-

bols are needed only to distinguish nodes for di�erent constructs. For instance, while-statements

and if-then-statements usually both have two components: a condition and a statement; extra

symbols are required to label them distinctly, but these can be chosen arbitrarily. Similarly,

when every statement is terminated by a semicolon in concrete syntax, the semicolons may be

omitted in the corresponding abstract syntax, as they have no distinguishing e�ect. On the

2.1. SYNTAX 7

other hand, the lexical symbols from the concrete syntax do have considerable suggestive and

mnemonic value. By retaining them as labels in abstract syntax trees|in the same order that

they occur in the corresponding parse trees|much of the relation between concrete and abstract

syntax can be made self-evident.

Another way of abstracting details of parse tree structure is to ignore the order of compo-

nents, when this is semantically insigni�cant. For instance, the order in which the cases of a

case-statement are written in the program text may be irrelevant; then one could take a set

of cases, rather than an ordered list. Similarly, one might let declarations be (�nite) maps on

identi�ers, instead of lists of pairs|thereby re
ecting also that an identi�er is not to be declared

twice in the same sequence of declarations. This seems appealing, but on closer investigation

turns out to have gone too far in abstraction, at least from a pragmatic point of view, as it com-

plicates the de�nition of semantic functions on abstract syntax. In general, however, ignoring

semantically irrelevant details of parse tree structure tends to simplify the de�nition of semantic

functions.

It can happen that the compositional structure of programs derived from a given concrete

syntax has a nesting that is inconvenient for a compositional semantics. We may then use an

abstract syntax that corresponds to a rearrangement of the original structure, provided that we

are prepared to specify the map from parse trees to abstract syntax trees. But when this map

is complicated, the comprehensibility of the language description su�ers considerably.

Some programming environments provide templates for constructing and editing abstract

syntax trees, and for viewing them graphically, thereby allowing the use of concrete syntax to

be avoided. Although this does not justify ignoring concrete syntax altogether when giving

a comprehensive description of a programming language, it does underline the importance of

abstract syntax, and further motivates that semantics should be de�ned on the basis of abstract,

rather than concrete, syntax.

2.1.3 Context-Sensitive Syntax

Context-free syntax deals with those aspects of structure that can be described by context-free

grammars, such as those written in the popular BNF formalism. Aspects which fall outside

context-free syntax are called context-sensitive and include `declaration of identi�ers before

use' and `well-typedness of expressions'. Characteristic for them is that they involve a kind

of matching between distant parts of programs that is inherently more complex than mere

`parenthesis-matching'.

The description of context-sensitive syntax can, in principle, be accomplished by use of so-

called attribute grammars . Unfortunately, these are not always as perspicuous as context-free

grammars. Moreover, context-sensitive abstract syntax makes a more complicated interface

between concrete syntax and semantics than context-free abstract syntax does. Of course,

this is to be expected, because the former generally captures more information than the lat-

ter. Attribute grammars cannot cope straightforwardly with so-called dynamic scope rules for

declarations in programs.

An alternative way of de�ning context-sensitive syntax is by giving inference rules for

well-formed phrases. Well-formedness is usually de�ned as a binary relation between context-

dependent information and phrases, and the well-formedness of a compound phrase may depend

on the well-formedness of its subphrases with modi�ed context-dependent information. As with

attribute grammars, this technique is not applicable when scope rules are dynamic.

8 CHAPTER 2. CONCEPTS

Here, let us keep abstract syntax context-free, and describe context-sensitive aspects sepa-

rately. This amounts to treating context-sensitive syntax as a kind of semantics , called static

semantics, because it depends only on the program structure, and does not involve program

input. The input-dependent behaviour of a program is referred to as its dynamic semantics|or

simply as its semantics, when this doesn't lead to confusion. Note that static semantics is just

as essential an ingredient in a comprehensive language description as dynamic semantics, and

that there are signi�cant problems with program portability due to inconsistent implementation

of static semantics by compiler front-ends. In this tutorial, however, we are primarily concerned

with dynamic semantics.

2.2 Semantics

Consider an entire program in some programming language. What is the nature of its semantics?

Let us restrict our attention to programs in high-level programming languages, which gen-

erally deny the program direct control over the details of physical behaviour. The appropriate

semantics of these programs is implementation-independent , consisting of just those features of

program execution that are common to all implementations. This usually includes termination

properties, but ignores e�ciency considerations.

Thus the semantics of a program is an (abstract) entity that models the program's implementation-

independent behaviour. The semantics of a programming language consists of the semantics of

all its programs.

2.2.1 Semantic Functions

The semantics of a programming language can be captured by a semantic function that maps the

abstract syntax of each program to the semantic entity representing its behaviour. How about

the semantics of parts of programs, i.e., of phrases such as statements, declarations, expressions,

etc.?

Well, one could say that the semantics of a phrase is already implicit in the semantics

of all the programs in which it occurs. Thus two phrases have the same semantics if they

are interchangeable in any program context, i.e., when replacing the one phrase by the other

never a�ects the behaviour of the whole program. For example, two procedures that implement

di�erent algorithms for sorting have the same semantics, provided that program behaviour does

not take account of e�ciency. Any compositional semantics for phrases that has this property

is called fully abstract .

For reasoning about phrases|their semantic equivalence, for instance|it is undesirable to

have to consider all possible programs containing them, so we insist on explicit de�nition of

semantics for all phrases. When the semantics of a compound phrase depends only on the

semantics of its subphrases, not on other features (such as their structure) the semantics is

called compositional . This guarantees that whenever two phrases have the same semantics, they

are indeed interchangeable. But when they have di�erent semantics, they may or may not be

interchangeable: a compositional semantics is not necessarily fully abstract.

Action semantics, following denotational semantics, insists on compositionality, with the

semantic function mapping not only entire programs but also all their component phrases to

semantic entities. The semantics of a phrase thus entirely represents the contribution of the

phrase to program semantics.

2.2. SEMANTICS 9

The semantic entities providing the semantics of parts of programs are usually more complex

than those representing the behaviour of entire programs. For example, the semantics of a

statement not only has to represent its direct contribution to observable program semantics

(such as the relation between input and output) but also its indirect contribution by means of

assignments to variables, etc.

Unfortunately, full abstractness is often di�cult to obtain, at least when semantics is de�ned

explicitly. In fact it has been shown impossible to give fully abstract denotational semantics for

some rather simple programming languages [Plo77, Sto88]. In any case, a less-than-fully abstract

semantics can be much simpler to specify, and the semantic equivalence that it provides between

phrases may be adequate for most purposes. For instance, a semantics that is not fully abstract

sets exactly the same standard for implementations as one that is fully abstract, provided the

semantics of entire programs is the same, since requirements on implementations do not directly

involve the semantics of phrases such as statements and expressions. So let us not demand full

abstractness at all.

2.2.2 Semantic Entities

Semantic entities are used to represent the implementation-independent behaviour of programs,

as well as the contributions that parts of programs make to overall behaviour. There are three

kinds of semantic entity used in action semantics: actions , data, and yielders . The main kind

is, of course, actions; data and yielders are subsidiary. The notation used in action semantics for

specifying actions and the subsidiary semantic entities is called, unsurprisingly, action notation.

Actions are essentially dynamic, computational entities. The performance of an action

directly represents information processing behaviour and re
ects the gradual, step-wise nature

of computation. Items of data are, in contrast, essentially static, mathematical entities, repre-

senting pieces of information, e.g., particular numbers. Of course actions are `mathematical' too,

in the sense that they are abstract, formally-de�ned entities, analogous to abstract machines

as de�ned in automata theory. A yielder represents an unevaluated item of data, whose value

depends on the current information, i.e., the previously-computed and input values that are

available to the performance of the action in which the yielder occurs. For example, a yielder

might always evaluate to the datum currently stored in a particular cell, which could change

during the performance of an action.

Actions

A performance of an action, which may be part of an enclosing action, either:

� completes , corresponding to normal termination (the performance of the enclosing action

proceeds normally); or

� escapes , corresponding to exceptional termination (parts of the enclosing action are skipped

until the escape is trapped); or

� fails , corresponding to abandoning the performance of an action (the enclosing action

performs an alternative action, if there is one, otherwise it fails too); or

� diverges , corresponding to nontermination (the enclosing action also diverges).

10 CHAPTER 2. CONCEPTS

Actions can be used to represent the semantics of programs: action performances correspond

to possible program behaviours. Furthermore, actions can represent the (perhaps indirect)

contribution that parts of programs, such as statements and expressions, make to the semantics

of entire programs.

An action may be nondeterministic, having di�erent possible performances for the same ini-

tial information. Nondeterminism represents implementation-dependence, where the behaviour

of a program (or the contribution of a part of it) may vary between di�erent implementations|or

even between di�erent instants of time on the same implementation. Note that nondeterminism

does not imply actual randomness: each implementation of a nondeterministic behaviour may

be absolutely deterministic.

The information processed by action performance may be classi�ed according to how far it

tends to be propagated, as follows:

� transient : tuples of data, corresponding to intermediate results;

� scoped : bindings of tokens to data, corresponding to symbol tables;

� stable: data stored in cells, corresponding to the values assigned to variables;

� permanent : data communicated between distributed actions.

Transient information is made available to an action for immediate use. Scoped information,

in contrast, may generally be referred to throughout an entire action, although it may also be

hidden temporarily. Stable information can be changed, but not hidden, in the action, and

it persists until explicitly destroyed. Permanent information cannot even be changed, merely

augmented.

When an action is performed, transient information is given only on completion or escape,

and scoped information is produced only on completion. In contrast, changes to stable infor-

mation and extensions to permanent information are made during action performance, and are

una�ected by subsequent divergence, failure, or escape.

The di�erent kinds of information give rise to so-called facets of actions, focusing on the

processing of at most one kind of information at a time:

� the basic facet, processing independently of information (control
ows);

� the functional facet, processing transient information (actions are given and give data);

� the declarative facet, processing scoped information (actions receive and produce bindings);

� the imperative facet, processing stable information (actions reserve and unreserve cells of

storage, and change the data stored in cells); and

� the communicative facet, processing permanent information (actions send messages, receive

messages in bu�ers, and o�er contracts to agents).

These facets of actions are independent. For instance, changing the data stored in a cell|or even

unreserving the cell|does not a�ect any bindings. There are, however, some directive actions,

which process a mixture of scoped and stable information, so as to provide �nite representations

of self-referential bindings. There are also some hybrid primitive actions and combinators, which

involve more than one kind of information at once, such as an action that both reserves a cell

of storage and gives it as transient data.

2.3. PRAGMATICS 11

The standard notation for specifying actions consists of action primitives , which may involve

yielders, and action combinators , which operate on one or two subactions .

Data

The information processed by actions consists of items of data, organized in structures that give

access to the individual items. Data can include various familiar mathematical entities, such as

truth-values, numbers, characters, strings, lists, sets, and maps. It can also include entities such

as tokens, cells, and agents, used for accessing other items, and some compound entities with

data components, such as messages and contracts. Actions themselves are not data, but they

can be incorporated in so-called abstractions , which are data, and subsequently enacted back

into actions. (Abstraction and enaction are a special case of so-called rei�cation and re
ection.)

New kinds of data can be introduced ad hoc, for representing special pieces of information.

Yielders

Yielders are entities that can be evaluated to yield data during action performance. The data

yielded may depend on the current information, i.e., the given transients, the received bindings,

and the current state of the storage and bu�er. In fact action notation provides primitive

yielders that evaluate to compound data (tuples, maps, lists) representing entire slices of the

current information, such as the current state of storage. Evaluation cannot a�ect the current

information.

Compound yielders can be formed by the application of data operations to yielders. The

data yielded by evaluating a compound yielder are the result of applying the operation to the

data yielded by evaluating the operands. For instance, one can form the sum of two number

yielders. Items of data are a special case of data yielders, and always yields themselves when

evaluated.

2.3 Pragmatics

Let us conclude this chapter by considering the use of comprehensive language descriptions for

setting standards for implementations.

