
AD-AIBI 035 ANEL-ALJATION 0Of THE FLEX PROGRANNING Sl~lOkI I/I
NJJ ALU -BN(E1LAN) N LV AUG8RS-6 3

UNCLASSIFIED DRICB 1 71AS F/G L2/5 NL

uNc L ,s ,1

I I - I ___ ___

I 1.0 L4 5328 L
L;I ' L3.

I'll'-

11111IL25 . 1111 16

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS I 963-A

Royal Signals and Radar Establishment

Report 86803

AUTHOR8 Margaret Stanley.
DATE, Aug 1986

An evaluation of the FEW Programming Support Environment

This paper gives a personal reaction to the Flex Programming support
environment, developed at RSRE, Malvern. It discusses the new approach
to program development necessary to take advantage of the environment,
and evaluates the environment against some criteria for programming
environments in general.

Accession For

NTIS GRA&I
DTIC TAB
Unannouned C1
Just ifi cat io

Dimtribut ion/

Availability Codes
" Avai an/o

Dist Special

Copyright

Controller HMSO London

1986

An evaluation of the Progranming support Environment

Contents

1. Introduction
2. Criteria for evaluating a PSE (Programming Support Environment)
3. The underlying philosophy of the Flex PSE

3. 1 Filestore updating
3.2 Procedures and the command interpreter
3.3 Flex modes and values
3.'. Some special Flex modes

Capability modes
Procedure modes
Flex modes Mode and Moded
Exceptions

3.5 The user interface to Flex
Edf i les
Values not names
The current name-space
Machine held documentation

3.6 Procedure values
Information hiding
Access control
Privilege

3.7 Separate compilation on Flex
The module
Changes

3.8 Relationships between filestore objects
General relationships
Special relationships
Versions

3.9 Some results of Flex characteristics
Separation of concerns
Orthogonal interface and re-use
Immediate testing
Parallel processes

I. Performance of Flex as a PSE
5. Summary
6. Conclusions
7. Acknowledgments
8. References

An evaluation of the Programming Support Environment

1. Introduction

This is a personal reaction to the Flex programming support environment
(PSE) developed at RSRE, Malvern. The paper discusses the features
needed for programming support and evaluates how well the Flex PSE
satisfies these needs and how it avoids some problems familiar to
users of conventional systems.

,Flex[i,2,3, and i is a multi-language PSE intended to be used for
developing programs and software prototypes and for testing new ideas
on software methods and designs. It demonstrates the implementation
and use of some ideas for improving productivity both in program
development and maintenance. It provides users with a large amount of
software for programmer support but does not currently provide tools
for host/target software development nor for phases of the software
development cycle other than programming, such as tools for project
management or software design. Such tools could be developed.

Flex is noticeably different from other PSEs and it took some effort to
learn to use it effectively. On first encountering it I was sceptical -
yet another operating system to learn, with its own peculiarities. It
would no doubt have a lot of positive features offset by an equal weight
of disadvantages. i have been pleasantly surprised. Experienced Flex
users show a similar enthusiasm to that of Unix devotees but with more
justification. The PSE is built on the Flex capability object oriented
architecture developed at RSRE, Malvern. Development since the
architecture came into use in 1978 has been mainly a response to
requests from programmers. The result is a highly interactive and
usable PSE that encourages software re-use. The software base
provides all normal operating system facilities, including compilers for
Algol68 and Pascal. Compilers are under development for Ada(w) and ML.

The Flex capability computer architecture has (so far) been
implemented in microcode on It hardware configurations including one
multi-user implementation in which 3 Flex computers share a common
filestore and common peripherals. The most recent implementation is on
the ICL Perq. Implementation of Flex on existing computer systems
(without re-microcoding) is being considered. Implementation of the
Flex PSE on different hardware requires different user interfaces,
particularly an editor tailored to the type of vdu available on the
system. However, the underlying Flex architecture and the philosophy
of the Flex PSE persist across all implementations.

Before giving further details of Flex, some criteria for evaluating a
PSE are listed (section 2). The technical presentation of Flex (section
sAda is a registered trademark of the US DoD.

- - -- -.. ...m= m ,,,, ---- mmmmmmm d(L m m m m m m

3) describes those features that are important to understanding it as a
PSE. The effect on the method of use and on the acceptability of the PSE
is discussed. An evaluation of Flex (section It) against the criteria in
section 2 precedes a summary (section 5) of the characteristics that
make Flex different as a PSE. The paper ends (section 6) with some
general reactions to the Flex PSE and ideas for its future.

2. Criteria for evaluating a PSE (Programming Support Environment)

A programming support environment aims to support the evolution of
programs. This includes support not only for writing and testing
individual programs and for integrating sets of programs to allow them
to work effectively together, but also support for the process of
chan ;e and for configuration control of programs and sets of programs.

Summarising the requirements suggested in references 5 and 6, a PSE
needs the following major characteristics.

