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Abs t r ac t .  We present an intermediate representation called ThreadTDF, 
a component of the Parallel TDF system for compiling distributed con- 
current programs to shared and distributed memory multiprocessors. 
ThreadTDF is a parallel extension of the TDF architecture neutral dis- 
tribution format (ANDF) for sequential programs. ThreadTDF provides 
featherweight thread mechanisms for explicitly scheduling dynamic fine- 
grain concurrent computations within procedures (and more generally 
within static local scopes). Communication between address spaces is 
supported by remote service request mechanisms based upon asynchronous 
activation of remote threads and synchronous remote procedure calls. 
In ThreadTDF variable lifetimes bound the lifetimes of featherweight 
threads declared in their scope. We show how a compiler uses thread 
lifetime information to integrate resource allocation and communication 
with thread scheduling for efficient intraprocedural concurrency. Initial 
performance results are given for the SPARC processor. 

1 I n t r o d u c t i o n  a n d  B a c k g r o u n d  

Parallel T D F  is a system for the architecture neutral representation and compi- 
lation of parallel programs. It  consists of a family of architecture neutral com- 
piler intermediate representations (IRs), of which Pa rTDF and ThreadTDF are 
currently the most  important ,  and techniques for compiling parallel programs 
using these representations. Parallel T D F  is based upon TDF[7], an architec- 
ture neutral  and language neutral distribution format.  T D F  is a compiler IR 
with a standardised external representation. In one scenario, TDF is used to 
bridge language-specific compiler front ends (producers) and separate target- 
specific back ends (installers) for distribution of ' shrink-wrapped'  software (Fig. 
1). T D F  cannot create portability3: applications must use portable programming 
styles and must adhere to s tandard APIs. Parallel T D F  a t tempts  to extend the 
functionality of T D F  for parallel languages and machines. 

T D F  is described in detail in [7] and other information is available from the 
OSF ANDF web page at http://riwww, osf. org:8OO1/andf/index.html or in [3, 6]. 

* This work was carried out under contract for the UK Defence Research Agency 
** The authors can be contacted as {Ben.Sloman,Tom.Lake)@glossa.co.uk. 
3 Though the TDF technology has proved useful for portability checking tools. 
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Fig. 1. shrink wrapped distribution using TDF 

Parallel TDF provides services for concurrent computation and communica- 
tion. Its design supports compilation of data parallel and control parallel lan- 
guages on SIMD and homogeneous shared and distributed memory MIMD ma- 
chines. Structured parallel languages such as Fortran 90 and oeeam are compiled 
into the ParTDF intermediate representation in terms of bags (multisets) of pro- 
cesses. ParTDF allows portability-improving transformations such as distribu- 
tion of bulk parallelism and conversion of task parallelism for lockstep parallel 
execution [15]. Other parallel languages are compiled into the ThreadTDF inter- 
mediate representation. ThreadTDF provides dynamic manipulation of scoped 
fine grain threads for efficient concurrency on a narrower range of architectures. 

Our contribution is to describe ThreadTDF and show how it can be compiled 
efficiently to off-the-shelf processor architectures. We show that thread scopes 
simplify register allocation across threads. We then show how to exploit the reg- 
ister allocation by using cooperative hierarchical scheduling to optimise context 
switches between threads in the same variable scopes. 

2 Introduct ion  to T D F  

TDF is a tree-structured language with special features for portability. It pre- 
serves more program structure than low level IRs such as the RTL of gcc, but has 
no syntactic sugar and a weaker type system than typical high level languages. 
The unit of representation in TDF is the capsule which contains definitions and 
declarations of procedures, variables and tokens (see below). A capsule can ex- 
port these declarations and definitions by binding them to external names. The 
ANSI C TDF producer converts each separate C file into a compact binary repre- 
sentation of a TDF capsule. A TDF linker allows capsules to be bound together 
using their external names. 

In TDF, any target machine or OS dependences, such as the implementa- 
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tions of C types s and FILE, are deferred using parameterised placeholders, 
similar to syntax macros, called tokens. The TDF linker can be used to bind in 
token definitions once the target machine is known. The resulting TDF is then 
converted to object code by an installer and linked using the system linker to 
produce an executable (see Fig. 1). 

