
AD-8144 446
ADAM: AN ABSTRACT DA~TABASE

MACHINE(U) ROYAL SIGNALS
AND i/i

RADAR ESTABLISHMENT MALVERN (ENGLAND)
UMCR N EPEELING ET AL. MAY 84 RSRE-84007 DRIC-BR-9229i

UNCLASSIFIED FG92 N

o IhEEEohhohmhI

- - .

Val.

i

MICROCOPY RESOLUTION TEST CHART[

NATIONAL BUREAU OF STANDARDS- 1963-A

Ilk0-.S

UNLIMITC-_ 9 1Z9:_

C) rrReport No. 84007

ROYAL SIGNALS AND RADAR ESTABLISHMENT,

M MALVERN

4..

0

C.

t-4.

M 1
ADAM: AN ABSTRACT DATABASE MACHINE

Author: N E Peeling, J D Morison
E V Whiting

C,

LUJ

LL-.

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

M'alvern, Worcestershire.

May 1984

UNLIMITED 84 08 07 'iG0

U AILU i I ED

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report 84007

TITLE: ADAM: AN ABSTRACT DATABASE MACHINE

AUTHORS: N E Peeling, J D Morison, E V Whiting

DATE: May 1984 0

SUMMARY S

DAM extends a programming language to allow data on disc to be

handled as easily as in-store data. It is a set of read/write

and disc management procedures. These procedures work within

standard random-access files in the filestore of the host

operating system.

Ace :sion For

NTIS GRA&I
DTIC TAB
Unannounced

Justificatono

Dir-tr:' .. /

Codes

i t

A:(-

Copyright

C
Control ler HMSO London

UNLiII KD
ADAM

CONTENTS
0

1 INTRODUCTION

2 THE ADAM PACKAGE

2.1 ADAM MODEs

2.2 ADAM constants

2.3 ADAM procedures

2.3.1 Reading and writing procedures

2.3.2 Database Management procedures

3 EFFICIENCY CONSIDERATIONS

3.1 Efficient Useage of Space in the Database

3.2 Efficient Useage of In-store Space

4 EXAMPLES

4.1 Writing data to an ADAM database

4.2 Reading data from an ADAM database

4.3 Changing data in an ADAM database

5 ACKNOWLEDGEMENTS

_

-S

r.

1 INTRODUCTION -

- ADAM extends a programming language to allow data on disc to be

handled as easily as in-store data. It is a set of read/write and

disc management procedures. These procedures work within standard

random-access files in the filestore of the host operating system.

- Data of variable length is automatically allocated space in the

file. Write procedures are of the form "here is some data, write

it away and give me a pointer to it". Read procedures are of the

form "here is a pointer, give me the data that it points to".

-ADAM is specifically designed to provide a high-integrity

environment for data storage. This integrity does not rely on any

features of the host operating system other than its ability not to

corrupt its own filestore. ADAM has no operations that have to be

used in a particular way to avoid compromising the integrity of the

data in the files. ADAM is a non-overwriting system in which all

data is ultimately accessible from a single pointer (called the

root). Only the root can be assigned to. It is impossible to

change the data that a pointer points to (this does not preclude -

the modification of the contents of the files, as will be explained

later). This means that the data accessed from the root is

completely unchanged until the root is changed. As a result the

premature termination of a program (due to a program bug, or a

machine crash, or a user induced break-in) cannot leave the file in

a partially updated form.

--

I"t -k-

20

- The data in the database is held as a tree structure. The root 0

points to a block that can contain pointers to other blocks that can

themselves contain pointers (and so on). To modify data the pointer

chain to the place that needs changing must be recreated. To

incorporate the change the root must be updated to include this new S

pointer chain. The whole tree structure may be contained in a

single file within the host filestore. This file will be called the

"master" file. Alternatively data can be directed to other files,

called "slave" files. The division between the master file and the 0

various slave files is completely under the control of the user of

the ADAM package. The only restrictions are that the root must be

contained in the master file and that all pointers within a slave

file must point to data within that slave. The use of slave files

allows the user to optimise the performance of the ADAM package on

very large databases.

- Blocks of data can contain words, or characters, or pointers, or a

mixture of words and pointers. These form the basic building

blocks which can be built up into higher-level structures.

- A user-callable garbage collector is provided. This traces all data

accessible from the root and frees any remaining space. This means

that explicit deletion is unnecessary because data will effectively

be deleted by the garbage collector whenever the pointer to it is no

longer accessible from the root. The absence of an explicit delete

operation means that there is no danger of deleting some data that

is still being used (a very real danger when the same pointer is

used in more than one place). The garbage collector is highly

optimised so that it is usually feasible to call it interactively. --

- A number of ADAM databases can be manipulated simultaneously.

