
Featherweight Threads and ANDF Compilation
of Concurrency*

Ben Sloman 1' 2 and Tom Lake 2 **

University of Reading, Department of Computer Science, PO Box 225,
Whiteknights, UK, RG6 2AY

2 GLOSSA, 59 Alexandra Road, Reading, RG1 5PG, UK

Abs t r ac t . We present an intermediate representation called ThreadTDF,
a component of the Parallel TDF system for compiling distributed con-
current programs to shared and distributed memory multiprocessors.
ThreadTDF is a parallel extension of the TDF architecture neutral dis-
tribution format (ANDF) for sequential programs. ThreadTDF provides
featherweight thread mechanisms for explicitly scheduling dynamic fine-
grain concurrent computations within procedures (and more generally
within static local scopes). Communication between address spaces is
supported by remote service request mechanisms based upon asynchronous
activation of remote threads and synchronous remote procedure calls.
In ThreadTDF variable lifetimes bound the lifetimes of featherweight
threads declared in their scope. We show how a compiler uses thread
lifetime information to integrate resource allocation and communication
with thread scheduling for efficient intraprocedural concurrency. Initial
performance results are given for the SPARC processor.

1 I n t r o d u c t i o n a n d B a c k g r o u n d

Parallel T D F is a system for the architecture neutral representation and compi-
lation of parallel programs. It consists of a family of architecture neutral com-
piler intermediate representations (IRs), of which Pa rTDF and ThreadTDF are
currently the most important , and techniques for compiling parallel programs
using these representations. Parallel T D F is based upon TDF[7], an architec-
ture neutral and language neutral distribution format. T D F is a compiler IR
with a standardised external representation. In one scenario, TDF is used to
bridge language-specific compiler front ends (producers) and separate target-
specific back ends (installers) for distribution of ' shrink-wrapped' software (Fig.
1). T D F cannot create portability3: applications must use portable programming
styles and must adhere to s tandard APIs. Parallel T D F a t tempts to extend the
functionality of T D F for parallel languages and machines.

T D F is described in detail in [7] and other information is available from the
OSF ANDF web page at http://riwww, osf. org:8OO1/andf/index.html or in [3, 6].

* This work was carried out under contract for the UK Defence Research Agency
** The authors can be contacted as {Ben.Sloman,Tom.Lake)@glossa.co.uk.
3 Though the TDF technology has proved useful for portability checking tools.

458

I source files] API declaration I c header files

\ / I

(C producer)

I tile

I TDF
file] limp lemeAPIntati~]

\ /
(i n s t a l l e r)

installed
application

development platform target platform

Fig. 1. shrink wrapped distribution using TDF

Parallel TDF provides services for concurrent computation and communica-
tion. Its design supports compilation of data parallel and control parallel lan-
guages on SIMD and homogeneous shared and distributed memory MIMD ma-
chines. Structured parallel languages such as Fortran 90 and oeeam are compiled
into the ParTDF intermediate representation in terms of bags (multisets) of pro-
cesses. ParTDF allows portability-improving transformations such as distribu-
tion of bulk parallelism and conversion of task parallelism for lockstep parallel
execution [15]. Other parallel languages are compiled into the ThreadTDF inter-
mediate representation. ThreadTDF provides dynamic manipulation of scoped
fine grain threads for efficient concurrency on a narrower range of architectures.

Our contribution is to describe ThreadTDF and show how it can be compiled
efficiently to off-the-shelf processor architectures. We show that thread scopes
simplify register allocation across threads. We then show how to exploit the reg-
ister allocation by using cooperative hierarchical scheduling to optimise context
switches between threads in the same variable scopes.

2 Introduct ion to T D F

TDF is a tree-structured language with special features for portability. It pre-
serves more program structure than low level IRs such as the RTL of gcc, but has
no syntactic sugar and a weaker type system than typical high level languages.
The unit of representation in TDF is the capsule which contains definitions and
declarations of procedures, variables and tokens (see below). A capsule can ex-
port these declarations and definitions by binding them to external names. The
ANSI C TDF producer converts each separate C file into a compact binary repre-
sentation of a TDF capsule. A TDF linker allows capsules to be bound together
using their external names.