The syntax of a programming language de�nes the set of legal programs, and the seman-

tics of each program gives a representation of its implementation-independent behaviour. A

standard for a programming language relates its syntax and semantics to properties of physical

implementations, de�ning the class of conforming implementations. Thus it is concerned with

the pragmatics of the language.

With syntax a standard may, for instance, require implementations to reject (with an infor-

mative error message) illegal programs, and perhaps allow them also to reject legal programs

whose processing exceeds the available resources. It may allow national or typographical varia-

tions in the characters used to write programs.

It is important to realize in connection with semantics that the actual behaviour of a par-

ticular program may be allowed to vary between implementations|even between di�erent runs

on the same implementation! This variation may be represented in the semantics by loosely-

speci�ed entities, i.e., parameters, or by a nondeterministic relation between input and output.

A standard may require certain parameters to be implementation-de�ned ; the remaining ones

12 CHAPTER 2. CONCEPTS

are left unde�ned , and an implementation is free to choose. In Ada, for instance, the value of

MAX INT is implementation-de�ned, whereas the order of expression evaluation is generally left

unde�ned.

Finally, note that although it may be feasible for a standard to de�ne a class of implemen-

tations on the basis of syntactic and semantic descriptions, one may still not be able to verify

that a particular implementation belongs to that class. In practice, it is feasible to verify only

those implementations that have been developed systematically from language descriptions. A

validation suite for a language is a particular set of programs that an implementation must

process `correctly' so as to be regarded as valid. The use of validation suites to test conformance

to standards is a rather weak approximation to veri�cation.

Chapter 3

An Illustrative Example

Now that we have considered the main concepts underlying action semantics, let us take a

walk through an illustrative description, explaining all the notation that it uses as we go along.

Summaries of the standard action notation and data notation used in the description are given

in the Appendices.

The language used here to illustrate action semantic descriptions is a medium-scale, `ideal'

programming language. Syntactically, it is a sublanguage of Ada. However, the speci�ed action

semantics for the constructs does not always correspond exactly to the semantics described in

the Ada Reference Manual. For instance, parameter passing modes are left implementation-

dependent in Ada, but not here.

The language is a cut-down version of that described in [Mos92, Appendix A]. The main

constructs omitted here, for simplicity, are: compound values, variables, and types; pointers

(`accesses' in Ada terminology); packages; named actual parameters; separate subprogram body

de�nitions; entry selection statements; and function de�nitions.

The modular structure of our illustrative action semantic description is formally speci�ed as

follows.

Abstract Syntax

Expressions .

Statements needs: Expressions, Declarations.

Declarations needs: Expressions, Statements.

Programs needs: Expressions, Declarations.

Semantic Functions needs: Abstract Syntax, Semantic Entities.

Expressions .

Statements needs: Expressions, Declarations.

Declarations needs: Expressions, Statements.

Programs needs: Expressions, Declarations.

Semantic Entities .

An action semantic description consists of three main parts, concerned with specifying abstract

syntax, semantic functions, and semantic entities. We specify these parts as separate modules ,

13

14 CHAPTER 3. AN ILLUSTRATIVE EXAMPLE

which may themselves be divided into submodules , just as we normally divide technical reports

and textbooks into sections and subsections.

Let us adopt the following discipline in our modular speci�cations: each module has to have

a title, and it has to be self-contained , in the sense that all the notation used in a module must

be speci�ed there too. Of course, when some module M uses notation that is already speci�ed

in another module M

0

, there is no point in repeating all of M

0

literally in M : it is su�cient to

refer toM

0

fromM , using its title. Similarly, when the submodulesM

i

of a moduleM use some

common notation, we may as well specify that notation just once, at the level of M , letting it be

inherited by each M

i

. A reference to a module M thus provides not only the notation speci�ed

directly in M and its submodules, but also that which is speci�ed in modules referenced by M

and in supermodules enclosing M .

We write titles of modules using initially capitalized words in This Bold Font. The spec-

i�cation above has three modules, with the obvious titles. We could give a title to the whole

speci�cation, if we wished; here let us simply inherit the title of the present chapter. The

abstract syntax module and the semantic entities module are self-contained, and could be used

independently. On the other hand, the semantic functions module needs the notation intro-

duced by both the other modules, so its use implies their use too. Our notation for indicating

modular structure is intended to be unobtrusive, and most of the time we shall disregard the

modularization and focus on what is speci�ed in the bodies of the modules.

We allow modules to be mutually dependent, and the order in which we present modules is

immaterial. In abstract syntax, for instance, the speci�cation of procedure declarations involves

statements, and that of block statements involves declarations, so the corresponding modules

have to be mutually dependent; similarly for the corresponding parts of the semantic equa-

tions. Most previous frameworks for modules insist on a strict hierarchy, thus forbidding mutual

dependence.

A related point is that we are free to present modules in whatever order is most convenient

for the reader. In semantic descriptions, it is preferable to present the speci�cation of abstract

syntax �rst, followed by the semantic functions, leaving the semantic entities to the end. This is

assuming that the notation for semantic entities is well chosen, and its intended interpretation

strongly suggested by the symbols used. When semantic entities are presented before the seman-

tic functions, it can be di�cult to appreciate them, independently of their usage. However, there

is no need for us to be dogmatic about such matters, because the order in which modules are

written has no e�ect at all on what they specify.

Finally, we use various devices to indicate that modules are submodules of other modules. For

small speci�cations, such as that of the overall modular structure above, indentation (formally

equivalent to putting grouping parentheses around the indented part) is adequate for showing

nesting structure. For larger speci�cations we use numbered titles m

1

.� � �.m

n

M , as in ordinary

technical documents.

3.1 Abstract Syntax

Now let us consider how to specify abstract syntax. Reference manuals for programming lan-

guages generally use formal context-free grammars , augmented by some form of regular expres-

sions, to specify concrete syntax. A formal grammar consists of a set of productions , involving

terminal symbols, which may be characters or strings, as well as auxiliary nonterminal symbols.

3.1. ABSTRACT SYNTAX 15

Formal grammars have excellent pragmatic properties, such as readability and modi�ability; let

us adapt them for specifying abstract syntax.

The grammar-like speci�cation given below consists mainly of a set of (numbered) equations.

Ignoring the double brackets [[: : :]], equations have the same form as productions in a particular

variant of BNF grammar|one that is commonly used for specifying concrete syntax in reference

manuals, such as the ISO standard for Pascal, di�ering a little from the variant used in the

Ada reference manual. Terminal symbols are written as quoted strings of characters, such

as \(" and \or". The use of ordinary lexical symbols as terminal symbols in the grammar

specifying abstract syntax makes it rather easy to imagine a corresponding concrete syntax (up

to disambiguation of grouping, at least).

Nonterminal symbols are written as unquoted words, such as Expression, and we adopt the

convention that they generally start with a capital letter, to avoid confusing them with symbols

for semantic functions and entities, which we write using lower case letters. (Such conventions

have no formal signi�cance, and may be varied as desired.) The alternatives for each nonterminal

symbol are started by =, separated by , and terminated by a period.

grammar:

closed.

There is a precise formal interpretation of a grammar as an algebraic speci�cation of sorts of

trees ; interested readers may consult [Mos92]. Here, it is enough to know that occurrences of [[

: : :]] indicate the construction of nodes of trees. (In denotational semantics such brackets merely

separate abstract syntax from semantic notation, and cannot be nested.) We make a distinction

between a character, such as `0', and the string consisting of just that character, \0", following

most programming languages. (Actually, strings are simply nodes whose branches are all single

characters.) We write grammar: to ensure this interpretation of the subsequent equations. We

also write closed in a grammar module when all the productions are being given in full.

3.1.1 Expressions

(1) Identi�er = [[letter (letter digit)

*

]] .

(2) Literal = [[digit

+

]] [[digit

+

`.' digit

+

]] .

The standard nonterminals digit and letter are always implicitly available in our grammars, for

convenience when specifying the lexical syntax of identi�ers and numerals. The terminal symbols

that they generate are single characters, rather than strings of characters.

The equations above involve so-called regular expressions . In our notation, a regular expres-

sion is either a single symbol, or it consists of a sequence hR

1

: : :R

n

i, a grouped set of alternatives

(R

1

: : : R

n

), an optional part R

?

, an optional repeatable part R

*

, or an obligatory repeatable

part R

+

. We do not use the rather inelegant notation for optional and repetitive parts provided

by so-called Extended BNF (EBNF), despite its familiarity from reference manuals, because

we have a better use for the brackets it uses for optional parts [R], and its fRg is hardly sugges-

tive of ordered repetition! Moreover, EBNF requires R fRg to express that R is an obligatory

repeatable part, whereas our R

+

avoids writing R twice.

(3) Expression = Literal Identi�er [[\(" Expression \)"]]

[[Unary-Operator Expression]]

[[Expression Binary-Operator Expression]]

[[Expression Control-Operator Expression]] .

16 CHAPTER 3. AN ILLUSTRATIVE EXAMPLE

Note that literals and identi�ers are special cases of expressions, rather than merely occurring

as components of expressions.

We make no attempt to distinguish syntactically between expressions according to the sort of

entity to which they evaluate: truth-values or numbers. Such distinctions between expressions

would not simplify the semantic description at all, and they would in any case be context-

dependent.

(4) Expressions = hExpression h \," Expression i

*

i .

As we do not consider function calls or array component selections, expression lists are only

used in procedure calls, and could be just as well speci�ed in the module for statements.

(5) Unary-Operator = \+" \�" \abs" \not" .

(6) Binary-Operator = \+" \�" \& " \�" \=" \mod" \rem"

\=" \==" \<" \<=" \>" \>="

\and" \or" \xor" .

(7) Control-Operator = h \and" \then" i h \or" \else" i .

The distinction between control operators and binary operators is semantically relevant, since

the intended order of evaluation of their operands is di�erent.

3.1.2 Statements

(1) Statement = [[\null" \;"]] [[Identi�er \:=" Expression \;"]]

[[\if" Expression \then" Statement

+

h \else" Statement

+

i

?

\end" \if" \;"]]

[[h \while" Expression i

?

\loop" Statement

+

\end" \loop" \;"]]

[[\exit" \;"]]

[[h \declare" Declaration

+

i

?

\begin" Statement

+

\end" \;"]]

[[Identi�er h \(" Expressions \)" i

?

\;"]]

[[\return" \;"]]

[[Identi�er \." Identi�er \;"]]

[[\accept" Identi�er h \do" Statement

+

\end" i

?

\;"]] .

One could save some e�ort by regarding an if-then statement as a formal abbreviation for an

if-then-else statement with a null else part; similarly, a loop statement could abbreviate a while-

statement with an always-true expression part.

(2) Block = hDeclaration

*

\begin" Statement

+

\end" i .

A block is essentially a statement with some local declarations. FollowingAda, blocks can occur

directly in ordinary statement sequences, whereas in Pascal, for example, they can only occur

in subprogram declarations.

3.1.3 Declarations

(1) Declaration = [[Identi�er \:" \constant" Identi�er

?

\:=" Expression \;"]]

[[Identi�er \:" Identi�er h \:=" Expression i

?

\;"]]

[[\procedure" Identi�er h \(" Formals \)" i

?

\is" Block \;"]]

[[\task" Identi�er \is" Entry

+

\end" \;"]]

[[\task" \body" Identi�er \is" Block \;"]] .

3.2. SEMANTIC FUNCTIONS 17

(2) Entry = [[\entry" Identi�er \;"]] .

Task heads are supposed to be declared before the corresponding bodies, although we don't

bother to insist on this in our grammar above. We retain the entries of a task head only for the

sake of familiarity, as they are irrelevant to our dynamic semantics.

(3) Formal = [[Identi�er \:" Mode

?

Identi�er]] .

(4) Formals = h Formal h \;" Formal i

*

i .

(5) Mode = \in" h \in" \out" i \out" .

Following Ada, parameterless procedures omit the parentheses as well as the formals, and a

missing formal parameter mode is equivalent to the mode \in".