1. A PSE must be trustworthy. Programmers should not need to guard
against possible corruption of filestore objects caused by hardware
failure, system failure, simultaneous access by more than one user or
misuse of filestore addresses. Similarly programmers should be able to
trust the system to prevent corruption of or illegal access to values
by misuse of mainstore addresses.

2. A PSE needs flexible access controls that allow users to impose
different controls according to circumstances. They should be powerful
enough to prevent illegal or unauthorised use of filestore or of
mainstore values.

3. The need for privilege should be minimised. Privilege weakens
integrity by making it possible to break normal access or integrity
controls. It should be unnecessary to invoke privilege to achieve
reasonable objectives such as enabling code sharing between different
users of a program or calling a utility from a user program.

It. A PSE should provide good support for program evolution including
support for testing programs, diagnosing program errors and amending
programs. Support is also needed for administrative functions such as
keeping track of relationships between parts of an evolving software
system, recording and controlling changes and propagating authorised
change.

5. A PSE should support the use of data structures, allowing users to
create explicit data structures and to use them when data is passed
between programs or preserved on filestore. Programs contain
structured data. The structure and information about structure should
be preserved when values are delivered from programs. There should be
protection against mis-use of structured data.

2

6. A PSE must be capable of growth. It should be easy to add new tools
and new data structures without affecting existing tools and data
structures.

7. A PSE should minimise programmer effort in writing new software.
Programmers should be encouraged to re-use existing tools, programs
or parts of existing (granular) tools in a new context. Where possible
standard methods should be supported for example for exception
handling, for interfacing to user terminals and for checking that data
input to programs has the expected structure.

8. The user interface should be simple to use, consistent and
orthogonal. To avoid user confusion tools should be accessible from
anywhere in the system (not just from the outermost (operating system)
level). There should be encouragement to make new tools interface with
the user in the same way as existing tools.

9. A PSE should protect the user (as far as possible) from the
consequences of his own mistakes. There should be guards against
common user errors, such as calling a program with invalid parameters,
premature deletion of something from filestore or accessing the wrong
value because a name has changed its meaning (perhaps as a result of a
program amendment).

10. Adequate help should be easily accessible at all times. A PSE needs
clear, well structured documentation, which can easily be updated in
line with changes to the system (e.g. incorporation of new tools). A
-help" facility that applies to every tool and to the PSE as a whole
should be available from anywhere in the system.

11. A PSE should support the definition and use of relationships
between different types of object. Users need to be able to search the
filestore for related objects (such as the design documentation
associated with a program or the source text used in a given version of
a procedure or program). This may imply a requirement for a database
underpinning the system (perhaps more necessary for project support
than for programming support).

3. The underlying philosophy of the Flex PSE

In order to see how Flex meets these criteria it is necessary to
understand how and why Flex is different from a conventional computer
system. This section discusses some of the novel concepts on which
Flex is based and the effect they have on the process of program
evolution.

3.1 Filestore updating

Values on filestore (often called files) are values retained between
user sessions. They are often large values spanning several

S

n

3

non-contiguous blocks of filestore. Operating system software presents
users with files rather than with blocks of filestore. A corrupted or
inconsistent filestore is one in which the operating system presents
the user either with no value for an existing file or (worse) with a
wrong value.

One cause of filestore corruption on conventional systems is partially
updated filestore resulting from a hardware or system crash during file
updating. A great deal of software effort is devoted to protecting
systems from a partial update, attempting to detect filestore
inconsistency and recovering a consistent filestore. Although such
software is normally provided by the operating system, programmers
cannot afford to ignore the possiblity of filestore inconsistency, since
standard operating system checks cannot be expected to detect internal
inconsistency within partially updated files.

The Flex architecture is designed to prevent the possibility of
partially updating filestore. Flex filestore is non-overwriting[13]
apart from a few root pointers which are updated as a single atomic
action. There is no facility to alter an existing filestore value (other
than a root pointer). A user can either write something to filestore or
he can read or execute something that has already been written. He
cannot alter the content or size of an allocated block of filestore. The
architecture ensures that a root pointer is a single word block that can
be updated only as a unitary operation. The root pointers usually contain
a reference to a dictionary (a set of associations of names with
filestore values) from which other allocated blocks can be reached.
Even dictionaries are not updated. The only way to change a dictionary
is to create a new one (which is an edited version of the old
dictionary) and then update the root pointer to point to the new
dictionary.

Since the only operation that can overwrite anything on disc is unitary,
partial overwriting is impossible. Successive values of a root pointer
each give access to a completely consistent set of unchangeable
filestore values. If the system crashes at any time the user will either
have the old value of the root or the new value. He cannot have a
partially updated value. Since partially updated filestore is impossible
the programmer need not provide software to detect or recover from
partial updates.