TDF producers have been or are being developed for C, Fortran 77, Ada, Dy- 
lan and C++  along with installers for SPAI~C, 80x86, MIPS, Alpha, PowerPC, 
HP/PA and ARM processors. 

2.1 T D F ' s  Tree S t r u c t u r e  

The tree structure of TDF is defined as a multi-sorted abstract algebra. Each 
sort can be understood roughly as implementing a particular class of high level 
language construct. The most important TDF sorts are EXP, which represents 
executable operations (such as commands and expressions), and SHAPE which 
describes the types of the static-sized run-time vaLues delivered and manipulated 
by EXPs. Each sort has a set of constructors (operators) each of which takes 
operands of known sort. Figure 2 specifies some of the EXP constructors. EXPs 
are annotated with their SHAPEs; there are SHAPEs for integer and floating 
point numbers, pointers, store offsets, and compounds of these values. The spe- 
cial shapes TOP and BOTT0~I are used for constructs that return no usable value 
or that transfer control respectively. 

plus (ERROR_TREATMENT,EXP INTEGER(v),EXP INTEOER(v)) -> EXP INTEOER(v) 
make_int (v:VARIETY,S~GNED_NAT) -> EXP INTEGER(v) 
assign (EXP POINTER(x),EXP(y)) -> EXP TOP 
contents (s:SHAPE,EXP POINTER(x)) -> EXP s 
integer~est (NTEST,LABEL,EXP INTEGER(v),EXP INTEGER(v)) -> EXP TOP 
goto (LABEL) -> EXP BOTTOM 
conditional (LABEL,EXP x,EXP z) -> EXP (x U z) 
repeat (LABEL,EXP x,EXP z) -> EXP z 
conditional (LABEL,EXP x,EXP z) -> EXP (x U z) 
labelled (LIST(LABEL),EXP x,LIST(EXP)) -> EXP w 
sequence (LIST(EXP),EXP x) -> EXP x 
variable (0PTION(ACCESS),TAG,EXP x,EXP y) -> EXP y 
identify (OPTION(ACCESS),TAG,EXP x,EXP y) -> EXP y 

Fig. 2. some EXP constructors 

The meaning of terms in the TDF algebra is specified in terms of the in- 
terleaved 'expression-like' evaluation of EXP constructors. Additional ordering 
may be imposed by declaration (initialiser before scope), sequence and by ex- 
plicit jumps to LABELs. Values are delivered from operands to operators or 
passed via store using assignment and dereference. 

The TDF specification [7] defines 53 different SORTS which are combined to 
produce an EXP for each procedure in a source language program. These EXPs 
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are combined with SORTS describing linking information and global declarations 
to produce a TDF capsule. 

2.2 Declarat ions  and  Order ing  

Values may be bound to unique numeric identifiers called TAGs. obtain_tag 
delivers the value bound to its operand TAG. i d e n t i f y  binds the result of eval- 
uating its first EXP operand to a TAG that may then be used during evaluation 
of its second EXP operand, va r i ab l e  is similar but store is allocated to con- 
tain the initialising value and the TAG is bound to the address of this store. 
Declarations are also provided for global TAGs. 

A few other EXP constructors also evaluate their EXP operands in order. The 
simplest is sequence which evaluates its operands from left to right and delivers 
the last operand's result. More general ordering is provided by explicit jumps 
such as goto and in teger_ tes t ;  target LABELs are scoped by the declarations 
condi t iona l ,  ropoat  and l abe l l ed ,  condi t ional(LB,  XA, XB) evaluates XA 
with LABEL LB available for forward jumps to XB. repeat(LB, XA, XB) eval- 
uates XA then XB and LB is available in XB for backward jumps to the start of 
XB. Finally, labelled(XA, LBi, Xi) declares a list of labels LBi and a list of 
corresponding target EXPs, Xi. Evaluation starts with XA and any label LBi 
may be used in any EXP operand. 