In TDF, any target machine or OS dependences, such as the implementa-

459

tions of C types s and FILE, are deferred using parameterised placeholders,
similar to syntax macros, called tokens. The TDF linker can be used to bind in
token definitions once the target machine is known. The resulting TDF is then
converted to object code by an installer and linked using the system linker to
produce an executable (see Fig. 1).

TDF producers have been or are being developed for C, Fortran 77, Ada, Dy-
lan and C++ along with installers for SPAI~C, 80x86, MIPS, Alpha, PowerPC,
HP/PA and ARM processors.

2.1 T D F ' s Tree S t r u c t u r e

The tree structure of TDF is defined as a multi-sorted abstract algebra. Each
sort can be understood roughly as implementing a particular class of high level
language construct. The most important TDF sorts are EXP, which represents
executable operations (such as commands and expressions), and SHAPE which
describes the types of the static-sized run-time vaLues delivered and manipulated
by EXPs. Each sort has a set of constructors (operators) each of which takes
operands of known sort. Figure 2 specifies some of the EXP constructors. EXPs
are annotated with their SHAPEs; there are SHAPEs for integer and floating
point numbers, pointers, store offsets, and compounds of these values. The spe-
cial shapes TOP and BOTT0~I are used for constructs that return no usable value
or that transfer control respectively.

plus (ERROR_TREATMENT,EXP INTEGER(v),EXP INTEOER(v)) -> EXP INTEOER(v)
make_int (v:VARIETY,S~GNED_NAT) -> EXP INTEGER(v)
assign (EXP POINTER(x),EXP(y)) -> EXP TOP
contents (s:SHAPE,EXP POINTER(x)) -> EXP s
integer~est (NTEST,LABEL,EXP INTEGER(v),EXP INTEGER(v)) -> EXP TOP
goto (LABEL) -> EXP BOTTOM
conditional (LABEL,EXP x,EXP z) -> EXP (x U z)
repeat (LABEL,EXP x,EXP z) -> EXP z
conditional (LABEL,EXP x,EXP z) -> EXP (x U z)
labelled (LIST(LABEL),EXP x,LIST(EXP)) -> EXP w
sequence (LIST(EXP),EXP x) -> EXP x
variable (0PTION(ACCESS),TAG,EXP x,EXP y) -> EXP y
identify (OPTION(ACCESS),TAG,EXP x,EXP y) -> EXP y

Fig. 2. some EXP constructors

The meaning of terms in the TDF algebra is specified in terms of the in-
terleaved 'expression-like' evaluation of EXP constructors. Additional ordering
may be imposed by declaration (initialiser before scope), sequence and by ex-
plicit jumps to LABELs. Values are delivered from operands to operators or
passed via store using assignment and dereference.

The TDF specification [7] defines 53 different SORTS which are combined to
produce an EXP for each procedure in a source language program. These EXPs

460

are combined with SORTS describing linking information and global declarations
to produce a TDF capsule.

2.2 Declarat ions and Order ing

Values may be bound to unique numeric identifiers called TAGs. obtain_tag
delivers the value bound to its operand TAG. i d e n t i f y binds the result of eval-
uating its first EXP operand to a TAG that may then be used during evaluation
of its second EXP operand, va r i ab l e is similar but store is allocated to con-
tain the initialising value and the TAG is bound to the address of this store.
Declarations are also provided for global TAGs.

A few other EXP constructors also evaluate their EXP operands in order. The
simplest is sequence which evaluates its operands from left to right and delivers
the last operand's result. More general ordering is provided by explicit jumps
such as goto and in teger_ tes t ; target LABELs are scoped by the declarations
condi t iona l , ropoat and l abe l l ed , condi t ional(LB, XA, XB) evaluates XA
with LABEL LB available for forward jumps to XB. repeat(LB, XA, XB) eval-
uates XA then XB and LB is available in XB for backward jumps to the start of
XB. Finally, labelled(XA, LBi, Xi) declares a list of labels LBi and a list of
corresponding target EXPs, Xi. Evaluation starts with XA and any label LBi
may be used in any EXP operand.