3.2 Procedures and the command interpreter

Flex treats procedures as first class, context independent values or
objects[2,8,9]. A procedure is a true procedure value in the sense of
Landin[7]. Procedure code needs a context (its non-locals) to make it
executable and on Flex the context or environment in Which the
procedure runs is bound in as a part of the procedure value. One
consequence is that, unlike conventional operating systems, the Flex
command interpreter, curt['], can call procedures directly without

rm

requiring that they first be formed into a program. Curt is an
interactive procedure which implements a very simple interpretive
language called Curt that allows users to call procedures. The effect of
calling a procedure from curt is the same as that of calling it from a
user procedure. The result is delivered to curt (which delivers it to
the user via the screen editor), in the same way as the result is
delivered to any other calling procedure at the point of call. All tools
or programs in the PSE, whether system provided or user provided, are
just procedures. There is no distinction on Flex between calling a
procedure and invoking a program or tool. Any procedure (including a
utility) can be invoked equally easily from a user procedure or from
curt.

3.3 Flex modes and values

Strong data typing is an accepted feature of high level programming
languages. Programmers have the ability to define a variety of data
types to suit a particular problem and appropriate use of values of each
type within a program is enforced. Flex has a mode system[Ill to
provide at the operating system level the equivalent of data typing in
high level languages. Without such a system the structural information
defined within programs is not preserved outside the programs, when
data is passed between programs, stored on filestore or handled by an
operating system.

Every object or value handled on Flex, whether on filestore or in
mainstore, has an associated Flex mode (value type) that is used to
indicate how the value is to be interpreted, and the operations that are
valid on it. Values vary in type from simple integers to much more
complicated structures. Atomic modes are used to describe values
whose structure need not be visible to the user.

In contrast to the limited set of filestore types available in most
computer systems the variety of Flex modes is boundless. Flex
architecture supports the use of values of any size whether in
filestore or in mainstore. Most mainstore objects (including
procedures) have direct analogues in Flex filestore. The ability to keep
values of such a wide variety of Flex modes on filestore gives much
greater flexibility than encountered with conventional filestore.

The basic modes provided by Flex include analogues of all the modes and
data types encountered in modern programming languages as well as
some modes peculiar to Flex. The user can also invent additional modes
(that are composed from the basic modes) to suit his problem. The
additional modes may be atomic or they may have explicit visible
structure according to user requirements.

5

For example, some of the basic modes are,

Int (the value is an integer);
Char (the value is a character).

There are also mode constructors, to permit more complex modes to be
defined. For example

(lnt,Real,Bool) (the value is a structure containing an integer, a real
number and a boolean value) I

Vec Int (the value is an ordered set (a vector) of integers);I
Vec Vec X (the value is a vector of vectors of values of

some mode X).

In addition there are modes, peculiar to Flex, some of which are
discussed below.

3. Some special Flex modes

Capability modes
Those values in Flex which require some degree of access control to
preserve system integrity are represented by capabilities. The Flex
microcode (which is fixed and inaccessible to users, being used as an
extension to the hardware) ensures that a value represented by a
capability can be used only in the way authorised by the capability and
only by a holder of the capability. A capability can be created and
modified only by the Flex microcode. The capability mechanism, which
is not susceptible to interference from the software, controls access
to mainstore values (such as procedures), filestore values and remote
values (values on other Flex computers). This ensures that only
operations of the right kind are applied to mainstore and filestore
values and only legally accessible values can be reached. An important
and unusual aspect of Flex capabilities is that they can be treated like
other values in that they can be held anywhere on filestore or in
mainstore, used in programs and can be passed to another user, giving
the other user access to the controlled value.

In a sense a capability is a pointer created on behalf of the user by the
microcode, but the capability also holds the size of the value and
information on the type of use (read only; read/write; execute)
permitted by the microcode. A capability is not an address. it is rather
a permission to use something (such as a region. of store or a remote
facility) in an authorised way. This means that users are unable to
compromise the integrity of the system by unauthorised use of
mainstore or filestore addresses. They have no meaning on Flex. Since
capabilities cannot be modified, the type of access permission that
they allow cannot be changed. A user who wishes for a different type of
access to an object must request a new capability, which can only be
granted by the microcode. For example, a user with a read only
capability to a block of mainstore cannot manipulate it to obtain

6

read/write access. A new capability may give different access rights to
the same value. Similarly, a user with a capability to execute a
procedure can execute the procedure but he cannot do anything else to
it, such as reading any internal values.

The mode of a capability value indicates the mode of the value to which
it gives access. For example:

Edfile (the value is a capability to read a file (an edfile) that can
be handled by the editor);

Module (the value is a capability for an object (a module) that
gives access both to compiled code and to the source text
from which it was derived. A module is the unit of
separate compilation on Flex);

Vec Edfile (the value is a vector of capabilities to read editable
files);

Ptr X (the value is a mainstore capability for a value of mode X).