3.1.4 Programs

(1) Program = [[Declaration

+

Identi�er]] .

In legalAda programs, the top-level declarations are compilation units, which are essentially just

packages, subprograms, and tasks. Here we do not bother to exclude other sorts of declaration,

such as constant and variable declarations. Let us assume that the identi�er of a program

indicates a main procedure, without parameters, to be called when the program is run.

That concludes the illustration of how to specify abstract syntax for use in action semantic

descriptions.

3.2 Semantic Functions

In action semantics, we specify semantic functions by semantic equations . Each equation de�nes

the semantics of a particular sort of phrase in terms of the semantics of its components, if any,

using constants and operations for constructing semantic entities. The required compositionality

of semantic functions is generally apparent from the semantic equations.

Mathematically, a set of semantic equations is simply an inductive de�nition of maps from

syntax to semantics. Those familiar with algebraic semantics may understand the equations as

a presentation of a target algebra; then the unique homomorphism to the target algebra from

the initial algebra of abstract syntax corresponds to the semantic functions. Programmers may

prefer to regard semantic equations as a de�nition of mutually-recursive functions by cases, as

allowed, for instance, in the functional programming language Haskell.

It is also possible to view a set of semantic equations as merely specifying a translation

from programming language syntax to notation for semantic entities. But it is the semantic

entities themselves that count, not the notation in which they are expressed: two phrases may

get translated di�erently yet still have the same semantics.

A semantic function always takes a single, syntactic argument and gives a semantic entity

as result. The symbols used to denote semantic functions may be chosen freely; generally the

author tries to maximize their suggestiveness, at the expense of conciseness, but this is not

obligatory. Each symbol may consist of several words, e.g., the value of , and the place-holder

indicates where the argument goes.

It is usual to specify the functionality of each semantic function. For instance,

evaluate :: Expression ! action [giving a value]

18 CHAPTER 3. AN ILLUSTRATIVE EXAMPLE

asserts that for every abstract syntax tree E for an expression, the semantic entity evaluate E

is an action which, when performed, gives a value. The actual de�nition of evaluate E by the

semantic equations is then required to be consistent with this.

Each semantic function must be de�ned consistently and completely on the sort of abstract

syntax tree for which it is required. Thus any tree of that sort must match the pattern in the

left hand side of precisely one semantic equation for that function. When the right hand sides of

equations involve applications of semantic functions only to branches of the tree matching the

left hand side, well-de�nedness is ensured; otherwise, one has to check that no direct circularities

are involved.

The right hand sides of the semantic equations involve the standard notation for actions and

data provided by action semantics. It must be emphasized that the notation is absolutely formal !

The fact that it is possible to read it informally|and reasonably
uently|does not preclude

reading it formally as well. The grouping of the symbols might not be completely obvious to

those who have not seen action notation before, but it is in fact unambiguous. The following

hints about the general form of action notation may be helpful.

Action notation consists mainly of action primitives and combinators . Each primitive is

concerned with one particular kind of information processing, and makes no contribution to the

other kinds. Each combinator, on the other hand, expresses a particular mixture of control
ow

and how the various kinds of information
ow. Action notation was designed with su�cient

primitives and combinators for expressing most common patterns of information processing

straightforwardly, i.e., not simulating one kind of information processing by another.

Action notation also incorporates a basic notation for data, including truth-values, rational

numbers, lists, and �nite maps.

The standard symbols used in action notation are ordinary English words . In fact action

notation mimics natural language: terms standing for actions form imperative verb phrases

involving conjunctions and adverbs, e.g., check it and then escape, whereas terms standing for

data and yielders form noun phrases, e.g., the items of the given list. De�nite and inde�nite

articles can be exploited appropriately, e.g., choose a cell then reserve the given cell. (This

feature of action notation is reminiscent of Apple'sHyperCard scripting languageHyperTalk

[Goo87], and of Cobol.)

These simple principles for choice of symbols provide a surprisingly grammatical fragment

of English, allowing speci�cations of actions to be made
uently readable|without sacri�cing

formality at all! To specify grouping unambiguously, we may use parentheses, but for large-

scale grouping it is less obtrusive to use indentation, which we emphasize by vertical rules, as

illustrated in the semantic equations for statements given earlier.

Compared to other formalisms, such as the so-called �-notation, action notation may appear

to lack conciseness: each symbol generally consists of several letters, rather than a single sign.

But the comparison should also take into account that each action combinator usually corre-

sponds to a complex pattern of applications and abstractions in �-notation. For instance, (under

the simplifying assumption of determinism!) the action term A

1

then A

2

might correspond to

something like ��

1

:��:��:A

1

"

1

�(�"

2

:A

2

�

2

��). In any case, the increased length of each symbol

seems to be far outweighed by its increased perspicuity. It would also be rather misleading

to use familiar mathematical signs to express actions, whose essence is unashamedly computa-

tional. For some applications, however, such as formal reasoning about program equivalence on

the basis of their action semantics, optimal conciseness may be highly desirable, and it would

3.2. SEMANTIC FUNCTIONS 19

be appropriate to use abbreviations for our verbose symbols. The choice of abbreviations is

left to the discretion of the user. Such changes of symbols do not a�ect the essence of action

notation, which lies in the standard primitives and combinators, rather than in the standard

verbose symbols.

The informal appearance and suggestive words of action notation should encourage pro-

grammers to read it, at �rst, rather casually, in the same way that they might read reference

manuals. Having thus gained a broad impression of the intended actions, they may go on to

read the speci�cation more carefully, paying attention to the details. A more cryptic notation

might discourage programmers from reading it altogether.

The intended interpretation of the standard notation for actions is speci�ed operationally,

once and for all, in [Mos92, Appendix C]. All that one has to do before using action notation is to

specify the information that is to be processed by actions, which may vary signi�cantly according

to the programming language being described. This may involve extending data notation with

further sorts of data, and specializing standard sorts, using sort equations. Furthermore, it

may be convenient to introduce formal abbreviations for commonly-occurring, conceptually-

signi�cant patterns of notation. Extensions, specializations, and abbreviations are all speci�ed

algebraically , as illustrated in Section A.1.

Now let us begin to de�ne the semantic functions for our illustrative language. We declare

the symbols used for the semantic functions at the start of each main module.

3.2.1 Expressions

introduces: the token of , the value of , evaluate ,

the unary-operation-result of , the binary-operation-result of ,

moderate .

3.2.1.1 Identi�ers

� the token of :: Identi�er ! token .

Tokens have a standard usage in action notation: they get bound to data. The sort token is

speci�ed in Section A.1 to be a subsort of strings.

(1) the token of I :Identi�er = uppercase I .

FollowingAda, let us canonicalize identi�ers by converting all letters to one case. For languages

where case di�erences are taken seriously, the semantic function the token of would simply be

the identity function on identi�ers, and then we could omit it altogether.

3.2.1.2 Literals

� the value of :: Literal ! number .

The sort number is speci�ed in Section A.1 to be a sort including both integer and (approximate)

real numbers.

(1) the value of [[d :digit

+

]] = integer-number of decimal [[d]] .

20 CHAPTER 3. AN ILLUSTRATIVE EXAMPLE

(2) the value of [[d

1

:digit

+

`.' d

2

:digit

+

]] =

real-number of the sum of (decimal [[d

1

]],

the product of (decimal [[d

2

]],

the exponent of (decimal \10", the negation of the count of d

2

))) .

The operation decimal is a standard data operation on strings; similarly count is the standard

data operation that returns the number of components in any sort of tuple. We could de�ne these

operations as semantic functions, but it wouldn't be very exciting, so we take this short-cut.

Formally, we are regarding a digit sequence as its own semantics, i.e., a string! No abstractness

is lost, though, because leading zeros in digit sequences are signi�cant in the fractional parts of

real numbers.

The use of [[: : :]] in the right hand sides of the semantic equations above is atypical. It is

needed because decimal expects its argument to be a string, not a tuple of characters.

3.2.1.3 Evaluating Expressions

� evaluate :: Expression ! action

[giving a value]

[using current bindings current storage] .

Let us be content here with an informal reading of such indications of the sorts of actions, as

a thorough explanation involves considering operations that can be applied to entire sorts. But

note that failure is always an implicit possibility.

(1) evaluate L:Literal = give the value of L .

The primitive action give Y completes, giving the data yielded by evaluating the yielder Y .

(2) evaluate I :Identi�er =

give the entity bound to the token of I then

give the given value or

give the value assigned to the given variable .

The functional action combination A

1

then A

2

represents ordinary functional composition of A

1

and A

2

: the transients given to the whole action are propagated only to A

1

, the transients given

by A

1

on completion are given only to A

2

, and only the transients given by A

2

are given by the

whole action. Regarding control
ow, A

1

then A

2

speci�es normal left-to-right sequencing.

The primitive action give Y fails when Y yields nothing. The yielder the entity bound to T

refers to the current binding for the particular token T , provided that there is one, otherwise it

yields nothing, causing the giving action to fail.

The yielder given Y yields all the data given to its evaluation, provided that this is of the

data sort Y . For instance the given value (where `the' is optional) yields a single individual

of sort value, if such is given. Otherwise it yields nothing, and give the given value fails. This

causes the alternative currently being performed to be abandoned and, if possible, some other

alternative to be performed instead, i.e., back-tracking .

The actionA

1

orA

2

represents implementation-dependent choice between alternative actions,

although here A

1

, A

2

are such that one or the other of them is always bound to fail, so the

choice is deterministic. The yielder the value assigned to Y refers to the current storage for the

particular variable yielded by Y , analogously to the entity bound to T . If I is currently bound to

an entity that is neither a value nor a variable (e.g., a procedure) both alternatives fail, causing

their combination to fail as well.

(3) evaluate [[\(" E :Expression \)"]] = evaluate E .

3.2. SEMANTIC FUNCTIONS 21

(4) evaluate [[O :Unary-Operator E :Expression]] =

evaluate E then give the unary-operation-result of O .

(5) evaluate [[E

1

:Expression O :Binary-Operator E

2

:Expression]] =

evaluate E

1

and evaluate E

2

then give the binary-operation-result of O .

The action A

1

and A

2

represents implementation-dependent order of performance of the indi-

visible subactions of A

1

, A

2

. When these subactions cannot `interfere' with each other, as here,

it indicates that their order of performance is simply irrelevant. Left-to-right order of evalua-

tion can be speci�ed by using the combinator A

1

and then A

2

instead of A

1

and A

2

above. In

both cases, the values given by the subactions get tupled, and subsequently passed on by the

combinator A

1

then A

2

.

The evaluation of an expression may give any individual of sort value. We leave it to the

semantics of operators, speci�ed below, to insist on individuals of particular sorts|numbers,

for instance. For simplicity, we do not bother with precise error messages in case the given

operands are not of the right sort for a particular operator: we merely let the application of the

corresponding operation yield nothing, so that the action which gives it must fail. In any case,

errors arising due to wrong sorts of operands are statically detectable in most languages, and

should therefore be the concern of a static semantic description, not of the dynamic semantics

that we are developing here.

(6) evaluate [[E

1

:Expression \or" \else" E

2

:Expression]] =

evaluate E

1

then

check the given truth-value then give true

or

check not the given truth-value then evaluate E

2

.

(7) evaluate [[E

1

:Expression \and" \then" E

2

:Expression]] =

evaluate E

1

then

check the given truth-value then evaluate E

2

or

check not the given truth-value then give false .

The action check Y requires Y to yield a truth-value; it completes when the value is true,

otherwise it fails. It is used for guarding alternatives. For instance, (check Y then A

1

) or (check

not Y then A

2

) expresses a deterministic choice between A

1

and A

2

, depending on the condition

Y .

3.2.1.4 Operating Unary Operators

� the unary-operation-result of :: Unary-Operator ! yielder

[of value] [using given value] .

Assuming that applications of operators to operands should never diverge or escape, we may

represent the semantics of an operator as a yielder. Otherwise, we could use actions here too.