3 T h r e a d T D F

ThreadTDF extends TDF in a natural way with mechanisms to dynamically
create and schedule fine-grain concurrent EXP evaluations that we call feather-
weight threads. These mechanisms are general enough to express a wide range of
concurrency: they provide much of the functionality of existing thread libraries,
such as POSIX threads, but allow concurrency within as well as between pro-
cedure instances. Featherweight threads execute within a shared address space
by default, communication between address spaces is added using a notion of
remote thread activation.

The execution of multiple featherweight threads within a procedure instance
provides new opportunities for integrating resource allocation with scheduling.
It often becomes possible to allocate machine resources (stack and registers)
statically across threads. An implementation using hierarchical scheduling, de-
scribed in Sec. 4, groups thread executions by procedure instance to exploit
static allocation within the procedure.

Featherweight threads are self-scheduled: there is no notion of a thread han-
dle other than the thread value representing a descheduled thread. We provide
lightweight mutual exclusion between threads: other synchronisation operations
can be constructed from exclusion and scheduling. More complex services, such
as k i l l _ t h r e a d or priority control, are implemented using self-scheduling. This
approach was first proposed in [8] while considering TDF extensions to support
compilation of the concurrent object language UC++.

461

A key aim of ThreadTDF is to allow efficient exploitation of uniprocessors.
This is important for many reasons. It allows parallel programs to ride the rapid
' technology curve' of sequential hardware improvements. It supports multipro-
cessing. It also eases the software development process and encourages portabili ty
and scalability.

3.1 Featherweight Thread Operations

A featherweight thread is a concurrent execution of an EXP starting at a label.
Thread label declarations have a Single Entry Single Exit (SESE) property: a
thread is only allowed to complete (fall through) a declaration once all other
threads enclosed by the same instance of the declaration have terminated. This
means that the lifetime of many threads is bounded by the lifetime of their
initial labels. We currently require tha t threads synchronise explicitly to enforce
the SESE property, thereby putt ing the onus on the ThreadTDF producer. We
are also considering adding thread declarations that provide the required thread
synchronisations implicitly. Section 4 shows how the SESE property helps code
generation.

Figure 3 contains the ThreadTDF constructors. These include a new shape
called THREAD for values representing descheduled threads and a new sort
called THDLB for thread labels. Modified forms of c o n d i t i o n a l and l a b e l l e d ,
called p a r _ c o n d i t i o n a l and p a r _ l a b e l l e d , are used to declare thread labels.
Procedure return and jumps to external labels are forbidden within these con-
structs. An instance of a thread label is replicated if more than one thread is
created or suspended at it or yields to it during its lifetime. Only pa r ._ labe l l ed
labels can be replicated and each of these labels is associated with an optional
bound on its degree of replication.

A deseheduled thread is created suspended at a THDLB by c r e a t e _ t h r e a d .
An executing thread suspends itself at a THDLB using suspend_thread; exe-
cution continues in a new thread into which the suspended thread is delivered.
Both creation and suspension are parameterised by pointers that address space
at which a new thread's internal values can be stored. This space must be al-
located explicitly by v a r i a b l e or by dynamic store allocation using the size
delivered by t h r e a d - s i z e (parameterised by the amount of store required for
user thread-local values). A thread value can be scheduled for eventual execu-
tion using schedu le_ th read , and execution is terminated using s t o p _ t h r e a d
or swap_thread. Regular use of y i e l d _ t h r e a d is required so that cooperative
scheduling can ensure fair independent progress.

A simple extension of thread creation and suspension provides creation and
suspension at thread labels declared by previous procedure instances in the cur-
rent procedure call chain. This can be used to create threads with unlimited
lifetimes.