The Flex architecture ensures that the only software or user operations
involving a capability ares

1. request a new capability from the microcode (any procedure can
do this; it is not a privileged operation);

2. store a capability for future use;
3. copy the capability to another user;
It.. delete a copy of the capability (this does not delete the value to

which the capability gives access, another copy of the capability
may still exist);

5. use the capability as authorised by the microcode.

An example may clarify the concept of capabilities. Suppose that a user
wishes to create a text file on filestore. He has a capability to execute
the editor which gets a read/write capability for a region of mainstore,
in which it holds the text being edited. When the editor is ready to
write the text to filestore it requests a capability to create a read
only block of appropriate size on filestore. It writes the text, using
the create block capability, and gets back a read only capability for the
block of text, which it passes to the user. This capability can be used
only to read the text, and the text can be accessed only by using this
capability. A user can pass the capability to another user, thus giving
someone else read access to the text, or he can relinquish the
capability if he no longer wishes to have access to the text. No other
use can be made of that area of filestore as long as the capability
exists, so the filestore cannot be over-written and then the old
capability used to gain access to new data. The microcode takes care of
this.

Procedure modes
Because every procedure (pr program) on Flex is a value like any other
value, every procedure has an associated Flex mode. The value of a
procedure is a capability to execute the procedure and its Flex mode is
a triple written as: inputjparameterjmode -> result_mode The

7

symbol -> is one of the elements of the triple and shows that the value
is a procedure. A procedure to count the entries in a vector of integers
is of mode: Vec int -> Int

There is an empty value on Flex whose mode is Void. A procedure on Flex
that apparently delivers no result actually delivers the empty value. Its
mode is writtens inputparameter-mode -> Void . For example, a
procedure to list an edfile on a printer has mode: Edfile -> Void
and a procedure that takes no input parameters has mode:
Void -> result_mode

Although a procedure cannot itself be a filestore object there is an
analogous filestore object called a filed procedure, of Flex mode:
Filed (procedure mode) . It can be called from curt in the same way
as an ordinary procedure.

When data is passed from one program to another, each program must
correctly understand the structure of the interface data. On Flex the
expected structure is explicit. Before calling a procedure curt checks
the Flex mode of the input parameters. Any attempt to apply a procedure
to a value of the wrong Flex mode fails, so users can be confident that
procedures will not be applied to unexpected data structures. This is in
contrast to conventional systems that cannot explicitly define or handle
the wide variety of structures needed. Flex can. Flex therefore avoids
the unanticipated or undefined results which can result from
misinterpreting unstructured data. This valuable form of protection
greatly reduces the amount of data checking needed within user
procedures.

A Flex mode is advisory. It is information to the command interpreter
and to other procedures on how to interpret a value. It can legitimately
be changed, and facilities are provided to do this. A user can select a
mode that accurately reflects the use to which the value is to be put. A
mode change does not change the value. If a value is given a mode which
cannot match the value it will be rejected when curt attempts to
interpret the value. The utility that creates a procedure can select the
Flex mode for the procedure that matches the external interface of the
procedure as defined by its source text. However, since Flex modes are
richer in scope than the modes available in most programming
languages, in particular in the ability to distinguish a capability value
from other pointers or integers, a user may prefer to define the
procedure mode for himself. For example he may wish to use the
procedure mode to protect a procedure that expects a capability from
being called with an integer parameter even if the programming language
treats the capability as an integer. System integrity does not rely on
correct modes since only the interpretation of the value is changed. A
mode change cannot be used to create a capability from another value
nor to modify the rights conferred by a capability.

The possession of a procedure capability allows the holder only to

8

execute the procedure. It does not allow him to dismember the
procedure to find how it works, what other procedures it might use or
the values of its non-locals. This is the basis of much of the security
of data in Flex filestore and mainstore. You cannot dismember a
procedure by giving it a different Flex mode.

Flex modes Mode and Moded
A mode can itself be regarded as a value (of Flex mode Mode) that can
be passed into and out of a procedure. For example a procedure to
convert a mode to a character string is of mode: Mode -> Vec Char.

Sometimes a procedure may need to examine the Flex mode of its input.
Consider a procedure intended to handle correctly a value which may be
of any mode. A special mode, called Moded is available. A value of any
mode can be expressed as a Moded value. The representation of the
Moded value contains both the value and its mode. Thus the mode of a
value can be passed into and out of procedures together with the value.
Curt can, when appropriate, convert a value V of mode M into a Moded
holding both V and M, and it can untangle a Moded to deliver it as a
value of the correct mode (i.e. as a value V of mode M).

For example, consider a procedure "show" that takes any Flex value and
displays it on the screen in a form appropriate to its mode. The Flex
mode of "show" is: Moded -> Edfile . The procedure "show"
untangles the Moded (V, M) and displays V in appropriate form. If
"show" is called from curt the input value may be of any mode, because
curt will convert it to Moded form.