- User documentation is available NOW.

L S

0

- ADAM is already in use. Current applications are:

- Implementation of a Design Management System for use by hardware

designers.

- A database to hold the software history of a mainframe computer

system. It incorporates the inter-relationships between the

different parts of the system.

- ADAM is highly portable. The current Algo168 version can be

rehosted in less than a week.

- ADAM was designed for easy translation to other languages. Versions 0

in Ada, Pascal and Modula2 could be done very easily. A slightly

restricted version should be feasible in FORTRAN77 (under protest).

- Software written using ADAM can be made portable across all ADAM -0

implementations.

The limitations of ADAM are:

- While the file is being written to, noone else may access it.

- Each individual random-access file will be limited to a maximum -

size which will be implementation dependent.

- There is an instore overhead that is a fixed percentage of the

number of words in each random-access file being manipulated 0

simultaneously. This percentage is implementation-dependent but

most likely lies on the range (0.25 to 1)3. A slave file that is

not in use does not incur this overhead.

- Because ADAM uses standard random access files it is not optimised

for disc-access times (i.e. it makes no effort to make sure that
data is contiguous on disc to reduce disc-head movements).

A

4-14J

2 THE ADAM PACKAGE

The ADAM package consists of a number of procedures, plus some MODEs

and constants.

All data in the database is held in arbitrary length blocks which are

accessed by pointers. The MODE of a pointer is DISCPTR which is

defined by ADAM. The user need know nothing further about this mode.

The internal workings of ADAM divide the random access files up into a

number of equal sized portions, called "buckets". The user only need

be aware of this fact when he is extending the size of his database

(which can only be done in an integral number of buckets) or when he

is particularly interested in using ADAM as efficiently as possible.

Efficiency considerations are dealt with separately in section 3.

2.1 ADAM MODEs

DISCPTR { This is the MODE of a pointer to a data block. An improper

DISCPTR is one that could not have been produced by ADAM

for the database in use. This includes unset DISCPTRs,

DISCPTRs to blocks in other databases, DISCPTRs between

slave files, and DISCPTRs from slave files to the master

file of the database. }

MIXED UNION(INT, DISCPTR) I [MIXED is one of the types of block

that can be kept in the database }

__

DISCFILE { This MODE is a structure that contains all the information

that ADAM needs to control a database. The fields are

filled in when the connection is made to a database by a

call of the procedure "getroot". Whenever a procedure

includes a DISCFILE as a parameter, that procedure will act S

on the database connected to that DISCFILE. In this way

any number of databases can be manipulated in one program.

Some of the fields of DISCFILE contain information that the

user must know about. These are expanded below: } S

= STRUCT(DISCPTR root, { the database root }

INT name, { see the procedure "clear" }

filesize, { the number of buckets in the 0

binary (random access) file

holding the master file of the

database }

datecleared, { an INT that represents the date

that the procedure "clear" was

last called }

secscleared, { an INT that represents the time

that the procedure "clear" was

last called)

sizeoffreeblock, J the number of buckets free

to be written to in the

master file } e

...... { all other fields are hidden }

The size of the free block in a slave file and the filesize of a slave

file can be found using the procedures "msizeoffreeblock" and

"mfilesize" which are described in section 2.3.2.

6

2.2 ADAM constants

INT bucket size { see the section on efficiency }

INT chars in bucket { " " " " " }

INT useable f " " of

INT increase increment { see the procedure "increase" }

INT max file size { " ""

INT min file size { see the procedure "clear" }

DISCPTR nilptr { a null pointer that can be written but

not read. A procedure is provided to

check if a pointer is a "nilptr" }

2.3 ADAM procedures

2.3.1 Reading and writing procedures

The reading procedures do not deliver arrays of data as their results,

for efficiency reasons. Instead the user must supply a reference to

an array of the correct size to hold the data, and the read procedure

8 will fill it in. For this reason ADAM supplies the following

procedure:

L-

5-

PROC block elts = (REF DISCFILE df, DISCPTR dp)INT:

{ This procedure produces an INT that is the number of elements of

data pointed to by "dp", in the database connected to "df". This

can be vsed to declare an array variable of the correct size for

use in a read procedure. 0

possible failures:

(i) "df" has not been Initialised by a call of "getroot".

(ii) "dp" is an improper DISCPTR.

(iii) The data block is in a slave file which has not been made

accessible by a call of "openslave".

PROC write ints = (REF DISCFILE df, [lINT dataout)DISCPTR:

{ This procedure writes "dataout" into the master file of the

database connected to "df". and delivers a DISCPTR that points

to it. 0

possible failures:

(i) You do not have write access to the master file of the

database.

(ii) "df" has not been initialised by a call of "getroot".