In some cases the new thread created at suspend_thread will never block 4
or call or return. In this case nb_ thread can be used to supply space for the

4 The blocking operations are: mutex, suspend_thread and yield_thread.

462

THREAD -> SHAPE

par_conditional (THDLB,OPT(EXP INTEGER(v)),EXP a,EXP b) -> EXP TOP
par_labelled (
EXP a,LIST(OPT(EXP INTEGER(v))),LIST(THDLB),LIST(EXP b)) -> EXP TOP

create_thread (EXP POINTER,Ib:THDLB) -> EXP THREAD
schedule_thread (EXP THREAD) -> EXP TOP
yield_thread (THDLB) -> EXP TOP
stop_thread-> EXP BOTTOM
suspend_thread (EXP POINTER,THDLB) -> EXP THREAD
thread_size (EXP OFFSET) -> EXP OFFSET
nb_thread-> EXP POINTER
swap_thread (THREAD) -> EXP BOTTOM
nbstop_thread-> EXP BOTTOM
nbswap_thread (THREAD) -> EXP BOTTOM
current_thread (EXP THREAD) ->

access_threadstore (EXP THREAD) -> EXP POINTER
make_null_thread-> EXP THREAD
test_thread (NTEST,LABEL,EXP THREAD,EXP THREAD) -> EXP TOP
KEY -> SHAPE
make-key -> EXP KEY
mutex (EXP POINTER,EXP b) -> EXP TOP

Fig. 3. basic thread operators

thread so long as it terminates using nbstop_thread or nbswap_thread.
Featherweight threads may synchronise using lightweight mutual exclusion.

mutex takes a pointer to a key and executes its body EXP in mutual exclusion
with all other bodies guarded by the same pointer. The body will not contain
loops, thread label declarations, procedure calls or returns, or any other construct
that may involve a context switch. This means that mutual exclusion comes for
free when using cooperative scheduling on a uniprocessor.

ThreadTDF's 'continuation-passing' style of scheduling allows orthogonal
combination of scheduling and mutex so, for example, threads can suspend into
shared data structures under mutual exclusion. Thread termination within a mu-
tex body or jumps to external labels cause the mutex to be released. Mutexes
may be nested but in a correct TDF program the mutex pointer will always be
strictly less, in some partial order, than that of any enclosing mutexes to prevent
mutex deadlock.

3.2 D i s t r i b u t e d Fea the rwe igh t T h r e a d Ope ra t i ons

We provide three mechanisms for communicating between address spaces. The
simplest uses shared global TAGs to communicate static values: the runtime
system implements any necessary communication. This mechanism is mainly
used to bootstrap other forms of communication during program initialisation.

More complex communication mechanisms use remote values of shape RE-

463

MOTE. A value is converted to a remote by applying make_remote: the resulting
value contains the original value, and the identity of the current processor (of-
ten an integer). The original value can be extracted from a remote by applying
l o c a l i s e to it on the processor on which it was originally made.

A remote procedure value is used by apply_proc_rsmote which performs a
blocking remote procedure call to the procedure on the processor on which the
remote was created.

The inlet mechanism allows remote activation of a thread in an existing
procedure instance on the target. An inlet is a form of featherweight thread with
provision for arguments (similar to TAM inlets [4]). Figure 4 contains the inlet
constructors, make_ in le t s declares a group of inlets and delivers their common
'environment' . Each inlet has a THDLB label, a list of formal parameter TAGs
and shapes, and a body. send and remote-send allow asynchronous activation
of an inlet using its label and environment. The list of inlet arguments supplied
at the send must agree with the formals' declared shapes.

INLETENV -> SHAPE
make~nlets (LIST(THDLB),LIST(LIST(TAGSH)),LIST(EXP)) -> EXP INLETENV
send (EXP INLETENV,THDLH,LIST(EXP)) -> EXP TOP

remote~end (EXP REMOTE INLETENV,THDLB,LIST(EXP)) -> EXP TOP

Fig. 4. inlet operators

Experiences with active messages [16] and TAM inlets [4] indicate it may be
necessary to impose appropriate disciplines on inlet use e.g. to prevent deadlock
in the network or to simplify buffer allocation.