Consider a procedure "find" which takes a name and searches a
dictionary for a value associated with the name. The value may be of any
mode. The procedure delivers the value together with its mode, as a
Moded value. The Flex mode of "find" is: Vec Char -> Moded . Curt
will untangle the Moded and deliver the value in the correct mode.

One result of embedding the mode information with the value in the
Moded mode is that a single procedure can handle a boundless variety of
data structures instead of needing a different procedure for each
different structure. This reduces the quantity of software needed to
handle different data structures, and also allows existing functions to
handle new modes created since the function was written.

Exceptions
Sometimes a prccedure fails, because of an internal error (such as
dividing by zero), an explicit failure or an Ada exception. When this
happens, instead of returning a value of the expected type to the
calling procedure an exception value is returned giving access to
information on the failed procedure and its values at the time of
failure. The calling procedure can handle the exception internally or it
can itself fail, adding information on its own values to the exception
value that it passes to its own calling procedure. Exception values thus

9

accumulate information as they are passed out through the calling
procedures to the command interpreter (as a value of Flex mode
Exception).

A procedure "diagnose", of mode Exception ->Void can be called
from curt or from a user procedure to present to the user information
on the state of the procedure at the point of failure. The information
presented includes a list of procedures called before reaching the
failure point, the names and values (displayed in appropriate format
using procedure show) of- all local variables in each called procedure
and the source text of each procedure with a marker at the failure
point. It is important to note that the source text presented to the user
by diagnose is the actual text from which the procedure was derived.
The user can browse through the information at the terminal or, if he
wishes, he can invoke curt (from within diagnose) to call other
procedures on a value presented by the diagnose procedure. Thus the
full facilities of Flex are available to allow the user to examine
further the reason for the failure. This is a very powerful tool which
allows a user to home in very quickly on the source of his errors. It is
unnecessary to abandon the diagnosis in order to look at machine held
documentation, to examine source text or to experiment with values in
the failed procedure. Unlike some diagnostic tools, there is no need to
insert trace statements in the source text, nor to use conditional
compilation.

The ability of Flex to handle exceptions as normal values allows them to
be treated in a uniform way. This reduces the amount of special
software needed in an application that caters explicitly for exceptions
as well as providing necessary information to the diagnostic procedure.

The owner of a procedure issued to other users may wish to prevent the
use of "diagnose" or similar tools for unauthorised examination of the
internal working of a failed procedure. Programmers have the ability to
exclude information from the exception value, as discussed later (see
section on access control).

3.5 The user interface to Flex

Edfiles
Flex is designed for interactive use. All interactions take place via the
editor, which is used (often implicitly) for all screen based
input/output. In addition to the rich set of text editing abilities, with
screen handling facilities for multiple windows and arbitrary pictures,
the editor manipulates values included in the text. Curt is fully
integrated with the editor allowing the user to produce and use such
values. An editable file (an edfile) is a database-like object that may
contain a mixture of characters, other edfiles, modules, integers,
filed procedures etc. Since any edfile may contain others, edfiles may
be a structure of edfiles and other values, with the restriction
(enforced by the Flex filestore) that the structure must be acyclic.

10

This is the first line of the outermost level of this edfile.
This line includes an Integer[- , value 35.

Note that the value is held anonymously. The display inside the
cartouche is not a name: it is a label selected by the user to
describe the value. The label is completely independent of the
value. It is associated only with a cartouche representing the
value, and can be changed without affecting the value. On request
the editor will replace the displayed label with a label indicating
the mode of the value.
The value [could also be displayed as ['t.

The unnamed (labelled) edfile led__dateWdoc (listed in figure 2)
contains a procedure and its associated ocumentation.

Next we display a command, which can be obeyed directly from the
editor. It calls the algol68 compiler on the soreedf ile:

lsource algo68!
When the command is obeyed, each new value is enclosed in its own
cartouche. The result of obeying the command is in the enclosing
cartouche as shown below:

Note that this command includes source as an unnamed value and
algol68 as the name of a procedure, whose name has been replaced
by its value, algol68, by the command interpreter.

The unnamed value Isuce[ago68] is the result of obeying the
command. The command can be undone o recover the constituent
values: algou68

Figure 1. Edfile example.

Figure 1 is a trivial example of the content of a structured edfile as
displayed by the Flex editor. The cartouches (boxes) represent values
of any mode. Anything not enclosed in a cartouche is normal text. The
structure shown in figures 1 and 2 is tree-like. It is not strictly
speaking a tree because the same value may appear in more than one
place in the acyclic structure. Every occurrence of a given capability in
the tree-like structures gives access to the same value no matter what
is displayed in the cartouche. Only a single copy of the value exists.
The editor provides facilities for finding out about the value
represented by a cartouche. The mode of the value dictates how the
information will be given. For example if the value is a structure of
numbers the editor will display the structure and the numbers, if it is a

11

This edfile,held within the first edfile, is the documentation on
the filed procedure, IFiled (Edfile->Vec Char) . This procedure
takes an edfile and delivers its creation date in the form
dd/mm/yy hh mm. It was created from led-date =Module I

IIIlFiled (Edrile->Vec Char)l
is a command delivering the date on which RfIle was created.