But note that we cannot let the semantics of an operator be simply an algebraic operation, since

our meta-notation is �rst-order.

(1) the unary-operation-result of \+" = the given number .

(2) the unary-operation-result of \�" = the negation of the given number .

(3) the unary-operation-result of \abs" = the absolute of the given number .

22 CHAPTER 3. AN ILLUSTRATIVE EXAMPLE

(4) the unary-operation-result of \not" = not the given truth-value .

Numerical operations such as negation and absolute are speci�ed (loosely) in Section A.1. The

truth-values are the standard ones from data notation, equipped with the usual logical opera-

tions, such as not.

3.2.1.5 Operating Binary Operators

� the binary-operation-result of :: Binary-Operator ! yielder

[of value] [using given (value,value)] .

(1) the binary-operation-result of \+" =

the sum of (the given number#1, the given number#2) .

The yielder given Y#n yields the n'th individual component of a given tuple, for n > 0, provided

that this component is of sort Y .

(2) the binary-operation-result of \�" =

the di�erence of (the given number#1, the given number#2) .

(3) the binary-operation-result of \& " =

the concatenation of (the given array#1, the given array#2) .

(4) the binary-operation-result of \�" =

the product of (the given number#1, the given number#2) .

(5) the binary-operation-result of \=" =

the quotient of (the given number#1, the given number#2) .

(6) the binary-operation-result of \mod" =

the modulo of (the given number#1, the given number#2) .

(7) the binary-operation-result of \rem" =

the remainder of (the given number#1, the given number#2) .

(8) the binary-operation-result of \=" =

the given value#1 is the given value#2 .

(9) the binary-operation-result of \==" =

not (the given value#1 is the given value#2) .

(10) the binary-operation-result of \<" =

the given number#1 is less than the given number#2 .

(11) the binary-operation-result of \<=" =

not (the given number#1 is greater than the given number#2) .

(12) the binary-operation-result of \>" =

the given number#1 is greater than the given number#2 .

(13) the binary-operation-result of \>=" =

not (the given number#1 is less than the given number#2) .

(14) the binary-operation-result of \and" =

both of (the given truth-value#1, the given truth-value#2) .

(15) the binary-operation-result of \or" =

either of (the given truth-value#1, the given truth-value#2) .

(16) the binary-operation-result of \xor" =

not (the given truth-value#1 is the given truth-value#2) .

3.2. SEMANTIC FUNCTIONS 23

3.2.1.6 Moderating Expressions

� moderate :: Expressions ! action

[giving argument

+

storing]

[using given mode

+

current bindings current storage] .

The evaluation of actual parameter expressions in procedure calls is dependent on the modes

of the corresponding formals in procedure declarations. The semantic entities corresponding to

syntactic modes are speci�ed in Section A.1.

(1) moderate I :Identi�er =

give the �rst of the given mode

+

then

check either (it is the reference-mode, it is the copy-mode) then

give the variable bound to the token of I

or

check (it is the constant-mode) then evaluate I .

The tuple selector operation �rst is standard in data notation, as is rest below. The yielder `it'

formally abbreviates the given datum; here, we could also write the given mode.

(2) E & Identi�er = nothing)

moderate E :Expression =

give the �rst of the given mode

+

then

check (it is the constant-mode) then evaluate E .

Here we collapse the uniform semantic equations for the remaining Expression constructs into a

single conditional equation whose condition holds when E is abstract syntax not of sort Identi�er.

(3) moderate hE

1

:Expression \," E

2

:Expressions i =

moderate E

1

and

give the rest of the given mode

+

then moderate E

2

.

Whereas the data
ow in A

1

then A

2

is analogous to that in ordinary function composition

g � f (at least when the functions are strict) the data
ow in A

1

and A

2

is analogous to so-called

target-tupling of functions, sometimes written [f; g] and de�ned by [f; g](x) = (f(x); g(x)). That

is, both A

1

and A

2

are given the same transient data as the combination. Note that the tupling

of the data given by A

1

and A

2

is associative.

3.2.2 Statements

introduces: execute .

3.2.2.1 Executing Statements

� execute :: Statement

+

! action

[completing escaping with an escape-reason diverging storing communicating]

[using current bindings current storage current bu�er] .

(1) execute h S

1

:Statement S

2

:Statement

+

i = execute S

1

and then execute S

2

.

The basic action combination A

1

and then A

2

combines the actions A

1

, A

2

into a compound

action that represents their normal, left-to-right sequencing, performing A

2

only when A

1

com-

pletes.

Note that the semantics of a statement is well-de�ned, because the above semantic equation

can only match a statement sequence in one way.

24 CHAPTER 3. AN ILLUSTRATIVE EXAMPLE

(2) execute [[\null" \;"]] = complete .

The primitive action complete is the unit for A

1

and then A

2

.

(3) execute [[I :Identi�er \:=" E :Expression \;"]] =

give the variable bound to the token of I and evaluate E

then assign the given value#2 to the given variable#1 .

The action assign Y

1

to Y

2

is speci�ed in Section A.1.

(4) execute [[\if " E :Expression \then" S :Statement

+

\end" \if" \;"]] =

evaluate E then

check the given truth-value and then execute S

or

check not the given truth-value .

Since check D doesn't give any data, and execute S doesn't refer to given data, it doesn't make

any di�erence whether we use A

1

and then A

2

or A

1

then A

2

to combine them above.

It is important not to omit `or check not the given truth-value' above, for then the execution

of an if-then statement with a false condition would fail, rather than simply completing.

(5) execute [[\if " E :Expression \then" S

1

:Statement

+

\else" S

2

:Statement

+

\end" \if" \;"]] =

evaluate E then

check the given truth-value and then execute S

1

or

check not the given truth-value and then execute S

2

.

(6) execute [[\loop" S :Statement

+

\end" \loop" \;"]] =

unfolding

execute S and then unfold

trap

check there is given an exit

or

check there is given a procedure-return and then escape with it .

The action combination unfolding A performs A but whenever it reaches the dummy action

unfold, it performs A instead. It is mostly used in the semantics of iterative constructs, with

unfold occurring exactly once in A, but it can also be used with several occurrences of unfold.

The action A

1

trap A

2

sets A

2

as the trap action to be performed when A

1

escapes. Once

an escape has been trapped, normal sequencing is resumed.

The primitive action escape with Y terminates abnormally, giving the data yielded by Y to

the action that traps the escape (if any). An exit is simply a data item, as is a procedure-return.

The data operation there is d results in true when d is a data item other than nothing.

(7) execute [[\while" E :Expression \loop" S :Statement

+

\end" \loop" \;"]] =

unfolding

evaluate E then

check the given truth-value and then execute S and then unfold

or

check not the given truth-value

trap

check there is given an exit

or

check there is given a procedure-return and then escape .

3.2. SEMANTIC FUNCTIONS 25

(8) execute [[\exit" \;"]] = escape with an exit .

(9) execute [[\begin" S :Statement

+

\end" \;"]] = execute S .

(10) execute [[\declare" B :hDeclaration

+

\begin" Statement

+

\end" i \;"]] =

execute B .

A declare statement is a block. Some languages, Pascal for instance, don't allow such anony-

mous blocks to occur in the middle of a statement sequence, only directly in other declarations,

but the extra generality here doesn't complicate the semantic description noticeably.

(11) execute [[I :Identi�er \;"]] =

enact the procedure-abstraction of

the parameterless procedure bound to the token of I .

The action enact Y performs the action incorporated in the abstraction yielded by Y . The

performance of the incorporated action is not given any transient data, nor does it receive

any bindings. However, transients and/or bindings may have already been supplied to the

incorporated action, using the notation for yielders explained later.

The notation for constructing procedure entities from abstractions is speci�ed in Section A.1.

(12) execute [[I :Identi�er \(" E :Expressions \)" \;"]] =

give the procedure bound to the token of I then

give the procedure-abstraction of the given procedure and

give the formal-modes of the given parameterized procedure then

moderate E

then enact the application of the given abstraction#1

to the argument

+

yielded by the rest of the given data .

Suppose that Y

1

yields abstraction of A, and that Y

2

yields data d . Then the yielder application

Y

1

to Y

2

evaluates to abstraction of (give d then A).

(13) execute [[\return" \;"]] = escape with a procedure-return .

(14) execute [[I

1

:Identi�er \." I

2

:Identi�er \;"]] =

give the task-agent bound to the token of I

1

then

send a message [to the given task-agent] [containing entry of the token of I

2

]

and then

receive a message [from the given task-agent] [containing the done-signal] .

The primitive action send Y , where Y yields a sort of message, initiates the transmission of

a message. The usual form of Y is a message [to Y

1

] [containing Y

2

], where Y

1

and Y

2

are

individuals. The sort yielded by Y is implicitly restricted to messages from the performing

agent, with the next local serial number, and this should determine an individual message.

The action receive Y waits inde�nitely for a message of the sort speci�ed by Y to arrive,

removes it from the bu�er, and gives it.

The notation for entries and signals that are contained in the messages is speci�ed in Sec-

tion A.1.

(15) execute [[\accept" I :Identi�er \end" \;"]] =

receive a message [from any task-agent] [containing entry of the token of I] then

send a message [to the sender of the given message] [containing the done-signal] .

(16) execute [[\accept" I :Identi�er \do" S :Statement

+

\end" \;"]] =

receive a message [from any task-agent] [containing entry of the token of I] then

execute S and then

send a message [to the sender of the given message] [containing the done-signal] .

26 CHAPTER 3. AN ILLUSTRATIVE EXAMPLE

3.2.2.2 Executing Blocks

� execute :: Block ! action

[escaping with an escape-reason diverging storing communicating]

[using current bindings current storage current bu�er] .

(1) execute h \begin" S :Statement

+

\end" i = execute S .

(2) execute hD :Declaration

+

\begin" S :Statement

+

\end" i =

furthermore elaborate D hence

synchronize D and then execute S and then relinquish D

trap

relinquish D and then escape with the given escape-reason .

The action furthermore A produces the same bindings as A, together with any received bindings

that A doesn't override. In other words, it overlays the received bindings with those produced

by A.

The combination A

1

hence A

2

lets the bindings produced by A

1

be received by A

2

, which

limits their scope|unless they get reproduced by A

2

. It is analogous to functional composition.

The compound combination furthermoreA

1

hence A

2

(recall that pre�xes have higher precedence

than in�xes!) corresponds to ordinary block structure, with A

1

being the block head and A

2

the block body: nonlocal bindings, received by the combination, are also received by A

2

unless

they are overridden by the local bindings produced by A

1

.

The use of synchronize D here is concerned with task initialization, considered later.

Whereas bindings produced by declarations automatically disappear at the end of their

scope, locally-declared variables are not thereby automatically relinquished ; it has to be speci�ed

explicitly. Notice that the trap is needed to ensure that exits and procedure returns do not evade

relinquish D .

3.2.3 Declarations

introduces: elaborate , relinquish , synchronize ,

the mode of , the modes of , actualize .

3.2.3.1 Elaborating Declarations

� elaborate :: Declaration

*

! action

[binding diverging storing communicating]

[using current bindings current storage current bu�er] .

(1) elaborate hD

1

:Declaration D

2

:Declaration

+

i = elaborate D

1

before elaborate D

2

.

The action A

1

before A

2

represents sequencing of declarations. Like furthermore A

1

hence A

2

,

it lets A

2

receive bindings from A

1

, together with any bindings received by the whole action

that are not thereby overridden. The combination produces all the bindings produced by A

2

,

as well as any produced by A

1

that are not overridden by A

2

. Thus A

2

may rebind a token

that was bound, or hidden, by A

1

. Note that the bindings received by the combination are not

reproduced at all, unless one of A

1

, A

2

explicitly reproduces them.

The use of the combinator A

1

before A

2

in the semantics of declaration sequences allows

later declarations to refer to the bindings produced by earlier declarations|but not the other

way round. Mutually-recursive declarations are not considered here.