4 Implementing ThreadTDF

We now describe implementation techniques for the ThreadTDF operations.
We use a form of hierarchical cooperative scheduling: preemption could also be
used but is more complex. We have used these implementation techniques in
a ThreadTDF installer for the SPARC processor built using the existing TD F
SPAl%C installer. The ThreadTDF installer acts as the code generator for a
Parallel TDF system for compiling occam and for compiling our own dynamically
threaded dialect of C. Section 4.2 gives initial performance results.

Our ThreadTDF installer implements the scheduling of featherweight threads
explicitly in terms of operations on a bidirectional ring of bidirectional ringsS: a
global ring of procedure instances and a local ring of thread instances for each
procedure instance (shown in Fig. 5). We perform register and store allocation of
variables across all threads in a procedure so that we can make context switches

5 The ring structure provides fairness, if fairness were not required a stack would do.

464

within a procedure (around a local ring) cheap. Context switches between proce-
dures (around the global ring) are usually more expensive. The hierarchy could
be extended to include further subrings for contexts within a procedure.

�84

local thread "" '":
~ global thread

1
my user local values [

~.~.~.~+~.~.~.~.~.~.....~.~̀~;~?~+;~.~.~.~+~.~+~+~.~.~.~.~.~.~ 4-20

my PC I +16
my flame 1+12

my global thread [+8

1+4
next thread I 0

Fig. 5. data structures for hierarchical thread scheduling

A thread is scheduled by inserting it in its local ring but it only actually
executes when this ring becomes current. This 'lazy' scheduling generates more
local concurrency between global context switches and enhances locality 6.

4.1 Imp lem en t ing Featherweight Threads

The first main task of the ThreadTDF installer is to provide dynamic control
transfer for independent thread progress; the ring-of-rings data structure and
thread data structure we use for this purpose are shown in 5. Below we describe
how register allocation supports scheduling using these structures.

The second main task is to implement procedure local variables. These are
allocated in registers, on a single common stack, and on the heap. The nesting of
variables within thread declarations induces a tree of frames, each frame contain-
ing nested variables with the same degree of replication and local to the same
threads. Frames are allocated using the most efficient applicable mechanism.
The SESE structure of thread declarations improves this process as it ensures
all lifetimes nest properly and this reduces the connectedness of the variable in-
terference graph. This allows better reuse of registers and store locations which
in turn improves access latency and spatial density and reduces dynamic allo-
cation overhead. The SESE structure also ensures that the degree of replication
nests properly.

6 It is also possible to execute threads eagerly where advantageous e.g. when scheduling
a thread in the current procedure instance that is known to run without blocking.

465

The third main task is to implement concurrent procedure calls. We wish to
reuse the optimised sequefitial procedure calling convention so each concurrent
call potentially requires a new system stack. The installer must also save and
restore a procedure's local registers at global context switches and at procedure
call. Callee-save registers are a particular issue (see below).

The final task of the installer is to implement as many standard sequential
optimisations as possible in the presence of concurrency.

We will not discuss the implementation of inlets in detail here. An inlet is ac-
tivated using active message mechanisms [16] but the target activation executes
in a shared pre-existing procedure instance (see [4] for more detail).

I n t r a p r o c e d u r a l C o n c u r r e n c y . A THREAD value is simply a pointer to a
region of memory containing the thread-local system and user values (shown in
Fig. 5, shaded values are present only in global threads). We allocate variables
to registers and store in such a way that only the program counter register
needs to be saved for a thread. We do this by ensuring that register usage at
context switch targets is a subset of the usage at context switch sources. In
our implementation all context switches s t a r t at y i e l d _ t h r e a d , stop_thread,
or swap_thread (or the non-blocking equivalents) and end at a thread label.
The SESE property of thread declarations ensures that only variables in scope
or declared in a concurrent operand of an enclosing thread declaration can be
live at any point.