Notethe convenience of holding documentation about the

procedure with its value and its derivation all in one edfile.

Figure 2. Edfile labelled eddatedoc.

character string it will display the characters, if it is an edfile the
editor will display its content.

When updating an edfile or any other value it is unnecessary to take a
back-up copy to guard against unwanted changes; filestore is
non-overwriting so filestore objects cannot change underneath you. An
apparent change to any filestore value involves getting a capability for
a new value. The old (unchanged) value continues to exist until all
copies of the capability for it have been deleted. Commands can be
undone to recover old values, as shown in figure 1. An apparent change
to an editable file actually gives a new capability for the edited file.
At this stage both the old and the new (changed) files exist as separate
values. A user may have capabilities for both. He may choose to retain
both capabilities or to delete his copy of the capability that he no
longer wants. The old file has not changed and holders of a capability
for it will still be able to access it. The user has simply gained access
to another editable file.

Values and names
Names on Flex do not have the importance that they assume on most
other PSEs. Most values are never named[10). As shown in figures 1 and
2, they are created without names (as a result of a procedure call),
held anonymously in structured edfiles and used without names in curt
commands.

A dictionary on Flex is a set of name/value associations. If a name is
used for a value curt finds the corresponding value in the dictionaries
accessible to the user. Names may be temporary or persistent.
Persistent names persist from session to session and therefore apply
only to filestore values. A user normally has access to two dictionaries
of persistent names, his private dictionary for values named by him and
the common dictionary for named values shared by all Flex users. When
users are created they can have any number of dictionaries associated
with them. Dictionaries can be shared between individuals.

12

Temporary names do not persist between sessions and may therefore be
associated with values of any Flex mode, including mainstore values.
Temporary names are useful for objects needed frequently during a
session, and which contain mainstore capabilities, such as a vector of
objects for testing a procedure. Temporary names are usually held in a
temporary user dictionary in mainstore but temporary name/value
associations can also be set up within a user procedure, to apply only
to calls to curt made within that procedure. This enables a user to
write procedures that use curt to interact with the rest of the Flex PSE
while using their own name space, that does not apply outside the
procedures.

Curt commands use both names and unnamed values. Unnamed values are
held with text in edfiles, and are accessed (using the editor) via their
position in the edfile. In practice only those values to which a user
wishes to refer in a wide variety of different contexts are named, plus
one outermost edfile that contains the unnamed values. Private
dictionaries tend to be very small. Typically there will be one named
edfile for each major piece of work of interest to a user. The grouping
of objects within a single structured edfile is purely a matter of
convenience, a way of keeping related things together. Documentation
can be naturally structured with each chapter in a different sub-edfile,
which in turn contains sub-edfiles for sections.

All names in a Flex dictionary are in scope simultaneously because the
dictionaries are not tree structured. They are usually so small that a
tree structure is unnecessary. Tree structured directories of
name/value associations can cause confusion. In many conventional
environments the naming system allows users to navigate from a root
directory to a subdirectory but within the subdirectory only the local
name-space applies. A name is in scope only in the appropiate
subdirectory and the same name occuring in different subdirectories
will be associated with different values. Navigation through the
tree-like structure of an edfile to seek an unnamed value does not
affect the name-space within which a user is working. In addition to the
usual functions of text editing, the Flex editor allows the user to
navigate to the unnamed values. After the editor has been called on a
named edfile the editor displays a window on the outermost level of
that file. To proceed down the tree-like structure to the next .level in
the tree, a user calls the editor recursively on an edfile in the current
level of the tree. He proceeds until he reaches the position in the
tree-like structure containing the object he seers. This is usually a
very rapid process, because the window selected for display at each
call of the editor includes the cursor at its position when that edfile
was last used. (In fact the position when it was created, since edfiles
are not modified, only re-created).

Initially the concept of not naming things led to a feeling of unreality,
and to a fear that it would be difficult to find an anonymous file.
However, it soon became apparent that labelled values surrounded by

13

explanatory text are easier to identify correctly than if the user must
rely only on names, however well structured the dictionary hierarchy
and however clear the naming convention. It is difficult to keep track
of an ever increasing dictionary of artificial file names. The Flex
editor can be used to move a capability to a different place, or to
restructure the hierarchy, so a badly structured hierarchy need not be a
persistent problem. Since capabilities can be repeated, it is possible
to have an object (anonymous or named) displayed with helpful labels in
more than one hierarchy.