3 T h r e a d T D F  

ThreadTDF extends TDF in a natural way with mechanisms to dynamically 
create and schedule fine-grain concurrent EXP evaluations that we call feather- 
weight threads. These mechanisms are general enough to express a wide range of 
concurrency: they provide much of the functionality of existing thread libraries, 
such as POSIX threads, but allow concurrency within as well as between pro- 
cedure instances. Featherweight threads execute within a shared address space 
by default, communication between address spaces is added using a notion of 
remote thread activation. 

The execution of multiple featherweight threads within a procedure instance 
provides new opportunities for integrating resource allocation with scheduling. 
It often becomes possible to allocate machine resources (stack and registers) 
statically across threads. An implementation using hierarchical scheduling, de- 
scribed in Sec. 4, groups thread executions by procedure instance to exploit 
static allocation within the procedure. 

Featherweight threads are self-scheduled: there is no notion of a thread han- 
dle other than the thread value representing a descheduled thread. We provide 
lightweight mutual exclusion between threads: other synchronisation operations 
can be constructed from exclusion and scheduling. More complex services, such 
as k i l l _ t h r e a d  or priority control, are implemented using self-scheduling. This 
approach was first proposed in [8] while considering TDF extensions to support 
compilation of the concurrent object language UC++. 
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A key aim of ThreadTDF is to allow efficient exploitation of uniprocessors. 
This is important  for many reasons. It allows parallel programs to ride the rapid 
' technology curve' of sequential hardware improvements. It supports multipro- 
cessing. It also eases the software development process and encourages portabili ty 
and scalability. 

3.1 Featherweight Thread Operations 

A featherweight thread is a concurrent execution of an EXP starting at a label. 
Thread label declarations have a Single Entry Single Exit (SESE) property: a 
thread is only allowed to complete (fall through) a declaration once all other 
threads enclosed by the same instance of the declaration have terminated. This 
means that  the lifetime of many threads is bounded by the lifetime of their 
initial labels. We currently require tha t  threads synchronise explicitly to enforce 
the SESE property, thereby putt ing the onus on the ThreadTDF producer. We 
are also considering adding thread declarations that  provide the required thread 
synchronisations implicitly. Section 4 shows how the SESE property helps code 
generation. 

Figure 3 contains the ThreadTDF constructors. These include a new shape 
called THREAD for values representing descheduled threads and a new sort 
called THDLB for thread labels. Modified forms of c o n d i t i o n a l  and l a b e l l e d ,  
called p a r _ c o n d i t i o n a l  and p a r _ l a b e l l e d ,  are used to declare thread labels. 
Procedure return and jumps to external labels are forbidden within these con- 
structs. An instance of a thread label is replicated if more than one thread is 
created or suspended at it or yields to it during its lifetime. Only pa r ._ labe l l ed  
labels can be replicated and each of these labels is associated with an optional 
bound on its degree of replication. 

A deseheduled thread is created suspended at a THDLB by c r e a t e _ t h r e a d .  
An executing thread suspends itself at a THDLB using suspend_thread;  exe- 
cution continues in a new thread into which the suspended thread is delivered. 
Both creation and suspension are parameterised by pointers that  address space 
at which a new thread's internal values can be stored. This space must be al- 
located explicitly by v a r i a b l e  or by dynamic store allocation using the size 
delivered by t h r e a d - s i z e  (parameterised by the amount of store required for 
user thread-local values). A thread value can be scheduled for eventual execu- 
tion using schedu le_ th read ,  and execution is terminated using s t o p _ t h r e a d  
or swap_thread. Regular use of y i e l d _ t h r e a d  is required so that  cooperative 
scheduling can ensure fair independent progress. 

A simple extension of thread creation and suspension provides creation and 
suspension at thread labels declared by previous procedure instances in the cur- 
rent procedure call chain. This can be used to create threads with unlimited 
lifetimes. 