(iii) There is not enough free space in the database; you must

use "garbagecollect" or "increase".

(iv) LWB "dataout" # 1 _0
I

L8 _

PROC mwrite ints = (REF DISCFILE df,[]INT dataout,INT slaveno)DISCPTR:

I This procedure writes "dataout" into the slave file number

"slaveno" of the database connected to "df", and delivers a

DISCPTR that points to it.

Note that procedures which are concerned with the manipulation of

multiple random access files (ie master/slaves) are prefixed by

the letter "im" to distinguish them from procedures that act only

on the master file. If "slaveno" is zero then this is equivalent

to calling the procedure on a master file. The procedures which

act by default on the master file (eg "writeints") are provided

for upwards compatability reasons because earlier versions of

ADAM only had master files. They also provide simpler procedure

calls for those users of ADAM who do not need to use slave files.

possible failures: S

i) You do not have write access to the slave file.

(ii) "df" has not been initialised by a call of "getroot".

(iii) The slave file number "slaveno" has not been made

accessible by a call of "openslave".

(iv) There is not enough free space in the database; you must

use "garbagecollect" or "mincrease".

(v) LWB "dataout" # 1
}

PROC write chars = (REF DISCFILE df, []CHAR dataout)DISCPTR:

I The same description as "writeints" I

9

PROC mwrite chars = (REF DISCFILE df,[ICHAR dataout,

INT slaveno)DISCPTR:

{ The same description as "mwriteints" }

PROC write discptrs = (REF DISCFILE df, []DISCPTR dataout)DISCPTR:

{ The same description as "writeints" but with one more possible

failure:

(v) "dataout" contains an improper DISCPTR.

0

PROC mwrite discptrs = (REF DISCFILE df, []DISCPTR dataout,

INT slaveno)DISCPTR:

The same description as "mwriteints" but with one more possible

failure: 0

(v) "dataout" contains an improper DISCPTR.

}

PROC write mixed = (REF DISCFILE df, []MIXED dataout)DISCPTR:

{ The same description as "writediscptrs" }

PROC mwrite mixed = (REF DISCFILE df, []MIXED dataout,

INT slaveno)DISCPTR:

{ The same description as "mwritediscptrs") 0

10

I-.- .-

PROC read ints = (REF DISCFILE df, REF[IENT datain, DISCPTR dp)VOID:

{ This procedure fills in "datain" with the data pointed to by

"dp" in the database connected to "df".

possible failures:

i) "df" has not been initialised by a call of "getroot".

(ii) "dp" is a "nilptr".

(iii) "datain" is the wrong size.

(iv) LWB "datain" # 1

(v) "dp" is a pointer to the wrong sort of data block.

(vi) "dp" is an improper DISCPTR. 9

(vii) "datain" is not contiguous.

(viii) The data block is in a slave file which has not been

made accessible by a call of "openslave".

PROC read chars (REF DISCFILE df, REF[]CHAR datain, DISCPTR dp)VOID:

{ The same description as "readints" }

PROC read discptrs = (REF DISCFILE df, REF[]DISCPTR datain,

DISCPTR dp)VOID:

I The same description as "readints" }

PROC read mixed = (REF DISCFILE df, REF[]MIXED datain,

DISCPTR dp)VOID:

{ The same description as "readints" }

... 11

PROC can write (REF DISCFILE df,

UNION([]INT, []CHAR, []DISCPTR, []MIXED)dataout)BOOL:

{ This procedure delivers TRUE if there is enough space to write

"dataout" into the master file of the database connected to "df",

and delivers FALSE if there is not.

possible failures:

i) "df" has not been initialised by a call of "getroot".

(ii) LWB "dataout" # 1 •
}

PROC mcan write = (REF DISCFILE df, UNION(E]INT, []CHAR, S

[]DISCPTR, []MIXED)dataout, INT slaveno)BOOL:

{ This procedure delivers TRUE if there is enough space to write

"dataout" into the slave file number "slaveno" of the database

connected to "dr", and delivers FALSE if there is not. •

possible failures:

i) "df" has not been initialised by a call of "getroot". -0

(ii) The slave file number "slaveno" has not been made accessible

by a call of "openslave".

(iii) LWB "dataout" # 1

12

2.3.2 Database Management procedures 8

PROC clear = (INT channelno, name)VOID:

(ADAM databases are Just binary (random access) files that have

been set-up in a particular way. This procedure sets-up the 0

binary file that is connected to channel number "channelno" as

the master file of the database. When procedure "getroot" is

called, the root field of the DISCFILE parameter will be set to

"nilptr" and the name field will be set to "name". The name

field allows a user to distinguish his ADAM database from another

person's.

possible failures: 0

i) The file connected to channel number "channelno" is not a

binary (random access) file.