(2) elaborate h i = complete .

3.2. SEMANTIC FUNCTIONS 27

(3) elaborate [[I

1

:Identi�er \:" \constant" I

2

:Identi�er

?

\:=" E :Expression \;"]] =

evaluate E then bind the token of I

1

to the given value .

The declarative action bind T to Y produces the binding of the token T to the bindable data

yielded by Y . It does not reproduce any of the received bindings!

Somewhat contrary to the explanation of Ada constants in the Reference Manual, we let

constants be bound directly to values, rather than to special `variables' that cannot be assigned

new values. Thus our constants resemble named numbers in Ada.

(4) elaborate [[I

1

:Identi�er \:" I

2

:Identi�er \;"]] =

allocate a variable for the type bound to the token of I

2

then bind the token of I

1

to the given variable .

The action allocate d for Y is ad hoc, speci�ed in Section A.1. As we only deal with simple

variables in this tutorial, allocate a variable for Y merely chooses, reserves, and gives a single

storage cell.

(5) elaborate [[I

1

:Identi�er \:" I

2

:Identi�er \:=" E :Expression \;"]] =

allocate a variable for the type bound to the token of I

2

and evaluate E

then

bind the token of I

1

to the given variable#1 and

assign the given value#2 to the given variable#1 .

The basic and functional combinators, such as A

1

and A

2

, all pass the received bindings to their

subactions without further ado|analogously to the way A

1

and A

2

passes all the given data to

both A

1

and A

2

. They are similarly unbiased when it comes to combining the bindings produced

by their subactions: they produce the disjoint union of the bindings, providing this is de�ned,

otherwise they simply fail.

(6) elaborate [[\procedure" I :Identi�er \is" B :Block \;"]] =

bind the token of I to

parameterless procedure of the closure of abstraction of

execute B

trap check there is given a procedure-return .

When current bindings evaluates to b, closure Y

1

yields abstraction of (produce b hence A).

The use of closure above ensures static bindings: the execution of the block B when the

function is called receives the same bindings as the declaration. These bindings, however, do

not include that for I itself, so self-referential , or recursive, calls of the function are not possible.

In fact it is easy to allow self-reference: just change `bind' to `recursively bind' in the semantics

equations for elaborate D . But it is not quite so straightforward to allow mutual reference.

[Mos92, Appendix A] shows how this can be done, using indirect bindings (directly!).

Notice that an enaction of an abstraction bound to a procedure identi�er can only complete

when the execution of the block escapes, giving a return. If the execution of the block escapes

for any other reason, or completes, the enaction fails.

(7) elaborate [[\procedure" I :Identi�er \(" F :Formals \)" \is" B :Block \;"]] =

bind the token of I to

parameterized modalized (the modes of F ,

procedure of the closure of abstraction of

furthermore actualize F thence

execute B

trap check there is given a procedure-return

and then copy-back the given map [token to variable]) .

28 CHAPTER 3. AN ILLUSTRATIVE EXAMPLE

The performance of actualize F above not only produces bindings for the formal parameters, it

also gives a map corresponding to the bindings for copy-mode parameters. This map is exploited

to copy back the �nal values of the local formal parameter variables to the actual parameter

variables. The action copy-back Y is ad hoc, speci�ed in Section A.1. The combination A

1

thence A

2

passes transients as well as bindings from A

1

to A

2

.

The operation modalized (m, p) attaches the modes m to a procedure p, so that formal-

modes of p can obtain them when procedure call statements are executed. This is speci�ed in

Section A.1.

(8) elaborate [[\task" I :Identi�er \is" E :Entry

+

\end" \;"]] =

o�er a contract [to any task-agent] [containing abstraction of the initial task-action]

and then

receive a message [containing a task-agent] then

bind the token of I to the task yielded by the contents of the given message .

The primitive action o�er Y , where Y yields a sort of contract, initiates the arrangement of a

contract with another, perhaps only partially speci�ed, agent. The usual form of Y is a contract

[to an agent] [containing abstraction of A], where A is the action to be performed according to

the contract.

The action initial task-action is de�ned in Section A.1.

(9) elaborate [[\task" \body" I :Identi�er \is" B :Block \;"]] =

send a message [to the task-agent bound to the token of I]

[containing task of the closure of abstraction of execute B] .

Executions of task blocks receive all the bindings that were current where their body was

declared. These may include bindings to other tasks: a system of communicating tasks can

be set up by �rst declaring all the heads, then all the bodies. They may also include bindings to

variables; but attempts to assign to these variables, or to inspect their values, always fail, because

the cells referred to are not local to the agent performing the action. It is a bit complicated to

describe the action semantics of distributed tasks that have access to shared variables|the task

that declares a variable has to act as a server for assignments and inspections|so we let our

illustrative language deviate from Ada in this respect.

3.2.3.2 Relinquishing Variable Declarations

� relinquish :: Declaration

+

! action

[completing storing]

[using current bindings current storage] .

Whereas bindings produced by declarations automatically disappear at the end of their scope,

locally-declared variables are not thereby automatically relinquished . Here we introduce an extra

semantic function on declarations for this purpose.

(1) relinquish hD

1

:Declaration D

2

:Declaration

+

i = relinquish D

1

and relinquish D

2

.

(2) relinquish [[I :Identi�er \:" I :Identi�er X :h \:=" Expression i

?

\;"]] =

dispose of the variable bound to the token of I .

3.2. SEMANTIC FUNCTIONS 29

(3) D : [[Identi�er \:" \constant" Identi�er

?

\:=" Expression \;"]]

[[\task" Identi�er \is" Entry

+

\end" \;"]]

[[\function" Identi�er h \(" Formals \)" i

?

\return" Identi�er \is" Block \;"]]

[[\procedure" Identi�er h \(" Formals \)" i

?

\is" Block \;"]]

[[\task" \body" Identi�er \is" Block \;"]])

relinquish D = complete .

3.2.3.3 Synchronizing Task Declarations

� synchronize :: Declaration

+

! action

[completing diverging communicating]

[using current bindings current bu�er] .

The action synchronize D is used to delay the execution of the statements of a block until all

the tasks declared in the block have been started.

(1) synchronize hD

1

:Declaration D

2

:Declaration

+

i =

synchronize D

1

and synchronize D

2

.

(2) synchronize [[\task" \body" I :Identi�er \is" B :Block \;"]] =

receive a message [from the task-agent bound to the token of I]

[containing the begin-signal] .

(3) D : [[Identi�er \:" \constant" Identi�er

?

\:=" Expression \;"]]

[[Identi�er \:" Identi�er h \:=" Expression i

?

\;"]]

[[\task" Identi�er \is" Entry

+

\end" \;"]]

[[\function" Identi�er h \(" Formals \)" i

?

\return" Identi�er \is" Block \;"]]

[[\procedure" Identi�er h \(" Formals \)" i

?

\is" Block \;"]])

synchronize D = complete .

3.2.3.4 Modes

� the mode of :: Mode

?

! mode .

(1) the mode of h i = the constant-mode .

(2) the mode of \in" = the constant-mode .

(3) the mode of h \in" \out" i = the copy-mode .

(4) the mode of \out" = the reference-mode .

3.2.3.5 Modes of Formal Parameters

� the modes of :: Formals ! mode

+

.

(1) the modes of [[I

1

:Identi�er \:" M :Mode

?

I

2

:Identi�er]] = the mode of M .

(2) the modes of hF

1

:Formal \;" F

2

:Formals i = (the modes of F

1

, the modes of F

2

) .

30 CHAPTER 3. AN ILLUSTRATIVE EXAMPLE

3.2.3.6 Actualizing Formal Parameters

� actualize :: Formals ! action

[binding giving a map [token to variable] storing]

[using given argument

+

current bindings current storage] .

The map of tokens to variables given by actualization is used for copying-back the values of

copy-mode parameters on procedure return. Maps, together with operations for creating and

combining them, are provided by the standard data notation used in action semantics.

(1) actualize [[I

1

:identi�er \:" M :\in"

?

I

2

:Identi�er]] =

bind the token of I

1

to the value yielded by the �rst of the given argument

+

and give the empty-map.

(2) actualize [[I

1

:identi�er \:" \out" I

2

:Identi�er]] =

bind the token of I

1

to the variable yielded by the �rst of the given argument

+

and give the empty-map .

(3) actualize [[I

1

:identi�er \:" \in" \out" I

2

:Identi�er]] =

give the variable yielded by the �rst of the given argument

+

and allocate a variable for the type bound to the token of I

2

then

bind the token of I

1

to the given variable#2 and

give map of the token of I

1

to the given variable#1 and

assign (the value assigned to the given variable#1) to the given variable#2 .

(4) actualize hF

1

:Formal \;" F

2

:Formals i =

actualize F

1

and

give the rest of the given argument

+

then actualize F

2

then give the disjoint-union of (the given map#1, the given map#2) .

3.2.4 Programs

introduces: run .

� run :: Program! action

[completing diverging storing communicating]

[using current storage current bu�er] .

(1) run [[D :Declaration

+

I :Identi�er]] =

produce required-bindings hence

furthermore elaborate D hence

synchronize D and then

give the procedure bound to the token of I then

enact the procedure-abstraction of the given parameterless procedure

and then send a message [to the user-agent] [containing the terminated-signal] .

The primitive action produce Y produces a binding for each token mapped to a bindable value

by the map yielded by Y . See the end of Section A.1 for the de�nition of the bindings of

required identi�ers in our illustrative language. The analogous de�nition for full Ada would be

substantially larger!

The termination message sent above insists that the user should be able to notice when the

program has terminated; this might be useful when the user runs the program on a remote

agent.

3.2. SEMANTIC FUNCTIONS 31

To complete our semantic description of the illustrative language, we have to specify the

notation that is used in the semantic equations for expressing semantic entities. This is done in

Section A.1, which also refers to the standard action notation and data notation used in action

semantics, summarized informally in Appendix B and Appendix C respectively.

Chapter 4

Conclusion

Here, the pragmatic qualities of action semantic descriptions will be assessed, and compared

with those of other frameworks such as VDM and RAISE.

32

Appendix A

An Illustrative Example, ctd.

The modular structure of this Appendix is as follows:

Semantic Entities

Sorts needs: Values, Variables, Subprograms, Tasks, Escapes.

Values needs: Numbers.

Variables needs: Values, Types.

Types .

Numbers .

Subprograms

Modes .

Arguments needs: Values, Variables.

Procedures needs: Modes, Arguments.

Tasks .

Escapes .

Required Bindings needs: Types, Numbers.

A.1 Semantic Entities

Most of the notation used here for specifying semantic entities has a fairly obvious interpretation, so few comments

are provided.

includes: [Mos92]/Action Notation.

A.1.1 Sorts

introduces: entity .

� entity = value variable type procedure task (disjoint) .

� datum = entity escape-reason mode message entry 2 .

� token = string of (uppercase letter, (uppercase letter digit)

*

) .

� bindable = entity .

� storable = value .

� sendable = agent task entry signal 2 .

We use the same symbol for sort union as we used for combining alternatives in grammars. Thinking of sorts

of data as sets (which isn't quite right, but close enough for now) we may regard as ordinary set union; it is

associative, commutative, and idempotent.

1

Although sort equations look a bit like the so-called domain equations

used in denotational semantics, their formal interpretation is quite di�erent. The use of2 above formally expresses

an inclusion, as it leaves open what other sorts might be included in datum and sendable.

1

Idempotency of means X X = X .

33

34 APPENDIX A. AN ILLUSTRATIVE EXAMPLE, CTD.

A.1.2 Values

introduces: value .

includes: [Mos92]/Data Notation/Instant/Distinction (value for s , is).

� value = truth-value number (disjoint) .

A.1.3 Variables

introduces: variable ,

assign to , the assigned to , allocate for , dispose of .

� assign to :: yielder [of value], yielder [of variable] ! action [storing] .

� the assigned to :: value, yielder [of variable]! yielder [of value] .

� allocate for :: variable, yielder [of type] ! action [giving a variable storing] .