Each procedure maintains a pointer to the current local thread, usually in a
register. Local context switch can be implemented in three machine operations:
(1) load the next local thread's address (2) retrieve its PC (3) jump to it. This
seems to work well for our applications because there are usually enough SPARC
registers to hold the variables live at context switch targets. When we run out of
registers we allocate the remaining variables to store but we could also provide
thread-local register allocation if we were prepared to spill these registers at
context switches.

Scheduling operations, such as create_thread and schedule_thread are im-
plemented in terms of simple pointer operations on the scheduling data struc-
tures. Every thread is created containing the address of its global thread (this
may need to be updated in called procedures) so it can always be scheduled by
inserting it in the local ring at this thread. Non-blocking threads need no entry
in the scheduling data structures so thread operations on non-blocking threads
are often particularly simple.

Loca l Var iab les . A local variable is atomic if its scope contains no thread
label declarations. Atomic variables can be allocated to register or stack using
sequential techniques because they are never live at any context switch target.
Unfortunately non-atomic variables require a more involved treatment.

A procedure's non-atomic local variables are allocated in registers and in a
tree of frames spread across the stack and heap. Together these mechanisms
provide the logical 'tree-of-frames' structure induced by the nesting of concur-

466

rency in variable scopes. The installer analyses the thread declaration structure
and local variable declarations to construct the largest possible frames, and to
determine the number of replicated instances if possible. Dynamically replicated
frames are allocated on the heap, others on the stack. Dynamic allocation is
performed on entering a thread declaration and released on exit. c r e a t e _ t h r e a d
and suspend_thread operations initialise their threads' frame pointers, if re-
quired, using the next free frame for the given thread label (the continuation of
a suspended thread inherits the suspended thread's frame). If there is no free
frame then a new chunk of frames is allocated and added to a free list associated
with the label.

I n t e r p r o c e d u r a l C o n c u r r e n c y . Many ThreadTDF procedure calls are purely
sequential and can be executed with a normal sequential procedure call. This
includes calls outside thread declarations or when the local ring contains only one
local thread. External procedures, those that are not generated by the installer,
can also be treated as sequential (though not external calls that call back to
internal procedures). Run-to-completion calls, using apply-.vtc_proc, can also
be treated as sequential in many cases. All other procedure calls are concurrent.

Concurrent procedure calls impose a (mainly) small overhead due to the need
to manage concurrency. In the worst case a new global thread is allocated and a
new stack for the call to execute upon. After this the call uses existing sequential
mechanisms. Sometimes it may be possible for an installer to determine the
size of stack to allocate at a call, otherwise we resort either to guessing, or
to using stack check mechanisms. The stack size problem is particular difficult
when calling external procedures, it is probably best to sequentialise these calls
on a system stack so that the normal stack checking mechanisms apply. Further
overhead may be required to tidy up callee-save registers when a call returns if it
has been interrupted for continued execution of a thread in the calling procedure.

Figure 5 shows how a ring of global threads is constructed, one for each
procedure instance, to allow independent progress of concurrent calls. A local
context switch to the global thread causes, with compiler-controlled frequency,
a global context switch to the next procedure instance in the global ring. This
switch must save the outgoing thread's registers (and register windows on the
SPARC) and restore the registers of the target procedure instance.

We are also experimenting with lazy allocation techniques that reduce con-
currency overhead when execution is sequential. For example, procedure calls
can execute on their caller's stack so long as the calling procedure is provided
with a new stack if it is rescheduled concurrently with the call.