In some cases the new thread created at suspend_thread  will never block 4 
or call or return. In this case nb_ thread  can be used to supply space for the 

4 The blocking operations are: mutex, suspend_thread and yield_thread. 
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THREAD -> SHAPE 

par_conditional (THDLB,OPT(EXP INTEGER(v)),EXP a,EXP b) -> EXP TOP 
par_labelled ( 
EXP a,LIST(OPT(EXP INTEGER(v))),LIST(THDLB),LIST(EXP b)) -> EXP TOP 

create_thread (EXP POINTER,Ib:THDLB) -> EXP THREAD 
schedule_thread (EXP THREAD) -> EXP TOP 
yield_thread (THDLB) -> EXP TOP 
stop_thread-> EXP BOTTOM 
suspend_thread (EXP POINTER,THDLB) -> EXP THREAD 
thread_size (EXP OFFSET) -> EXP OFFSET 
nb_thread-> EXP POINTER 
swap_thread (THREAD) -> EXP BOTTOM 
nbstop_thread-> EXP BOTTOM 
nbswap_thread (THREAD) -> EXP BOTTOM 
current_thread (EXP THREAD) -> 

access_threadstore (EXP THREAD) -> EXP POINTER 
make_null_thread-> EXP THREAD 
test_thread (NTEST,LABEL,EXP THREAD,EXP THREAD) -> EXP TOP 
KEY -> SHAPE 
make-key -> EXP KEY 
mutex (EXP POINTER,EXP b) -> EXP TOP 

Fig. 3. basic thread operators 

thread so long as it terminates using nbstop_thread or nbswap_thread. 
Featherweight threads may synchronise using lightweight mutual exclusion. 

mutex takes a pointer to a key and executes its body EXP in mutual exclusion 
with all other bodies guarded by the same pointer. The body will not contain 
loops, thread label declarations, procedure calls or returns, or any other construct 
that may involve a context switch. This means that mutual exclusion comes for 
free when using cooperative scheduling on a uniprocessor. 

ThreadTDF's 'continuation-passing' style of scheduling allows orthogonal 
combination of scheduling and mutex so, for example, threads can suspend into 
shared data structures under mutual exclusion. Thread termination within a mu- 
tex body or jumps to external labels cause the mutex to be released. Mutexes 
may be nested but in a correct TDF program the mutex pointer will always be 
strictly less, in some partial order, than that of any enclosing mutexes to prevent 
mutex deadlock. 

3.2 D i s t r i b u t e d  Fea the rwe igh t  T h r e a d  Ope ra t i ons  

We provide three mechanisms for communicating between address spaces. The 
simplest uses shared global TAGs to communicate static values: the runtime 
system implements any necessary communication. This mechanism is mainly 
used to bootstrap other forms of communication during program initialisation. 

More complex communication mechanisms use remote values of shape RE- 
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MOTE. A value is converted to a remote by applying make_remote: the resulting 
value contains the original value, and the identity of the current processor (of- 
ten an integer). The original value can be extracted from a remote by applying 
l o c a l i s e  to it on the processor on which it was originally made. 

A remote procedure value is used by apply_proc_rsmote  which performs a 
blocking remote procedure call to the procedure on the processor on which the 
remote was created. 

The inlet mechanism allows remote activation of a thread in an existing 
procedure instance on the target. An inlet is a form of featherweight thread with 
provision for arguments (similar to TAM inlets [4]). Figure 4 contains the inlet 
constructors, make_ in le t s  declares a group of inlets and delivers their common 
'environment' .  Each inlet has a THDLB label, a list of formal parameter TAGs 
and shapes, and a body. send and remote-send  allow asynchronous activation 
of an inlet using its label and environment. The list of inlet arguments supplied 
at the send must agree with the formals' declared shapes. 

INLETENV -> SHAPE 
make~nlets (LIST(THDLB),LIST(LIST(TAGSH)),LIST(EXP)) -> EXP INLETENV 
send (EXP INLETENV,THDLH,LIST(EXP)) -> EXP TOP 

remote~end (EXP REMOTE INLETENV,THDLB,LIST(EXP)) -> EXP TOP 

Fig. 4. inlet operators 

Experiences with active messages [16] and TAM inlets [4] indicate it may be 
necessary to impose appropriate disciplines on inlet use e.g. to prevent deadlock 
in the network or to simplify buffer allocation. 