Machine held documentatlon
Flex documentation is held on Flex in structured edfiles which a user
can browse through simply by calling the editor. There are no printed
manuals associated with Flex. A tutorial is held on the machine to guide
the new user into the new ideas and to demonstrate how to start
developing a program. A shared documentation edfile, structured
according to topic, holds not only descriptive text but also the values
of procedures, modes and modules (units of separate compilation)
accessible to all users. Values are held with their documentation as in
the edfile example given earlier. When new procedures or modules are
made available for general use they are added to the shared
documentation file with their documentation. In addition there is an
"info" procedure that delivers an edfile of information about any named
value. The quality of the information provided is usually adequate. The
user can provide an information file (which can then be accessed using
info) about any object held in his own dictionary.

It is, of course, possible to print out any or all of the machine held
documentation, but once a user is familiar with the structure of the
documentation files, it is usually quicker and easier to access the
information on-line. Although it is not always easy tc find information,
particularly if unsure which headings it comes under, it is no worse
than being unable to find the required information in a set of printed
manuals (and it wastes considerably less paper!).

Most conventional systems now have a help facility that. covers the
basic operating system and utilities, but help with user supplied tools
is not always available via the general help mechanism. Tools are
usually expected to provide help from within themselves. Help is
sometimes available only at the outer (operating system) level. Flex
users can examine any of the documentation without abandoning the
current task. For example, when a user needs to cleck the specification
of a module when writing some source text, he examines the relevant
documentation and returns to the position in his source text where the
problem arose.

Flex reduces the problem of maintaining consistency of information held
(for convenience of access) in several different places by holding a
capability for an edfile containing the information where needed instead
of repeating the information. There is still a problem when correcting

1'. e

documentation errors in that replacing one instance of a capability with
a new capability does not automatically correct other instances of the
capability. The system is being extended to include updateable editable
values.

3.6 Procedure values

Information hiding
One consequence of treating a procedure as a value, with its non-locals
bound into it, is that values may be concealed in a procedure.
Procedures may be parameters for other procedures or may be delivered
by other procedures (provided the language also supports this notion,
as does Algol68). Values (both local and non-local) and input
parameters of the delivering procedure can be bound into the delivered
procedure, and thus hidden from a caller of the delivered procedure.

For example, consider a procedure, makechannel, that creates a
channel for passing messages together with the procedures to access
the channel. One channel is created by each call of make_channel, and
that channel can be accessed only by using the procedures delivered by
that call. Make_channel takes an integer giving the size of channel (i.e.
the number of messages (vectors of characters) it can hold) and
delivers three channel access procedures. The Flex mode of
makechannel is:

lnt -> ((Vec Char -> Void) , (Void -> Vec Char), (Void->Void))

The first delivered procedure (writechannel) takes a vector of
characters and delivers a void. Each time it is executed it writes one
message into the channel (taking action as defined in procedure
makechannel to deal with a full channel or a busy channel).

The second delivered procedure (readchannel) takes no parameters and
delivers a vector of characters. Each time it is executed it reads one
message from the channel (taking action as defined in procedure
makechannel to deal with an empty channel or a busy channel).

The third delivered procedure (change-key) allows a user to lock the
channel. Change_key prompts the user for a key or password. The key
that is supplied will be required by procedures changekey,
readchannel and writechannel before they give access to the channel.
Failure to respond with the correct key will' cause the access
procedures to fail.

A user invokes make_channel to create a new channel. He need not know
how the access procedures work. He can use them to access the channel
and he can pass them to other users to enable them to access that
channel. The channel users need not know the size of channel (input to
procedure make-channel), nor how the procedures work. The channel is
a non-local value of both read_channel and write_channel bound to these
procedures when makechannel is executed. The key or password is a

15

non-local of all three access procedures bound to them when
makechannel is executed and changed only by change_key. It does not
exist outside these procedures.

Similarly, a filestore capability can be hidden inside a set of access
procedures. Procedure make_read_file created from Algo168 procedure:

PROC makereadfile- (INT filecapability)
STRUCT(PROC INT read-nextint,

PROC BOOL readjnext-bool,
PROC BOOL isempty) g

has Flex modes (Bfile->((Void->lnt) , (Void->Bool) , (Void-Bool))
where Bfile is the mode of a capability for the filestore value.

The delivered access procedures all have the file capability hidden
within them. They all give access to the same file. They may be stored
on backing store because all the internal values and non-locals can be
stored on backing store. Different procedures may be issued to
different users, providing communication through the shared data
structure. No user need know the structure of the stored data, nor need
they have access to every value in the structure. The access
procedures may perform any desired checks before giving access to the
file.

The facility to hide values in delivered procedures is not privileged but
is available to any programmer. It is used to provide flexible access
control, to reduce the need for privilege and to provide safeguards
against misuse of procedures that operate on sensitive data.

Delivered procedures can be used where the value of a parameter is
critical. To protect a user against calling a procedure with a wrong
parameter, critical parameters are bound into procedures before they
are delivered the user. For example, a procedure to modify a dictionary
does not have the dictionary as a parameter. It is delivered to the user
environment with the dictionary that it modifies bound into it. It cannot
uperate on another dictionary, or on any other filestore object. A user
is thus prevented from accidentally or maliciously modifying a
dictionary to which he has no right.