(ii) You do not have write access to the file connected to channel

number "channelno".

(iii) The file is not large enough to hold the information that

ADAM needs to administer the database. The file must

contain at least "minfilesize" buckets.

(iv) Channel number "channelno" is already in use.
}

PROC make slave = (REF DISCFILE df, INT channelno, slaveno)VOID:
0

{ This procedure sets-up the binary (random access) file that is

connected to channel number "channelno" as the slave file number

"slaveno" of the database connected to wdf". Slave files must be

made in numerical order starting with slave file number one.

possible failures:

(i)-(iv) The same as for PROC clear.

13

(v) "df" has not been initialised by a call of "getroot".

(vi) The slave file number ("slaveno"-1) has not had "makeslave"

called on it.

PROC get root = (REF DISCFILE df, INT channelno)VOID:

I This procedure connects the database whose master file is in
the binary (random access) file connected to channel number

"channelno" to the DISCFILE variable "df". It also gives access

to the master file. When ADAM procedures have a DISCFILE as a

parameter they will manipulate the database that was connected to

that DISCFILE variable. This allows a number of ADAM databases

to be manipulated simultaneously.

After the call of "getroot" the fields of the DISCFILE variable

will all have been filled in. In particular, as the name of this

procedure implies, the root field will then contain the root

of the database connected to channel number "channelno".

There will be an instore overhead in the range (0.25 to 1)% of

the size of the binary file connected to channel number

"channelno".

possible failures:

i) The file connected to channel number "channelno" is not a

binary (random access) file.

(ii) The file does not contain the master file of an ADAM

database ie it has not had "clear" called on it.

(iii) The file contains the master file of an ADAM database that

was created by an old version of ADAM. It must be cleared

again. This error should not occur once ADAM has passed _

out of the development phase.

14

S

(iv) ADAM has detected a potential corruption due to a machine

crash during the last call of "finish". That "finish" did

not take effect and to restart you must use "getlastroot"

instead of "getroot".

(v) Channel number "channelno" is already in use.

(vi) The file connected to channel number "channelno" is a slave

file.

PROC get last root = (REF DISCFILE df, INT channelno)VOID:

{ To be used instead of "getroot" in the case of failure (iv) in

"getroot".

p
possible failures:

i) The file connected to channel number "channelno" is not a

binary (random access) file.

(ii) The file does not contain an ADAM database ie it has not

had "clear" called on it.

(iii) The file contains an ADAv database that was created by

an old version of ADAM. It must be cleared again.

This error should not occur once ADAM has passed out of

the development phase.

(iv) ADAM has not detected a potential corruption, you

should have used "getroot".

(v) Channel number "channelno" is already in use.

(vi) The file connected to channel number "channelno" is a slave

file. 0

15

PROC open slave z (REF DISCFILE dfr INT channelno, slaveno)VOID:

{ This procedure gives access to the slave file number "slaveno" of

the database connected to "df". The slave file is in the binary

(random access) file connected to channel number "channelno".

There will be an instore overhead in the range (0.25 to 1)3 of

the size of the binary file connected to channel number

"channelno" for each slave opened. 0

Possible failures:

(i) The file connected to channel number "channelno" is not a

binary (random access) file.

(ii) The file does not contain a slave file of an ADAM database

ie it has not had "makeslave" called on it. S

(iii) The file contains a slave file that was created by an old

version of ADAM. It must be made again. This error should

not occur once ADAM has passed out of the development phase O

(iv) "df" has not been initialised by a call of "getroot".

(v) Channel number "channelno" is already in use. 0

(vi) The file contains a slave file but it is associated with a

different database or has a different slave number.

(vii) The file connected to channel number "channelno" is a

master file.

16 0

-

PROC check file = (INT channelno)INT:

{ This procedure checks for potential errors in "getroot".

The INT result should be interpreted as follows:

Result Interpretation

0 "getroot" should work satisfactorily.

1 The file contains the master file of an ADAM

database that was created by an old version of

ADAM. It must be cleared again. This error -

should not occur once ADAM has passed out of the

development phase.

2 The file does not contain a master file ie it ..S

has not had "clear" called on it.

3 ADAM has detected a potential corruption due to a

machine crash during the last call of "finish".

That finish did not take effect and to restart

you must use "getlastroot" instead of "getroot".

4 The file on channel number "channelno" is a slave

file.

possible failures:

(i) The file connected to channel number "channelno" is not a

binary (random access) file.

17

PROC check slave = (INT channelno)INT:

{ This procedure checks for potential errors in "openslave".

The INT result should be interpreted as follows:

Result Interpretation 0

0 "openslave" should work satisfactorily.