� dispose of :: yielder [of variable] ! action [storing] .

(1) variable = cell .

(2) assign (Y

1

:yielder [of value]) to (Y

2

:yielder [of variable]) =

store the storable yielded by Y

1

in the cell yielded by Y

2

.

(3) the (v�value) assigned to (Y :yielder [of variable]) =

the (v & storable) stored in the cell yielded by Y .

(4) allocate (v�variable) for (Y :yielder [of type]) =

allocate a cell .

(5) dispose of (Y :yielder [of variable]) =

unreserve the cell yielded by Y .

For simplicity here, we do not bother to distinguish between cells for storing di�erent sorts of values, so the type

entities are quite redundant. In a more realistic example, the speci�cation of variable allocation and assignment

can become quite complex.

The standard action store Y

1

in Y

2

changes the data stored in the cell yielded by Y

2

to the storable data

yielded by Y

1

. The cell concerned must have been previously reserved, using reserve Y , otherwise the storing

action fails. Here, Y has to yield a particular, individual cell.

allocate a cell abbreviates the following hybrid action:

indivisibly

choose a cell [not in the mapped-set of the current storage] then

reserve the given cell and give it .

Reserved cells are made available for reuse by unreserve Y , where Y yields an individual cell.

A.1.4 Types

introduces: type , boolean-type ,

integer-type , real-type .

� type = boolean-type integer-type real-type (individual) .

A.1.5 Numbers

introduces: number , integer-number , real-number , min-integer , max-integer ,

integer-number of , real-number of , negation , absolute ,

sum , di�erence , product , quotient , modulo , remainder .

� number = integer-number real-number .

� min-integer , max-integer : integer .

� integer-number of :: integer ! integer-number (partial) .

� real-number of :: rational ! real-number (partial) .

� negation , absolute :: number ! number (partial) .

� sum , di�erence , product , quotient ::

number

2

! number (partial) .

A.1. SEMANTIC ENTITIES 35

� modulo , remainder :: integer-number

2

! integer-number (partial) .

� is , is less than , is greater than ::

integer-number, integer-number ! truth-value (total) ,

real-number, real-number ! truth-value (total) .

(1) i : integer [min min-integer] [max max-integer]) integer-number of i : integer-number .

(2) i : integer [min successor max-integer]) integer-number of i = nothing .

(3) i : integer [max predecessor min-integer]) integer-number of i = nothing .

(4) real-number of (r :approximation) : real-number .

(5) real-number of (r :interval approximation) : real-number of (approximately r) .

(6) integer-number of i : integer-number)

(1) negation integer-number of i = integer-number of negation i ;

(2) absolute integer-number of i = integer-number of absolute i .

(7) integer-number of i

1

: integer-number ; integer-number of i

2

: integer-number)

(1) sum (integer-number of i

1

, integer-number of i

2

) = integer-number of sum (i

1

, i

2

) ;

(2) di�erence (integer-number of i

1

, integer-number of i

2

) = integer-number of di�erence (i

1

, i

2

) ;

(3) product (integer-number of i

1

, integer-number of i

2

) = integer-number of product (i

1

, i

2

) ;

(4) quotient (integer-number of i

1

, integer-number of i

2

) =

integer-number of integer-quotient (i

1

, i

2

) ;

(5) modulo (integer-number of i

1

, integer-number of i

2

) =

integer-number of integer-modulo (i

1

, i

2

) ;

(6) remainder (integer-number of i

1

, integer-number of i

2

) =

integer-number of integer-remainder (i

1

, i

2

) .

(8) real-number of r : real-number)

(1) negation real-number of r = real-number of negation r ;

(2) absolute real-number of r = real-number of absolute r .

(9) real-number of r

1

: real-number ; real-number of r

2

: real-number)

(1) sum (real-number of r

1

, real-number of r

2

) : real-number of sum (r

1

, r

2

) ;

(2) di�erence (real-number of r

1

, real-number of r

2

) : real-number of di�erence (r

1

, r

2

) ;

(3) product (real-number of r

1

, real-number of r

2

) : real-number of product (r

1

, r

2

) ;

(4) quotient (real-number of r

1

, real-number of r

2

) : real-number of quotient (r

1

, r

2

) .

(10) integer-number of i

1

: integer-number ; integer-number of i

2

: integer-number)

(1) integer-number of i

1

is integer-number of i

2

= i

1

is i

2

;

(2) integer-number of i

1

is less than integer-number of i

2

= i

1

is less than i

2

;

(3) integer-number of i

1

is greater than integer-number of i

2

= i

1

is greater than i

2

.

(11) real-number of r

1

: real-number ; real-number of r

2

: real-number)

(1) real-number of r

1

is real-number of r

2

= r

1

is r

2

;

(2) real-number of r

1

is less than real-number of r

2

= r

1

is less than r

2

;

(3) real-number of r

1

is greater than real-number of r

2

= r

1

is greater than r

2

.

The speci�cation of real arithmetic uses a loosely-speci�ed sort of rational approximations and intervals, to avoid

insisting that implementations should be exact. Similarly, there are loosely-speci�ed bounds on integers.

A.1.6 Subprograms

A.1.6.1 Modes

introduces: mode , constant-mode , reference-mode , copy-mode .

� mode = constant-mode copy-mode reference-mode (individual) .

includes: Data Notation/Instant/Distinction (mode for s , is).

(1) distinct (constant-mode, reference-mode, copy-mode) = true .

36 APPENDIX A. AN ILLUSTRATIVE EXAMPLE, CTD.

A.1.6.2 Arguments

introduces: argument , copy-back .

� argument = value variable .

� copy-back :: map [token to variable] ! action [completing storing] .

privately introduces: copy-back from .

(1) copy-back (Y :yielder [of map [token to variable]]) =

copy-back Y from the elements of the mapped-set of Y .

(2) copy-back (Y

1

:yielder [of map [token to variable]]) from (Y

2

:yielder [of token

*

]) =

check (Y

2

is ()) or

assign (the value assigned to the variable bound to the �rst of Y

2

)

to the variable yielded by (Y

1

at the �rst of Y

2

) and then

dispose of the variable yielded by (Y

1

at the �rst of Y

2

) and then

copy-back Y

1

from the rest of Y

2

.

A.1.6.3 Procedures

introduces: procedure , procedure of , procedure-abstraction ,

parameterless , parameterized , modalized ,

formal-modes .

� procedure of :: abstraction ! procedure (partial) .

� procedure-abstraction :: procedure ! abstraction (total) .

� parameterless , parameterized :: procedure ! procedure (partial) .

� modalized :: (modes, procedure) ! procedure (partial) .

� formal-modes :: procedure ! modes (partial) .

(1) a : action [completing diverging storing communicating]

[using given arguments current storage current bu�er])

procedure of abstraction of a : procedure .

(2) p = procedure of a) the procedure-abstraction of p:procedure = a .

(3) p = procedure of a)

parameterless p:procedure : procedure ; parameterized p:procedure : procedure .

(4) p = parameterless procedure of a) the procedure-abstraction of p:procedure = a .

(5) p = parameterized procedure of a) the procedure-abstraction of p:procedure = a .

(6) p = parameterized modalized (m:modes, procedure of a))

(1) the procedure-abstraction of p:procedure = a ;

(2) the formal-modes of p:procedure = m .

A.1.7 Tasks

introduces: task-agent , task , task of , task-abstraction , initial task-action ,

signal , begin-signal , done-signal , terminated-signal ,

entry , entry of , is entered in .

� task-agent � agent .

� task of :: abstraction ! task (total) .

� task-abstraction :: task ! abstraction (total) .

� signal = begin-signal done-signal terminated-signal (individual) .

� initial task-action : action .

� entry of :: token ! entry (total) .

� is entered in :: entry, bu�er ! truth-value (total) .

(1) t = task of a) task-abstraction t :task = a .

A.1. SEMANTIC ENTITIES 37

(2) initial task-action =

send a message [to the contracting-agent] [containing the performing-agent] and then

receive a message [from the contracting-agent] [containing a task]

then

send a message [to the contracting-agent] [containing the begin-signal] and then

enact the task-abstraction of the task yielded by the contents of the given message .

(3) entry of k

1

:token is entry of k

2

:token = k

1

is k

2

.

(4) e:entry is entered in empty-list = false .

(5) e:entry is entered in list of m:message [containing an entry] = e is the contents of m .

(6) e:entry is entered in list of m:message [containing a signal agent task] = false .

(7) e:entry is entered in concatenation (b

1

:bu�er, b

2

:bu�er) =

either (e is entered in b

1

, e is entered in b

2

) .

A.1.8 Escapes

introduces: escape-reason , exit , procedure-return .

� escape-reason = exit procedure-return (individual) .

A.1.9 Required Bindings

introduces: required-bindings .

� required-bindings : map [token to value type] .

(1) required-bindings = disjoint-union of (map of \TRUE" to true,

map of \FALSE" to false,

map of \BOOLEAN" to boolean-type,

map of \MININT" to integer-number min-integer,

map of \MAXINT" to integer-number max-integer,

map of \INTEGER" to integer-type,

map of \REAL" to real-type) .

Appendix B

Action Notation

The systematic informal description of (almost all of) action notation summarizes the explana-

tions given in Chapter 3, and gives further details. It is intended for reference. The usage of the

notation is illustrated in the semantic description in Chapter 3.

The symbols of action notation are explained in the order indicated below. See Section 2.2.2

for the general concept of actions.

Action Notation

Basic.

Functional.

Declarative.

Imperative.

Re
ective.

Communicative.

Hybrid.

Facets

Outcomes.

Incomes.

Actions.

Yielders.

B.1 Basic Action Notation

Basic action notation is primarily concerned with specifying
ow of control in performances of actions. It includes

basic notation for data as well, see Appendix C.

B.1.1 Actions

� All primitive basic actions:

{ Give no transients, except for escape.

{ Produce no bindings.

{ Make no changes to storage.

{ Do not communicate.

� All basic action combinators are:

{ Functionally conducting (see the basic action A

1

and A

2

), except for A

1

trap A

2

, which is functionally

composing (see the functional action A

1

then A

2

in Section B.2.1).

38

B.1. BASIC ACTION NOTATION 39

{ Declaratively conducting (see the basic action A

1

and A

2

).

� complete: a primitive basic action. Represents normal termination. Unit for A

1

and A

2

, as well as for A

1

and then A

2

.

{ Indivisible. Always completes.

� escape: a primitive basic action. Represents abnormal termination. Unit for A

1

trap A

2

.

{ Indivisible. Always escapes.

{ Gives any given transients.

� fail: a primitive basic action. Represents abortion of the current alternative. Unit for

A

1

or A

2

.

{ Indivisible. Always fails.

� commit: a primitive basic action. Represents commitment to the current alternative, cutting away other

current alternatives.

{ Indivisible. Always commits and completes.

� unfold: a dummy action, standing for the innermost enclosing unfolding.

� unfolding A: Represents the (in general, in�nite) action formed by continually substituting A for unfold.

(To avoid singularities in pathological cases, substitute complete and then A, rather than just A.)

{ Performs A, but whenever the dummy action unfold is reached, A is performed in place of unfold.

� indivisiblyA: a basic combination of action A. Represents that the steps of performing A are not interleaved

with those of other actions performed by the same agent. Also ensures that the performance of A cannot

be interrupted by an escape or failure occurring outside A. For use only when A cannot diverge.

{ Indivisible: A is performed as a single step.

� A

1

or A

2

: a basic combination of actions A

1

, A

2

. Represents implementation-dependent choice; specializes

to deterministic choice when one or the other of A

1

, A

2

must fail.

{ Performs either A

1

or A

2

. When the performed alternative fails without committing, it is ignored

and the other alternative is performed instead.

{ All the transients given to the combination of A

1

, A

2

are given to the performed alternative. On

normal or abnormal termination, all the transients given by the performed alternative are given by

the combined action.

{ All the bindings received by the combination of A

1

, A

2

are received by the performed alternative.