4 Implementing ThreadTDF 

We now describe implementation techniques for the ThreadTDF operations. 
We use a form of hierarchical cooperative scheduling: preemption could also be 
used but is more complex. We have used these implementation techniques in 
a ThreadTDF installer for the SPARC processor built using the existing TD F  
SPAl%C installer. The ThreadTDF installer acts as the code generator for a 
Parallel TDF  system for compiling occam and for compiling our own dynamically 
threaded dialect of C. Section 4.2 gives initial performance results. 

Our ThreadTDF installer implements the scheduling of featherweight threads 
explicitly in terms of operations on a bidirectional ring of bidirectional ringsS: a 
global ring of procedure instances and a local ring of thread instances for each 
procedure instance (shown in Fig. 5). We perform register and store allocation of 
variables across all threads in a procedure so that  we can make context switches 

5 The ring structure provides fairness, if fairness were not required a stack would do. 
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within a procedure (around a local ring) cheap. Context switches between proce- 
dures (around the global ring) are usually more expensive. The hierarchy could 
be extended to include further subrings for contexts within a procedure. 

�84 . . . . .  

local thread "" '": 
~ global thread 

1 
my user local values [ 

~.~.~.~+~.~.~.~.~.~.....~.~̀~;~?~+;~.~.~.~+~.~+~+~.~.~.~.~.~.~ 4-20 

my PC I +16 
my flame 1+12 

my global thread [+8 

1+4 
next thread I 0 

Fig. 5. data structures for hierarchical thread scheduling 

A thread is scheduled by inserting it in its local ring but it only actually 
executes when this ring becomes current. This 'lazy' scheduling generates more 
local concurrency between global context switches and enhances locality 6. 

4.1 Imp lem en t ing  Featherweight  Threads  

The first main task of the ThreadTDF installer is to provide dynamic control 
transfer for independent thread progress; the ring-of-rings data  structure and 
thread data structure we use for this purpose are shown in 5. Below we describe 
how register allocation supports scheduling using these structures. 

The second main task is to implement procedure local variables. These are 
allocated in registers, on a single common stack, and on the heap. The nesting of 
variables within thread declarations induces a tree of frames, each frame contain- 
ing nested variables with the same degree of replication and local to the same 
threads. Frames are allocated using the most efficient applicable mechanism. 
The SESE structure of thread declarations improves this process as it ensures 
all lifetimes nest properly and this reduces the connectedness of the variable in- 
terference graph. This allows better reuse of registers and store locations which 
in turn improves access latency and spatial density and reduces dynamic allo- 
cation overhead. The SESE structure also ensures that  the degree of replication 
nests properly. 

6 It is also possible to execute threads eagerly where advantageous e.g. when scheduling 
a thread in the current procedure instance that is known to run without blocking. 
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The third main task is to implement concurrent procedure calls. We wish to 
reuse the optimised sequefitial procedure calling convention so each concurrent 
call potentially requires a new system stack. The installer must also save and 
restore a procedure's local registers at global context switches and at procedure 
call. Callee-save registers are a particular issue (see below). 

The final task of the installer is to implement as many standard sequential 
optimisations as possible in the presence of concurrency. 

We will not discuss the implementation of inlets in detail here. An inlet is ac- 
tivated using active message mechanisms [16] but the target activation executes 
in a shared pre-existing procedure instance (see [4] for more detail). 

I n t r a p r o c e d u r a l  C o n c u r r e n c y .  A THREAD value is simply a pointer to a 
region of memory containing the thread-local system and user values (shown in 
Fig. 5, shaded values are present only in global threads). We allocate variables 
to registers and store in such a way that  only the program counter register 
needs to be saved for a thread. We do this by ensuring that  register usage at 
context switch targets is a subset of the usage at context switch sources. In 
our implementation all context switches s t a r t  at y i e l d _ t h r e a d ,  stop_thread, 
or swap_thread (or the non-blocking equivalents) and end at a thread label. 
The SESE property of thread declarations ensures that  only variables in scope 
or declared in a concurrent operand of an enclosing thread declaration can be 
live at any point. 

Each procedure maintains a pointer to the current local thread, usually in a 
register. Local context switch can be implemented in three machine operations: 
(1) load the next local thread's address (2) retrieve its PC (3) jump to it. This 
seems to work well for our applications because there are usually enough SPARC 
registers to hold the variables live at context switch targets. When we run out of 
registers we allocate the remaining variables to store but we could also provide 
thread-local register allocation if we were prepared to spill these registers at 
context switches. 