1 The file contains a slave file of an ADAM 0

database that was created by an old version of

ADAM. It must be made again. This error should

not occur once ADAM has passed out of the

development phase. 0

2 The file does not contain a slave file ie it has

not had "makeslave" called on it.

3 The file on channel number "channelno" is a

master file.

possible failures:

i) The file connected to channel number "channelno" is not a

binary (random access) file.

PROC finish = (REF DISCFILE df, DISCPTR root)VOID:

{ This procedure writes the "root" away into the database connected

to the DISCFILE variable "df". When "getroot" is next called on

that database this new root will be fed into the root field of

the DISCFILE variable that is the first parameter of "getroot".

possible failures:

(i) You do not have write access to the database ie to the master

file and to any opened slave files.

18

(ii) "df" has not been initialised by a call of "getroot".

(iii) "root" is an improper DISCPTR.

(iv) There is not enough free space in the database to "finish".

You must make more space by using "garbage collect",

"mincrease" or "increase".

(v) The "root" does not point to a block in the master file of

the database connected to "df".

PROC close slave (REF DISCFILE df, INT slaveno)VOID:

{ This procedure makes the slave file number "slaveno" of the

database connected to "df" inaccessible. It also frees the .0

storage used in the overhead associated with "openslave". Any

slave files which are not closed explicitly will be closed

automatically by a call of "finish".

possible failures:

i) You do not have write access to the slave file. S

(ii) "df" has not been initialised by a call of "getroot".

(iii) The slave file number "slaveno" has not been made

accessible by a call of "openslave".
0

(iv) There is not enough free space in the binary (random access)

file to close it. You must make more space by using

"garbagecollect" or "mincrease".1

19

PROC can close (REF DISCFILE df, INT slaveno)BOOL:

{ This procedure checks if there is enough space to "closeslave"

number "slaveno" of the database connected to "df". It delivers

TRUE if there is and FALSE if there is not. This procedure also

can be used to check if there is enough space in slave number

"slaveno" to allow "finish" to close that slave.

possible failures:

i) "df" has not been initialised by a call of "getroot".

(ii) The slave file number "slaveno" has not been made accessible

by a call of "openslave". 4

PROC can finish = (REF DISCFILE df)BOOL:

{ This procedure checks if there is enough space in the master file

of the database connected to "df" to "finish". It delivers TRUE

if there is and FALSE if there is not. There is no "mcanfinish"

because "canclose" serves the same purpose.

possible failures:

i) "df" has not been initialised by a call of "getroot".
I

PROC mfilesize = (REF DISCFILE df, INT slaveno)INT:

{ This procedure delivers the number of buckets in the binary

(random access) file holding slave file number "slaveno" of the

database connected to "df". 0

20

possible failures: S

(i) "df" has not been initialised by a call of "getroot".

(ii) The slave file number "slaveno" has not been made accessible

by a call of "openslave".

PROC msizeoffreeblock = (REF DISCFILE df, INT slaveno)INT:

{ This procedure delivers the number of buckets free to be written

to in the binary (random access) file holding slave file number

"slaveno" of the database connected to "df".

possible failures:

i) "df" has not been initialised by a call of "getroot". 0

(ii) The slave file number "slaveno" has not been made accessible

by a call of "openslave".

0

PROC overhead = (REF DISCFILE df)INT:

I This procedure delivers the number of buckets used by the ADAM

system. These are not available for use in the master file of

the database connected to "df" . The number of buckets available

for the master file of the database is

("filesize" OF "df" - "overhead"("df")). S

possible failures:

(i) "df" has not been initialised by a call of "getroot". 9

2

9

21 P

PROC moverhead (REF DISCFILE df, INT slaveno)INT:

I This procedure delivers the number of buckets used by the ADAM

system in the slave file number "slaveno" of the database

connected to "df". The number of buckets available for the

slave file is

("mfilesize"("df", "slaveno") - "moverhead"("df", "slaveno")).

possible failures:

(i) "df" has not been initialised by a call of "getroot".

(ii) The slave file number "slaveno" has not been made accessible 5-

by a call of "openslave".

PROC what is z (REF DISCFILE df, DISCPTR dp)INT:

f This procedure tests to see what sort of data is in the block

pointed to by "dp". The INT result should be interpreted as

follows:

Result Interpretation

0 an improper DISCPTR

1 "nilptr"

2 pointer to a block of INTs

3" " " " " CHARs

4 " , "MIXEDs

" " " " " DISCPTRs

22

At the moment these are the only data blocks recognised. ADAM

is designed to allow for the easy addition of new types of data

block. This is of course a job for someone with a knowledge

of the internal workings of ADAM.

possible failures:

i) "df" has not been initialised by a call of "getroot".

(ii) The block is in a slave file which has not been made

accessible by a call of "openslave".