On normal termination, all the bindings produced by the performed alternative are produced by the

combined action.

� A

1

and A

2

: a basic combination of actions A

1

, A

2

. Represents implementation-dependent order of per-

formance of indivisible subactions, specializing to independent performance when there is no interference

between A

1

and A

2

.

{ Basically interleaving: Performs both A

1

, A

2

, with arbitrary interleaving of their indivisible steps.

An escape or a failure causes any remaining parts of the subactions to be skipped.

{ Functionally conducting: The transients given to the combination of A

1

, A

2

is given to both A

1

, A

2

.

On normal termination, all the transients given by A

1

, A

2

is collected and given by the combined

action|if both give one or more items of transients, these are tupled in the given order. On escape,

only the transients given by the escape is given by the combined action.

{ Declaratively conducting: The bindings received by the combination of A

1

, A

2

are received by both

A

1

, A

2

. On normal termination, all the bindings produced by A

1

, A

2

are collected and produced by

the combined action|provided that the bindings are all for distinct tokens, otherwise the combined

action fails.

� A

1

and then A

2

: a basic combination of actions A

1

, A

2

. Represents dependency on normal termination.

40 APPENDIX B. ACTION NOTATION

{ Basically (normal) sequencing: Performs A

1

�rst. If A

1

completes, performs A

2

.

� A

1

trap A

2

: a basic action combination. Represents recovery from abnormal termination.

{ Performs A

1

�rst. If A

1

escapes, performs A

2

.

{ Functionally composing (see the functional action A

1

then A

2

in Section B.2.1).

� action: the sort of all actions. See Section B.8.3 for notation for subsorts of action.

B.1.2 Yielders

� the d yielded by Y : a yielder, where d is a sort of data and Y is a yielder. When Y yields an individual,

it yields that individual, provided that the individual is included in the sort, otherwise it yields nothing.

� Every data-operation (i.e., operation speci�ed for arguments included in data) is extended to arguments of

sort yielder. The application of a data operation to yielders yields whatever is yielded by applying the data

operation to the data yielded by the arguments. For instance, sum (Y

1

, Y

2

) yields the numerical sum of

whatever Y

1

and Y

2

yield.

� yielder: the sort of all yielders. See Section B.8.4 for notation for subsorts of yielder.

B.1.3 Data

� datum: a sort. Its individuals represent items of data. Left open, as it depends on the variety of information

processed by the programs of a programming language. Includes generally-useful sorts from data notation

(see Appendix C), except for tuples. Similarly for distinct-datum, the sort of datum whose individuals are

distinguished by the operation is .

� data: a sort. Its individuals represent tuples, i.e., ordered collections of individuals of sort datum, which

may also be processed as transient information (see Section B.2.3).

� a d : the same data as d . Only used to improve the readability of the notation. Similarly for an d , the d ,

of d , and some d . Thus an application of an operation op to arguments x can be written as op x , op of x ,

and the op of x . Note that the words `the' and `of' are obligatory parts of some other operation symbols.

(Compare the HyperCard scripting language, HyperTalk [Goo87].)

B.2 Functional Action Notation

Functional action notation is primarily concerned with specifying the processing of transient information (data).

B.2.1 Actions

� All primitive functional actions:

{ Do not commit.

{ Produce no bindings.

{ Make no changes to storage.

{ Do not communicate.

� All functional action combinators are:

{ Declaratively conducting (see the basic action A

1

and A

2

in Section B.1.1).

� give Y : a primitive functional action, where Y is a data yielder. Represents creating a piece of transient

information.

{ Indivisible. Completes when Y yields data. Fails when Y yields nothing.

{ Gives the data yielded by Y .

B.3. DECLARATIVE ACTION NOTATION 41

� escape with Y : a primitive functional action, where Y is a data yielder. Represents escaping with a piece

of transient information, which may be used to distinguish di�erent reasons for escape.

{ Indivisible. Escapes when Y yields data. Fails when Y yields nothing.

{ Gives the data yielded by Y .

� regive: a primitive functional action. Represents propagation of transient information, i.e., data. Unit for

A

1

then A

2

.

{ Indivisible. Always completes.

{ Gives any given data.

� choose Y : a functional action, where Y is a data yielder. Represents implementation-dependent choice

between a possibly in�nite collection of individual items of data.

{ Indivisible. Completes when Y yields a sort including a data individual. Fails when Y yields nothing.

{ Gives any individual data of the sort yielded by Y .

� check Y : a functional action, where Y is a truth-value yielder. Represents a guard checking that a condition

is true.

{ Indivisible. Completes when Y yields true. Fails when Y yields false (or nothing).

{ Gives no data.

� A

1

then A

2

: a functional combination of actions A

1

, A

2

. Represents passing on transient information

normally.

{ Basically sequencing (see the basic action A

1

and then A

2

in Section B.1.1).

{ Functionally composing: The transients given to the combination of A

1

, A

2

are given to A

1

. Only

the transients given by A

1

are given to A

2

(provided that A

2

is performed). Only the transients

given by A

2

are given by the combined action.

B.2.2 Yielders

� given d : a data yielder, where d is a sort of data. Yields the transient data given to its evaluation, provided

that the data is of sort d .

� given d#p: a datum yielder, where d is a sort of datum and p is a positive integer. Yields the p'th

component of the transient data given to its evaluation, provided that the datum is of sort d .

� it: a datum yielder. Yields the single datum given to its evaluation as a transient.

� them: a data yielder. Yields all the data given to its evaluation as transients.

B.2.3 Data

� data: a sort. Its individuals represent ordered collections, i.e., tuples, of individuals of sort datum, processed

as transient information.

B.3 Declarative Action Notation

Declarative action notation is primarily concerned with specifying the processing of scoped information (bindings).

B.3.1 Actions

� All primitive declarative actions:

{ Do not commit.

{ Give no transients.

42 APPENDIX B. ACTION NOTATION

{ Make no changes to storage.

{ Do not communicate.

� All declarative action combinators are:

{ Functionally conducting (see the basic action A

1

and A

2

in Section B.1.1).

� bind T to Y : a primitive declarative action, where T is a token and Y is a yielder of bindable data.

Represents creating a piece of scoped information.

{ Indivisible. Completes when Y yields data of sort bindable. Fails otherwise.

{ Produces the binding of the token T to the bindable data.

� unbind T : a primitive declarative action, where T is a token. Represents hiding a piece of scoped informa-

tion, making a hole in its scope.

{ Indivisible. Completes.

{ Produces the binding of the token T to the datum unknown.

� rebind: a primitive declarative action. Represents propagation of scoped information. Unit for the declar-

ative action A

1

hence A

2

.

{ Indivisible. Always completes.

{ Produces all received bindings.

� produce Y : a primitive declarative action. Represents production of rei�ed scoped information.

{ Indivisible. Completes when Y yields a datum of sort bindings.

{ Produces the bindings yielded by Y .

� furthermore A: a declarative combination of the action A. Represents propagating the received bindings,

but letting bindings produced by A take precedence when there is a con
ict.

{ Basically as A.

{ Functionally as A.

{ Declaratively as rebind moreover A.

� A

1

moreover A

2

: a declarative combination of actions A

1

, A

2

. Like A

1

and A

2

, but gives priority to bindings

produced by A

2

.

{ Basically interleaving (see the basic action A

1

and A

2

in Section B.1.1).

{ Declaratively overlaying: The bindings received by the combination of A

1

, A

2

are received by both

A

1

, A

2

. On normal termination the bindings produced by A

1

, overlaid with those produced by A

2

,

are produced by the combined action.

� A

1

hence A

2

: a declarative combination of actions A

1

, A

2

. Represents passing on scoped information,

restricting the bindings received by A

2

.

{ Basically sequencing (see the basic action A

1

and then A

2

in Section B.1.1).

{ Declaratively composing: The bindings received by the combination of A

1

, A

2

are received by A

1

.

Only the bindings produced by A

1

are received by A

2

(provided that it is performed). Only the

bindings produced by A

2

are produced by the combined action.

� A

1

before A

2

: a declarative combination of actions A

1

, A

2

. Represents accumulating scoped information.

{ Basically sequencing (see the basic action A

1

and then A

2

in Section B.1.1).

{ Declaratively accumulating: The bindings received by the combination of A

1

, A

2

are received by

A

1

. The bindings received by the combined action, overlaid with the bindings produced by A

1

, are

received by A

2

(provided that it is performed). On normal termination the bindings produced by

A

1

, overlaid with those produced by A

2

, are produced by the combined action.

B.4. IMPERATIVE ACTION NOTATION 43

B.3.2 Yielders

� current bindings: a yielder of bindings maps. Yields the collection of bindings received by its evaluation.

� the d bound to T : a yielder of bindable data, where d is a sort of data and T is a token. Yields the data

of sort d to which T is bound by the received bindings, if any.

B.3.3 Data

� bindings: a subsort of map. Its individuals represent collections of associations between tokens and bindable

(or unknown) individuals.

� token: a subsort of distinct-datum. Left unspeci�ed, as it depends on the variety of identi�ers of a program-

ming language. (Usually, it is a subsort of string.)

� bindable: a subsort of data. Left open, as it depends on the variety of scoped information processed by the

programs of a programming language.

B.4 Imperative Action Notation

Imperative action notation is primarily concerned with specifying the processing of stable information (storage).

B.4.1 Actions

� All primitive imperative actions:

{ Give no transients.

{ Produce no bindings.

{ Do not communicate.

� There are no special imperative action combinators.

� store Y

1

in Y

2

: a primitive imperative action, where Y

1

is a yielder of storable data and Y

2

is a yielder of

cells. Represents changing an atomic piece of stable information.

{ Indivisible. Commits and completes when Y

2

yields a reserved cell and Y

1

yields storable data. Fails

otherwise.

{ Stores the storable yielded by Y

1

in the cell yielded by Y

2

.

� reserve Y : a primitive imperative action, where Y is a yielder of cells. Represents extending stable

information with an extra, uninitialized piece.

{ Indivisible. Commits and completes when Y yields an unreserved cell. Fails otherwise.

{ Reserves the cell yielded by Y and stores the datum uninitialized in it.

� unreserve Y : a primitive imperative action, where Y is a cell yielder. Represents destroying stable infor-

mation.

{ Indivisible. Commits and completes when Y yields a reserved cell. Fails otherwise.

{ Unreserves the cell yielded by Y .

B.4.2 Yielders

� current storage: a yielder of storage maps. Yields the state of storage.

� the d stored in Y : a yielder of storable data, where d is a sort of data and Y is a yielder of cells. Yields

the data of sort d stored in the cell yielded by Y according to the current storage, provided that the cell

is currently reserved.

44 APPENDIX B. ACTION NOTATION

B.4.3 Data

� storage: a subsort of map. Its individuals represents states of stable information, associating cells with

storable (or uninitialized) individuals.

� cell: a subsort of distinct-datum. Its individuals represent the locations of pieces of stable information. Left

loosely-speci�ed, as the details are implementation-dependent.

� storable: a subsort of data. Left unspeci�ed, as it depends on the variety of stable information processed

by the programs of a programming language.

B.5 Re
ective Action Notation

Re
ective action notation is concerned with specifying the rei�cation of actions and information as abstractions,

and with the re
ection of abstractions as actions.

B.5.1 Actions

� enact Y : a re
ective action, where Y is a yielder of abstractions. Represents performing an action in a

context di�erent from that of its occurrence.

{ Performs the action incorporated in the abstraction yielded by evaluating Y .

{ The performance of the incorporated action is given no data. (But see the abstraction yielder

application d

1

to d

2

.)

{ The performance of the incorporated action receives no bindings. (But see the abstraction yielder

closure d .)

B.5.2 Yielders

� application d

1

to d

2

: an abstraction, when d

1

is an abstraction and d

2

is data. Incorporates the same action

as d

1

, except that the incorporated action is given d

2

as transients whenever the abstraction is enacted.

Represents supplying transients to an abstraction (precluding the supply of further transients).