Scheduling operations, such as create_thread and schedule_thread are im- 
plemented in terms of simple pointer operations on the scheduling data struc- 
tures. Every thread is created containing the address of its global thread (this 
may need to be updated in called procedures) so it can always be scheduled by 
inserting it in the local ring at this thread. Non-blocking threads need no entry 
in the scheduling data structures so thread operations on non-blocking threads 
are often particularly simple. 

Loca l  Var iab les .  A local variable is atomic if its scope contains no thread 
label declarations. Atomic variables can be allocated to register or stack using 
sequential techniques because they are never live at any context switch target. 
Unfortunately non-atomic variables require a more involved treatment.  

A procedure's non-atomic local variables are allocated in registers and in a 
tree of frames spread across the stack and heap. Together these mechanisms 
provide the logical 'tree-of-frames' structure induced by the nesting of concur- 
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rency in variable scopes. The installer analyses the thread declaration structure 
and local variable declarations to construct the largest possible frames, and to 
determine the number of replicated instances if possible. Dynamically replicated 
frames are allocated on the heap, others on the stack. Dynamic allocation is 
performed on entering a thread declaration and released on exit. c r e a t e _ t h r e a d  
and suspend_thread operations initialise their threads' frame pointers, if re- 
quired, using the next free frame for the given thread label (the continuation of 
a suspended thread inherits the suspended thread's frame). If there is no free 
frame then a new chunk of frames is allocated and added to a free list associated 
with the label. 

I n t e r p r o c e d u r a l  C o n c u r r e n c y .  Many ThreadTDF procedure calls are purely 
sequential and can be executed with a normal sequential procedure call. This 
includes calls outside thread declarations or when the local ring contains only one 
local thread. External procedures, those that  are not generated by the installer, 
can also be treated as sequential (though not external calls that  call back to 
internal procedures). Run-to-completion calls, using apply-.vtc_proc,  can also 
be treated as sequential in many cases. All other procedure calls are concurrent. 

Concurrent procedure calls impose a (mainly) small overhead due to the need 
to manage concurrency. In the worst case a new global thread is allocated and a 
new stack for the call to execute upon. After this the call uses existing sequential 
mechanisms. Sometimes it may be possible for an installer to determine the 
size of stack to allocate at a call, otherwise we resort either to guessing, or 
to using stack check mechanisms. The stack size problem is particular difficult 
when calling external procedures, it is probably best to sequentialise these calls 
on a system stack so that  the normal stack checking mechanisms apply. Further 
overhead may be required to tidy up callee-save registers when a call returns if it 
has been interrupted for continued execution of a thread in the calling procedure. 

Figure 5 shows how a ring of global threads is constructed, one for each 
procedure instance, to allow independent progress of concurrent calls. A local 
context switch to the global thread causes, with compiler-controlled frequency, 
a global context switch to the next procedure instance in the global ring. This 
switch must save the outgoing thread's registers (and register windows on the 
SPARC) and restore the registers of the target procedure instance. 

We are also experimenting with lazy allocation techniques that  reduce con- 
currency overhead when execution is sequential. For example, procedure calls 
can execute on their caller's stack so long as the calling procedure is provided 
with a new stack if it is rescheduled concurrently with the call. 

4.2 M e a s u r e m e n t s  

Figure 6 describes the wall-clock durations of individual featherweight thread 
operations. Times were measured on a SPARCstation 10 model 30 in single user 
mode. For comparison [11] cites thread creation times in the range 400-1300#s 
and thread switch times between 21 and 81/~s for thread packages (including the 
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Sun Lightweight Process library) on the SPARCstat ion 10. Notice that  the du- 
rat ion of t h r e a d _ c r e a t e  depends on the degree of replication of any non-atomic 
variables in the new thread. Dynamical ly replicated variables are allocated in 
chunks for many  threads at once using raal loc .  Our figures show how the per- 
thread overhead due to m a l l o c  increases as chunk size decreases f rom 1000 
thread instances to 1. 