PROC whereis = (REF DISCFILE df, DISCPTR dp)INT:

I This procedure tells the user whether the block pointed to by

"dp" is in the master file or a slave file. If the result is 0

the block is in the master file of the database connected to

"df", otherwise the result is the number of the slave file

containing the block.

possible failures:

(i) "df" has not been initialised by a call of "getroot".

(ii) The block is in a slave file which has not been made

accessible by a call of "openslave".

(iii) "dp" is an improper DISCPTR. 0

I

230

PROC increase (REF DISCFILE df, INT by)VOID:

{ This procedure increases the size of the master file of the .1

database connected to "df" by ("by" 0 "increase increment")

buckets.
S

possible failures: !

i) You do not have write access to the binary (random access)

file containing the master file.

(ii) "df" has not been initialised by a call of "getroot".

(iii) "increase" would take the size of the binary (random

access) file beyond the limits set by ADAM. The constant

"max file size" gives the maximum number of buckets that

can be accommodated.

PROC mincrease = (REF DISCFILE df, INT by, slaveno)VOID:

{ This procedure increases the size of the slave file number

"slaveno" of the database connected to "df" by

("by" * "increase increment") buckets.

possible failures:

(i) You do not have write access to the binary (random access)

file containing the slave file. .0

(ii) "df" has not been initialised by a call of "getroot".

(iii) "mincrease" would take the size of the binary (random

access) file beyond the limits set by ADAM. The constant

"max file size" gives the maximum number of buckets that

can be accommodated.

24]

(iv) The slave file number "slaveno" has not been made accessible -

by a call of "openslave".
I

PROC can increase = (REF DISCFILE df, INT by)VOID:

{ This procedure delivers FALSE if "increase" would fail due to an

attempt to extend the binary (random access) file containing the

master file past the limits set by ADAM, otherwise it delivers •

TRUE.

possible failures:

(i) "df" has not been initialised by a call of "getroot".

}

PROC mcan increase = (REF DISCFILE df, INT by, slaveno)VOID:

{ This procedure delivers FALSE if "mincrease" would fail due to an

attempt to extend the binary (random access) file containing the

slave file number "slaveno" past the limits set by ADAM, .

otherwise it delivers TRUE.

possible failures:

(i) "df" has not been initialised by a call of "getroot".

(ii) The slave file number "slaveno" has not been made accessible

by a call of "openslave". P

25

PROC connect slave = (REF DISCFILE df, INT channelno, slaveno)VOID:

{ This procedure marks the slave file number "slaveno" of the

database connected to "df" for garbage collection, but does not

give access to the slave. This avoids the overhead inherent in

"openslave".

possible failures:

(i) "df" has not been initialised by a call of "getroot".

(ii) Channel number "channelno" is already in use.

(iii) The file connected to channel number "channelno" does not

contain a slave file ie it has not had "makeslave" called

on it.

)e

PROC garbage collect = (REF DISCFILE df)VOID:

{ This procedure traces all blocks accessible from the root and all

blocks written into the database connected to "df" since the last

call of "finish" on "df". Any other blocks are freed for use in

the database. Only those slave files which have previously been

connected by a call of "openslave" or "connectslave" will be

garbage collected.

possible failures:

(i) "d" has not been initialised by a call of "getroot".

26

3 EFFICIENCY CONSIDERATIONS

There are two sorts of inefficiency that can be avoided if the user

has some knowledge of the way ADAM works: 0

3.1 Efficient Useage of Space in the Database

ADAM divides the database into equal sized portions, called buckets.

Each pointer points to an integral number of buckets, where the

minimum size is one bucket. This means that if the database contains

a large number of pointers to very small data blocks then there will •

be a lot of wasted space. The user can always pack a lot of small

blocks into two larger blocks, where one block contains all the data

and the other is an integer block that gives the break points within

the large data block.

For example instead of having pointers to the CHAR blocks

"I F Currie" -

"P W Edwards"

"J M Foster"

"J D Morison"

"N E Peeling"

"J Wood"

You could have the two blocks

"I F CurrieP W EdwardsJ M FosterJ D MorisonN E PeelingJ Wood"

(11, 22, 32, 43, 54, 60)

Alternatively the integers could give the length of the next character

string

IL(10 11 10, 11, 11, 6)

9-27

Or, if the strings are all of less than a known length, a fixed number S

of characters could, by using a simple code, describe the number of

characters in the next string. These coded characters could then be

embedded in the CHAR block. This method needs to use just one block.

For example think of the (silly) code where "a" stands for 1, "b" 0

stands for 2 etc., and where all strings are less than 26 characters

long then

"JI F CurriekP W EdwardsjJ M FosterkJ D MorisonkN E PeelingfJ Wood" Ai

would do.