4.2 M e a s u r e m e n t s

Figure 6 describes the wall-clock durations of individual featherweight thread
operations. Times were measured on a SPARCstation 10 model 30 in single user
mode. For comparison [11] cites thread creation times in the range 400-1300#s
and thread switch times between 21 and 81/~s for thread packages (including the

467

Sun Lightweight Process library) on the SPARCstat ion 10. Notice that the du-
rat ion of t h r e a d _ c r e a t e depends on the degree of replication of any non-atomic
variables in the new thread. Dynamical ly replicated variables are allocated in
chunks for many threads at once using raal loc . Our figures show how the per-
thread overhead due to m a l l o c increases as chunk size decreases f rom 1000
thread instances to 1.

Operation
empty call
create thread
create thread
create thread
schedule thread
local yield
global yield
concurrent call

Duration (~s)
0.25
0.18
0.44
0.50-1.90
0.18
0.2~
14.0
16.0

empty sequential call
no replicated variables
statically replicated variables
dynamically replicated variables

between threads in the same procedure instance
between concurrent caller and callee procedures
set up stack and scheduling structures at call

Fig. 6. thread performance on a Sun SPARCStation 10

Figure 7 compares performance of two simple occam programs compiled using
T h r e a d T D F and using the Southampton Portable Occam Compiler (SPOC)[5].
SPOC compiles occam to C which was then compiled using tcc or gcc (-02). tcc
is the T D F C compiler from which the ThreadTDF installer is derived, daxpy
is a simple numeric kernel performing a floating point add and mult iply per
iteration. The inner loop is sequential in the SPOC version and parallel in the
ThreadTDF version but the parallelism is eliminated during compilation so the
end results are identical, comstime passes a value around a ring of channels
connecting four occam processes. Here the iteration t ime measures the cost of
four complete channel synchronisations and some internal scheduling overhead.

Platform
SS10
SS10
SS10
25MHz T800
SSI0
SS10
SSI0

Application
daxpy
daxpy
daxpy
comstime
comstime
comstime
comstime

Compiler
SPOC and GNU gcc
SPOC and tcc
ThreadTDF
Inmos occam
SPOC and GNU gcc
SPOC and tcc
ThreadTDF

Iteration Time (Its)
0.30
0.35
0.35
12.0
12.0
23.0
5.0

Fig. 7. performance of compiled occam

468

5 R e l a t e d W o r k a n d C o n c l u s i o n

As far as we know, ThreadTDF is the first language- and machine-independent
intermediate representation for compiling concurrency. However many parts of
the problem have been considered before.

Much work on compiling parallel languages has considered bulk parallelism
and SPMD computation[14, l, 12]. We believe that ThreadTDF should provide
a suitable implementation substrate for these languages, though many optimi-
sations and distribution transformations will be performed outside ThreadTDF,
perhaps using ParTDF[15].

Another common approach uses portable libraries, e.g. PVM or POSIX threads,
to support the compilation of concurrency. The level of functionality provided
by such libraries can impose significant performance costs[10, 13] particularly
when the source language allows both communication and concurrency.

Newer libraries, such as MPI and Chant[i l l , support communication with
concurrency. Some, such as Nexus [9], are even designed as compiler targets.
Nexus lacks featherweight threads, but otherwise provides services similar to
ThreadTDF. It also supports global pointers and heterogeneous machines which
ThreadTDF does not, yet. Despite the continued evolution of libraries, we still
expect an intermediate representation to offer better performance. Firstly, pro-
cedure calls add their own overhead: call and return on a SPARC costs about
the same as a featherweight context switch. Secondly, procedure calls to libraries
prevent sharing in registers. Finally, the structure of an intermediate represen-
tation can support many important techniques, such as featherweight threads,
that would not otherwise be possible. Technologies based on TDF should be
widely portable, though libraries may be more widely available, at least initially.

ThreadTDF is close in spirit to the Threaded Abstract Machine [4]. Inlets and
featherweight threads are similar to TAM inlets, but are not bound to execute
to completion. Unlike TAM, ThreadTDF preserves sequential control structure
and also supports more general thread operations.