This operation extends to yielders Y

1

, Y

2

in the usual way: it is evaluated by applying the above operation

to the data yielded by evaluating Y

1

, Y

2

.

� closure d : an abstraction yielder, where d is an abstraction. Yields an abstraction which incorporates the

same action as d , except that the incorporated action receives particular bindings whenever the abstraction

is enacted. The bindings are those current for the evaluation of closure d .

This operation extends to yielders Y in the usual way: it is evaluated by applying the above operation to

the datum yielded by evaluating Y .

The yielder closure abstraction of A represents rei�cation of an action as an abstraction with static bindings.

The action enact the closure of a given abstraction represents re
ection of an abstraction with dynamic

bindings (unless static bindings were already supplied to it). The action enact a given abstraction represents

re
ection of an abstraction with no bindings (unless static bindings were already supplied to it).

B.5.3 Data

� abstraction: the sort of datum that incorporates (i.e., rei�es) an action. The incorporated action is per-

formed when the abstraction is enacted (i.e., re
ected).

� abstraction of A: an abstraction, where A is an action. Incorporates A. Represents (a pointer to) the `code'

implementing A. Yielders occurring in A do not get evaluated when the abstraction is evaluated: they are

left for evaluation during the performance of the incorporated action.

B.6 Communicative Action Notation

Communicative action notation is primarily concerned with specifying the processing of permanent information

(communications).

B.6. COMMUNICATIVE ACTION NOTATION 45

B.6.1 Actions

� All primitive communicative actions:

{ Give no transients.

{ Produce no bindings.

{ Make no changes to storage.

� There is only a unary communicative action combinator .

� send Y : a primitive communicative action, where Y yields a sort of message. Represents initiating the

transmission of a message. The usual form of Y is a message [to Y

1

] [containing Y

2

], where Y

1

and Y

2

yield individuals.

{ Indivisible. Commits and completes when the sort of message yielded by Y includes a message from

the current performer (with the next serial number). Fails otherwise.

{ Emits a message of the sort yielded by Y . The serial number of the message is the successor of

that of the previous message sent (or contract o�ered) by the performing agent. Message transmis-

sion is reliable, but each message takes an implementation-dependent `time' to arrive (so message

transmission between two particular agents is not necessarily order-preserving).

� remove Y : a primitive communicative action, where Y is a yielder of individual messages. Represents that

a particular message in the bu�er has been processed and is to be discarded.

{ Indivisible. Commits and completes when the message yielded by Y is in the bu�er. Fails otherwise.

{ Removes the message yielded by Y from the bu�er.

� o�er Y : a primitive communicative action, where Y yields sort of contract. Represents initiating the

arrangement of a contract with another, perhaps only partially speci�ed, agent. The usual form of Y is a

contract [to an agent] [containing abstraction of A], where A is the action to be performed according to the

contract.

{ Indivisible. Commits and completes when the sort of contract yielded by Y includes an individual

contract from the performer. Fails otherwise.

{ Gives no data.

{ Requests the arrangement of a contract of the sort yielded by Y . O�ered contracts are distinguished

by serial numbers, as with sent messages. The arrangement of a contract takes an implementation-

dependent `time', which must be �nite when there is a continually uncontracted agent of the speci�ed

sort.

� patiently A: a communicative action, where A is an action. Represents busy waiting while A fails. Only

useful when A refers to information that may change due to some other action, for instance, the messages

in the bu�er.

{ Performs A indivisibly, but not indivisible itself. If the performance fails it tries again. Thus it

diverges when A always fails.

{ Functionally as A.

{ Declaratively as A.

B.6.2 Yielders

� current bu�er: a yielder of bu�ers. Yields the list of messages that have appeared in the bu�er, but which

have not yet been removed. The messages are listed in the order of their arrival in the bu�er.

� performing-agent: a yielder of agents. Yields (the identity of) the agent that is performing the enclosing

action.

� contracting-agent: a yielder of agents. Yields (the identity of) the agent that o�ered the contract to the

performer.

46 APPENDIX B. ACTION NOTATION

B.6.3 Data

� agent: a sort of datum. An agent identi�es a potential process of performing an action, representing a piece

of distributed processing. It is loosely-speci�ed, as the maximum number and distribution of processes is

usually implementation-dependent.

Each agent has its own bu�er and storage. It is inactive until it accepts a contract to perform an action,

whereafter it remains active for ever, even after the termination of the contracted action.

� user-agent: a distinguished agent. It corresponds to the environment of a program, providing input and

accepting output. The user agent is initially the only agent with a contract.

� bu�er: a sort of datum. A bu�er is a list of messages sent to the same agent, in the order of their arrival.

� communication: a sort of datum. Individual communications represent information that can be transmitted

by agents. Communications have components indicating their sender, receiver, and contents. Moreover,

each communication is distinguished by a serial number determined by the sender.

� message: a subsort of communication. Messages can be sent directly from one agent to another.

� sendable: a sort of data. The data that can be the contents of messages sent between agents. Left open, as

it depends on the variety of permanent information processed by the programs of a programming language.

(Speci�ed to include abstraction and agent to allow proper use of subordinate Y .)

� contract: a subsort of communication. Contracts can be o�ered by one agent to another (sort of) agent.

The contents of a contract is the abstraction to be enacted by an agent accepting the contract.

� contents d : data, where d is a communication. The data contained in d .

� sender d : a datum, where d is a communication. The agent that sends d .

� receiver d : a datum, where d is a communication. The agent that receives d .

� serial d : a datum, where d is a communication. The serial number of d , determined locally when it is

emitted.

� d [containing d

1

]: a subsort of communication, where d

1

is a (sort of) data, and d is a sort of communication.

It includes only those communications in d whose contents is (of sort) d

1

.

� d [from d

1

]: a subsort of communication, where d

1

is a (sort of) agent, and d is a sort of communication.

It includes only those communications in d whose sender is (of sort) d

1

.

� d [to d

1

]: a subsort of communication, where d

1

is a (sort of) agent, and d is a sort of communication. It

includes only those communications in d whose receiver is (of sort) d

1

.

� d [at d

1

]: a subsort of communication, where d

1

is a (sort of) natural number, and d is a sort of communi-

cation. It includes only those communications in d whose serial number is (of sort) d

1

.

B.7 Hybrid Action Notation

Hybrid action notation consists of some useful abbreviations for compound actions involving more than one kind

of information, together with some hybrid combinators that mix various facets of the other combinators. There

are also some hybrid data operations.

B.7.1 Actions

� allocate d : an imperative and functional action, where d is a sort of cell. Represents implementation-

dependent choice and reservation of a cell of sort d .

{ Indivisible. Commits and completes when there is an unreserved cell of sort d . Fails otherwise.

{ Reserves some cell of sort d .

{ Gives the reserved cell.

� receive Y : a communicative and functional action, where Y yields a sort of message. Represents waiting

for a message to arrive in the bu�er. The usual form of Y is a restriction such as a message [from Y

1

]

[containing Y

2

], where Y

1

, Y

2

may yield sorts or individuals.

B.8. FACETS 47

{ Patiently waits for a message of the sort yielded Y to arrive, then commits and completes. Otherwise

diverges.

{ Chooses and gives any received message of the sort yielded by Y .

{ Removes the chosen message from the bu�er.

� A

1

thence A

2

: a declarative and functional hybrid combination of actions A

1

, A

2

. Like

A

1

then A

2

for control and transients, and like A

1

hence A

2

for bindings.

B.7.2 Yielders

� There are no hybrid yielders.

B.7.3 Data

� owner d : an agent, where d is a cell or an indirection. The agent where it is located.

� d [on d

1

]: a subsort of cell, where d

1

is a (sort of) agent, and d is a sort of cell. It includes only those cells

in d whose owner is (of sort) d

1

. Similarly when d is a (sort of) indirection.

B.8 Facets

The facets of actions and yielders are obtained by focusing on particular kinds of information. The notation

summarized below is used for expressing sorts of actions and yielders.

B.8.1 Outcomes

� outcome: a sort of auxiliary entities, used for specifying sorts of actions. Sort union O

1

O

2

combines

outcomes. (The various outcomes below are disjoint, so there is no use for specifying their intersections.)

� giving d : allows normal termination that always gives transients included in the data sort d . completing

abbreviates giving (), where () is the empty tuple of data.

� escaping with d : allows abnormal termination that always gives transients included in the data sort d .

escaping abbreviates escaping with data.

� binding: allows normal termination that optionally produces some bindings. The union outcome giving

d binding allows normal termination that always gives transients of sort d and optionally produces some

bindings. The use of binding alone implies completing.

� failing: ignored. (Most compound actions that use information fail when that information is not made

available to their performance.)

� committing: allows commitment, independently of termination. Included in storing, and communicating,

which are analogous.

� diverging: allows nontermination. Actions without this sort of outcome are guaranteed to terminate,

whereas those with this outcome might or might not terminate. Actions that contain any occurrence of

unfolding or enact Y have this sort of outcome, unless they are equivalent to other actions that do not have

it.

B.8.2 Incomes

� income: a sort of auxiliary entities, used for specifying sorts of actions and yielders. Sort union I

1

I

2

combines incomes. (The various incomes below are disjoint, so there is no use for specifying their intersec-

tions.)

� given d : allows use of given transients of the data sort d . More speci�cally, the income given d#p speci�es

possible use of the p'th component of the given transients, this being of datum sort d .

� current bindings: allows use of received bindings.

48 APPENDIX B. ACTION NOTATION

� current storage: allows use of storage.

� current bu�er: allows use of the message bu�er.

B.8.3 Actions

� action: the sort of all actions. Its subsort primitive-action includes not only the actions described in this

Appendix as primitive, but also compound actions that are equivalent to them, e.g., complete and then

escape, which is equivalent to escape.

� A [O]: a sort of action, where A is a sort of action and O is a sort of outcome. Restricts A to those

actions which, whenever performed, either fail or have an outcome whose termination properties and kind

of information processing are included in O. Note that A [O

1

] A [O

2

] is generally a proper subsort of A

[O

1

O

2

], whereas A [O

1

] & A [O

2

] is the same sort as A [O

1

& O

2

], which can also be written as A [O

1

]

[O

2

].

� A [using I]: a sort of action, where I is a sort of income. Restricts A to those actions which, whenever

performed, perhaps evaluate yielders that refer to the current information indicated by I . Compare Y

[using I], where Y is a sort of yielder, below.

B.8.4 Yielders

� yielder: the sort of all yielders.

� Y [d]: a sort of yielder, where Y is a sort of action and d is a sort of data. Restricts Y to those yielders

which, whenever evaluated, yield data included in d . Note that the union sort Y [d

1

] Y [d

2

] is generally

a proper subsort of Y [d

1

d

2

], whereas Y [d

1

] & Y [d

2

] is the same sort as Y [d

1

& d

2

], which can also

be written as Y [d

1

] [d

2

].

� Y [of d]: equivalent to Y [d], but a yielder [of an integer] reads a bit more naturally than yielder [integer].

� Y [using I]: a sort of yielder, where I is a sort of income. Restricts Y to those yielders which, whenever

evaluated, refer at most to the current information indicated by I .

Appendix C

Data Notation

This Appendix will provide an informal summary of the data notation used in the example.

49

Bibliography

[Goo87] Danny Goodman. The Complete HyperCard Handbook. Bantam, 1987.

[Mos90] Peter D. Mosses. Denotational semantics. In J. van Leeuwen, A. Meyer, M. Nivat,

M. Paterson, and D. Perrin, editors, Handbook of Theoretical Computer Science, vol-

ume B, chapter 11. Elsevier Science Publishers, Amsterdam; and MIT Press, 1990.

[Mos92] Peter D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 1992.

[Plo77] Gordon D. Plotkin. LCF considered as a programming language. Theoretical Computer

Science, 5:223{255, 1977.

[Sto88] Allen Stoughton. Fully Abstract Models of Programming Languages. Pitman & John

Wiley, 1988.

50