The tricks that can be played to pack small blocks are endless! S

3.2 Efficient Useage of In-store Space
0

To write a data block away using the procedures in Section 2.3.1

it is necessary to produce all the data in-store before writing it

into the database. A suite of procedures is provided for writing

a data block "bit by bit". These procedures work in the form .0

"here is a pointer to some data in the database and some data

in-store that I wish to add to it, produce this larger data block

in the database and give me a pointer to it". Each addition of

this sort starts in a new bucket so it is much more efficient to S

write away a bucket full of data each time. Constants are provided

(Section 2.2) to tell the user how many data elements fit into a

bucket:

"bucket size" INTs

"chars in bucket" CHARs

"bucket size" DISCPTRs

"useable" MIXEDs

Procedures are also provided to read a data block, bucket by bucket:

including procedures that tell the user how many buckets there are

in a data block, and how many elements there are in each bucket. - -

28

PROC bucks in block (REF DISCFILE df. DISCPTR dp)INT:

I This procedure delivers the number of buckets in the data block

pointed to by "dp", in the database connected to "df".

possible failures:

(1) "df" has not been initialised by a call of "getroot".

(ii) "dp" is a "nilptr".

(iii) "dp" is an improper DISCPTR.

(iv) The data block is in a slave file which has not been

made accessible by a call of "openslave".

PROC buck elts = (REF DISCFILE df, DISCPTR dp, INT buckno)INT:

{ This procedure delivers the number of elements in bucket

number "buckno" of the data block pointed to by "dp", in the

database connected to "df".

possible failures:

S

(i) "df" has not been initialised by a call of "getroot".

(ii) "dp" is a "nilptr".

(iii) "dp" is an improper DISCPTR.

(iv) The data block pointed to by "dp" does not have a bucket

number "buckno".

(v) The data block is in a slave file which has not been

made accessible by a call of "openslave".

29

6

PROC append ints (REF DISCFILE df,

[INT dataout, DISCPTR dp)DISCPTR:

I This procedure delivers a DISCPTR to a block that contains

the data pointed to by "dp" (in the database connected to "df")

with "dataout" appended at the end.

possible failures: 2
0

i) You do not have write access to the binary (random access)

file containing the data block.

(ii) "df" has not been initialised by a call
of "getroot".

(iii) There is not enough free space in the database; you must

use "garbagecollect", "mincrease" or "increase". The

procedures "mcanwrite" or "canwrite" tell whether there is

enough space.

(iv) LWB "dataout" # 1

(v) The data block is in a slave file which has not been

made accessible by a call of "openslave".

PROC append chars = (REF DISCFILE df,

(]CHAR dataout, DISCPTR dp)DISCPTR:

{ The same description as "appendints" }

30

PROC append discptrs =(REF DISCFILE df,

[JDISCPTR dataout, DISCPTR dp)DISCPTR:

I The same description as "appendints" but with one more

possible failure:

(v) "dataout" contains an improper DISCPTR.

0

PROC append mixed (REF DISCFILE df,

H)IIXED dataout, DISCPTR dp)DISCPTR:

IThe same description as "appenddiscptrs"

PROC buck of ints =(REF DISCFILE df, REFCJINT bucketin,

DISCPTR dp, INT buckno) VOID:

I This procedure fills in wbucketin" with the data in the bucket

numiber "buckno" of the data block pointed to by "1dp", in the

database connected to "ldf".

possible failures:

(i) "df" has not been initialised by a call of "getroot".

(ii) "dp" is a "nilptr".

(iii) "bucketin" is the wrong size. 0

(Iv) LWB "bucketin" 0 1

(v) "dp" is a pointer to the wrong sort of data block.

(vi) "dp" is an improper DISCPTR.

31

(vii) "bucketin" is not contiguous.

(viii) The data block pointed to by "dp" does not have a bucket

number "buckno".

(ix) The data block is in a slave file which has not been

made accessible by a call of "openslave".

)O

PROC buck of chars (REF DISCFILE df, REF[]CHAR bucketin,

DISCPTR dp, INT buckno)VOID:

{ The same description as "buckofints")

PROC buck of discptrs = (REF DISCFILE dr, REF[]DISCPTR bucketin, .

DISCPTR dp, INT buckno)VOID:

I The same description as "buckofints" }

PROC buck of mixed = (REF DISCFILE df, REFUMIXED bucketin,

DISCPTR dp, INT buckno)VOID:

I The same description as "buckofints" }

31

"1

32

4 EXAMPLES

The following sections contain some examples of how to create and

manipulate an ADAM database: 0

4.1 Writing data to an ADAM database

A new ADAM database can be created as described below. In this

example the root of the database points to a block of two DISCPTRs.