In future we hope to improve support for distribution, add further source
languages and perhaps add support for restricted scheduling disciplines, such as
those considered in [2]. Our implementation techniques could be improved in
many areas including register allocation, and dynamic store management. Also
outstanding are consideration of remote memory access, memory consistency
and of heterogeneous processing.

Finally it is worth noting that the ThreadTDF implementation techniques,
if applied widely, may have significant implications for processor design.

R e f e r e n c e s

1. V. Bala and J. Ferrante. Explicit data placement(XDP): A methodology for ex-
plicit compile-time representation and optimisation of data movement. A CM SIG-
P L A N notices, 28(1):28-31, January 1993.

2. Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. In Proceedings of the 35th Annual Symposium on Foun-

469

dations o] Computer Science (FOGS '94), pages 356-368, Santa Fe, New Mexico,
November 1994.

3. Frederic Broustaut, Christian Fabre, Franqois de Ferri&re,]~ric Ivanov, and Mauro
Fiorentini. Verification of ANDF components. In Proceedings of the 1995 ACM
Workshop on Intermediate Representations, 1995.

4. Daved E. Culler, Seth Copen Goldstein, Klaus Erik Schauser, and Thorsten yon
Eicken. TAM - a compiler controlled threaded abstract machine. Report, Com-
puter science division, University of California, 1993.

5. Mark Debbage, Mark Hill, Sean Wykes, and Denis Nicole. Southampton's Portable
Occam Compiler (SPOC): User Guide. University of Southampton, Southampton,
UK, March 1994.

6. Stephen L. Diamond and Gianluigi Castelli. Architecture Neutral Distribution
Format (ANDF). IEEE Micro, 14(6):73-76, December 1994.

7. DRA. TDF Specification, lssue 3. Open Software Systems Group, St. Andrews
Rd, Malvern, Worcs, WR14 3PS, UK, March 1994. Obtainable via WWW from
http://riwww.osf.org:8001/andf/andf.papers/toc.html.

8. P. W. Edwards, D. I. Bruce, D. J. C. Hutchinson, I. F. Currie, and P. D. Ham-
mond. TDF and parallel object oriented languages. Deliverable 2.2 lED3/1/1059,
Defense Research Agency, Open Software Systems Group, St. Andrews Rd,
Malvern, Worcs, WR14 3PS, UK, 1992. October.

9. Ian Foster, Carl Kesselman, and Steven Tuecke. Nexus: Runtime support for task-
parallel programming languages. Technical report, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, IL, 1994.

10. E. W. Giering, Frank Mueller, and T. P. Baker. Implementing Ada 9X features
using POSIX threads: Design issues (draft). Technical report, New York University,
Computer Science Department, New York, NY 10003, USA, 1993.

11. Matthew Haines, David Cronk, and Piyush Mehrotra. On the design of Chant:
A talking threads package. In Proceedings of Supercomputing 9,t, pages 350-359,
November 1994. Washington, DC.

12. S. Hiranandani, K. Kennedy, and C. Tseng. Preliminary experiences with the For-
tran D compiler. In Supercomputing 93, pages 338-350, November 1993. Portland,
Oregon.

13. Wilson C. Hsieh, Kirk L. Johnson, M. Frans Kaashoek, Deborah A. Wallach, and
William E. Weihl. Efficient implementation of high-level languages on user-level
communication architectures. Technical report, MIT, Massachusetts Institute of
Technology, Laboratory for Computer Science, Cambridge, Massachusetts 02139,
May 1994.

14. V. B. Muchnick and A. V. Shafarenko. F-code: A portable software platform for
data-parallel lanaguages. Technical report, Dept. of Electronic and Electrical En-
gineering, University of Surrey, April 1992.

15. Ben Sloman and Tom Lake. Extending TDF for concurrency and distribution.
Report, GLOSSA, 59 Alexandra Road, Reading, RG1 5PG, UK, January 1995.

16. T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages:
a mechanism for integrated communication and computation. In Proceedings of
the 19th International Symposium on Computer Architecture, pages 256-266, May
1992. Cold Coast, Australia.