Operation 
empty call 
create thread 
create thread 
create thread 
schedule thread 
local yield 
global yield 
concurrent call 

Duration (~s) 
0.25 
0.18 
0.44 
0.50-1.90 
0.18 
0.2~ 
14.0 
16.0 

empty sequential call 
no replicated variables 
statically replicated variables 
dynamically replicated variables 

between threads in the same procedure instance 
between concurrent caller and callee procedures 
set up stack and scheduling structures at call 

Fig. 6. thread performance on a Sun SPARCStation 10 

Figure 7 compares performance of two simple occam programs compiled using 
T h r e a d T D F  and using the Southampton Portable Occam Compiler (SPOC)[5]. 
SPOC compiles occam to C which was then compiled using tcc or gcc (-02).  tcc 
is the T D F  C compiler from which the ThreadTDF installer is derived, daxpy 
is a simple numeric kernel performing a floating point add and mult iply per 
iteration. The inner loop is sequential in the SPOC version and parallel in the 
ThreadTDF version but the parallelism is eliminated during compilation so the 
end results are identical, comstime passes a value around a ring of channels 
connecting four occam processes. Here the iteration t ime measures the cost of 
four complete channel synchronisations and some internal scheduling overhead. 

Platform 
SS10 
SS10 
SS10 
25MHz T800 
SSI0 
SS10 
SSI0 

Application 
daxpy 
daxpy 
daxpy 
comstime 
comstime 
comstime 
comstime 

Compiler 
SPOC and GNU gcc 
SPOC and tcc 
ThreadTDF 
Inmos occam 
SPOC and GNU gcc 
SPOC and tcc 
ThreadTDF 

Iteration Time (Its) 
0.30 
0.35 
0.35 
12.0 
12.0 
23.0 
5.0 

Fig. 7. performance of compiled occam 
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5 R e l a t e d  W o r k  a n d  C o n c l u s i o n  

As far as we know, ThreadTDF is the first language- and machine-independent 
intermediate representation for compiling concurrency. However many parts of 
the problem have been considered before. 

Much work on compiling parallel languages has considered bulk parallelism 
and SPMD computation[14, l, 12]. We believe that  ThreadTDF should provide 
a suitable implementation substrate for these languages, though many optimi- 
sations and distribution transformations will be performed outside ThreadTDF, 
perhaps using ParTDF[15]. 

Another common approach uses portable libraries, e.g. PVM or POSIX threads, 
to support the compilation of concurrency. The level of functionality provided 
by such libraries can impose significant performance costs[10, 13] particularly 
when the source language allows both communication and concurrency. 

Newer libraries, such as MPI and Chant[ i l l ,  support communication with 
concurrency. Some, such as Nexus [9], are even designed as compiler targets. 
Nexus lacks featherweight threads, but otherwise provides services similar to 
ThreadTDF. It also supports global pointers and heterogeneous machines which 
ThreadTDF does not, yet. Despite the continued evolution of libraries, we still 
expect an intermediate representation to offer better performance. Firstly, pro- 
cedure calls add their own overhead: call and return on a SPARC costs about 
the same as a featherweight context switch. Secondly, procedure calls to libraries 
prevent sharing in registers. Finally, the structure of an intermediate represen- 
tation can support many important techniques, such as featherweight threads, 
that  would not otherwise be possible. Technologies based on TDF should be 
widely portable, though libraries may be more widely available, at least initially. 

ThreadTDF is close in spirit to the Threaded Abstract Machine [4]. Inlets and 
featherweight threads are similar to TAM inlets, but are not bound to execute 
to completion. Unlike TAM, ThreadTDF preserves sequential control structure 
and also supports more general thread operations. 

In future we hope to improve support for distribution, add further source 
languages and perhaps add support for restricted scheduling disciplines, such as 
those considered in [2]. Our implementation techniques could be improved in 
many areas including register allocation, and dynamic store management. Also 
outstanding are consideration of remote memory access, memory consistency 
and of heterogeneous processing. 

Finally it is worth noting that  the ThreadTDF implementation techniques, 
if applied widely, may have significant implications for processor design. 
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