The first DISCPTR points to another block of two DISCPTRs and the

second is a nil pointer. In the second block of DISCPTRs the first S

DISCPTR points to a block of integers and the second to a block of

characters. This particular database has no slave files associated

with it.

I l - -- -' I > _1,2 3, ,5

_------- > data 1

nilptr 9
I I
II

INT name = ABS 8r12456321; Name can have any value. It allows a user

to distinguish between his database and

other peoples by acting as a 24 bit

password.

INT channel = 1; The binary file containing the database must •

be connected to this channel.

DISCFILE df;

DISCPTR firstroot;

[1:2] DISCPTR mainptrs;

[1:2] DISCPTR dataptrs;

I-

3 33
-- - ------ - --

clear(channel, name); The binary file connected to "channel" is

set-up as an empty ADAM database.

getroot(df, channel); The database is connected to the DISCFILE

variable "df". The root field of "df" will be 0

a nilptr.

(1:5) INT integers := (1,2,3,4,5);
[1:43 CHAR characters := "data"; 0

dataptrs[l] := writeints(df, integers);

dataptrs[2: writechars(df, characters);

mainptrs[1] := writediscptrs(df, dataptrs);

mainptrs[2) nilptr;

firstroot := writediscptrs(df, mainptrs);

finish(df, firstroot) The next time "getroot" is called on the

database the root will be the DISCPTR S

"firstroot".

4.2 Reading data from an ADAM database

To read and print the block of characters containing the string "data"

(which was written away in section 4.1), the chain of pointers to the

block of characters must be read in as shown below.

INT channel = 1;

DISCFILE df;

getroot(df, channel); The root field of "df" will be the DISCPTR on

which "finish" was last called ie "firstroot".

[1:blockelts(df, root OF df)] DISCPTR mainptrs; -

readdiscptrs(df, mainptrs, root OF df);

[1:blockelts(df, mainptrs[1])] DISCPTR dataptrs;

readdiscptrs(df, dataptrs, mainptrstl]);

34

34

1:blockelts(df, dataptrs[2])] CHAR characters; 0

readchars(df, characters, dataptrs[2]);

print((characters, newline))

"finish" is not needed since the database has

not been altered.

4.3 Changing data in an ADAM database

The following is an example of how to change a block of data within

the database created in section 4.1. In this example the block of 0

characters "data" is replaced by "new data". Only the pointer chain

to the new block of data needs to be updated so first the pointer

chain is read in. The disc pointer to the block containing "data" is

then replaced by a disc pointer to a new block containing "new data"

and the pointer chain recreated as shown below. Any disc pointers to

other blocks of data such as the integers are not altered.

---------------------- >11,2,3,4,51

first .

____ >; data
root :nilptr;

* I

second _------->_

_ _ - ->: new data I
root nilptrj

35

INT channel 1;

DISCFILE df;

DISCPTR secondroot;

[1:8] CHAR characters := "new data";

getroot(df. channel);

[1:2) DISCPTR mainptrs;

readdiscptrs(df, mainptrs, root OF df);

[1:2) DISCPTR dataptrs;

readdiscptrs(df, dataptrs, mainptrs[1]);

The pointer chain to the block of characters

has now been read in.

dataptrs[2] := writechars(df, characters);

The disc pointer to the new block of

characters is formed and replaces the old

pointer in "dataptrs[2]".

mainptrs[1] := writediscptrs(df, dataptrs); -

secondroot :: writediscptrs(df, mainptrs);

"secondroot" now contains the pointer chain to

the new data block. Note that "mainptrs[2]"

and "dataptrs[1]" are unchanged.

finish(df, secondroot) "finish" causes the new tree structure to

be stored in the database.

-0

-t

36

IS

5 ACKNOWLEDGEMENTS

The authors have pleasure in thanking I F Currie and J M Foster 5

for all their help during the design of ADAM.

37

DOCURENT CONTROL SHEET

Overall security classification of sheet

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter .
classified information, the box concerned must be marked to indicate the classification eq (R) (C) or (S)) 0

1. ORIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security
Report 84007 u/c Classification

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location 0
known)

Royal Signals and Radar Establishment

Sa. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location
Code (if known)

7. Title

ADAM: AN ABSTRACT DATABASE MACHINE

7a. Title in Foreign Language (in the case of translations) *

lb. Presented at (for conference napers) Title, place and date of conference

8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3,4... 10. Date pp. ref.
PEELING, N E MORISON, J D WHITING, E V

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement
Unlimited

Descriptors (or keywords)

continue on separate piece of Paper 0

Abbtract ADAM extends a programming language to allow data on disc to be handled
as easily as in-store data. It is a set of read/write and disc management
procedures. These procedures work within standard random-access files in
the filestore of the host operating system.

-0

1. 7

mi0

jot

ft.4