Access control
Since to use any object in Flex filestore or mainstore a user must have
the appropriate capability, which controls the type of access permitted
and which can be neither forged nor altered, it is clearly important that
capabilities themselves be protected from theft by other users.
Capabilities, like other values, are protected by hiding the only copy of
the capability in the non-local values of access procedures. The
protected capability can then be shared safely by issuing the
capabilities for the access procedures. The protected value cannot be
reached except by executing an access procedure because it does not
exist outside these procedures. The capability to execute an access

16

procedure does not give the ability to dismember the procedure to get
at the protected value. The access control provided by the capability
mechanism combines with the protection provided by procedure values
to give an unusually powerful and flexible form of access control that
can be used, not only by the operating system, but also by any
programmer, to protect values. Access procedures are ordinary
procedures created by a user. No privilege is required.

Failure of procedures does not allow a programmer to gain access to
protected values. An exception value is the only value delivered by a
failed procedure. Values bound in to a procedure as nonjocals are
automatically excluded from exception values and the Flex architecture
allows a programmer to protect sensitive procedures by preventing
them from providing the source text capability to the exception value
or by preventing them from providing any information at all to the
exception value.

Before giving a user access to a protected value, the access procedure
may perform whatever checks it likes to ensure that access is
authorised. It may require a complicated sequence of actions. It may
even record for future analysis all attempts at unauthorised access. It
will not necessarily request a password. If a password is requested it
need not be a single word. When an access check fails the access
procedure fails, denying the user access to internal values of the
procedure. Not only the protected value but also other sensitive values
such as a user-defined password can be bound in as non-local values to
exclude them from exception values. Having successfully executed all
access checks, the access procedure gives access to the protected
value, perhaps by calling the command interpreter. The user will still
be executing the access procedure. The value will again be hidden from
the user on exit from the access procedure.

An example of the use of access procedures on Flex is found in the
protection of each user's private environment (dictionaries of
name/value associations). The capabilities for the dictionaries in the
environment are embedded in a procedure called a userid procedure.
Access to the environment is granted only while the user-id procedure
is running and only after the protection checks (such as passwords)
have been satisfied. Each user has his own user_id procedure, and he
remains within that procedure until he disconnects from Flex. Invoking
the userjd procedure is the Flex analogue of logging in, and exiting
from the userjd procedure is the Flex analogue of logging out on a
conventional system. An entire session on Flex therefore takes place
during a single execution of the user-jd procedure. The only names
recognised by Flex before a user-id procedure has been entered are the
names of the individual user.id procedures. A userjd procedure cannot
be invoked from within another user.id procedure because the
environment set up within a user.jd procedure does not include the
names/values of the other user-id procedures. Access to the passwords
or to a user environment cannot be gained except while executing the

17

corresponding user~jd procedure because the necessary capabilities are
bound into the user-jd procedure, and do not exist elsewhere.

Privilege
Most conventional operating systems have to allow certain privileged
users to break the normal access rules to allow access to special
operating system values such as those needed to archive or to use
peripherals. Flex makes normally privileged values available to
ordinary users by supplying them within procedures that allow them to
be used only in the authorised way. The bound in values can neither be
accessed nor changed by the user. For example, procedures for handling
filestore, or other peripherals such as the current vdu are provided
with the operating system pointers bound in as non-locals. Any Flex
user can use the archive procedure, which has bound to it, hidden from
the user of the procedure, the values needed to achieve the archive.

3.7 Separate compilation on Flex

The purpose of a PSE is to evolve programs. To develop programs a
programmer must be able to compile source text, to test procedures, to
diagnose errors, to correct incorrect parts of a procedure, to
propagate changes to affected users and to keep track of changing
software and of associations between different software units.

The module
The unit of separate compilation on Flex (the Flex module[lt]), is
fundamental to the process of program evolution. A filestore value of
mode Module gives access to the compiled code resulting from a single
run of the compiler, to its external specification (the data and
procedure types and source text names visible to users of the compiled
unit) and to the source text from which it was derived (with certain
restrictions, see below). Some users arrange for a module to give
access to an edfile (the log file) in which all changes to the module
are recorded. A module also gives access indirectly to all the modules
that it uses. The Algol68 source text of a module that uses previously
compiled modules includes a capability for each used module. This has
the advantage of being context independent, whereas, if the reference
to used modules were by name there would need to be a context (or
library) for each module to associate the module names with the
correct version of a compiled unit. A module is displayed by the editor
in a cartouche with a label giving the source text name of the module so
it Is easy when reading source text to Identify the used modules.

One problem in program evolution is keeping track of which source text
was used to create a particular version of a program or compiled unit.
Most systems rely on the programmer to keep records or to use an
appropriate set of file names to assist in this task. This can lead to
confusion. On Flex this source of confusion is eliminated by binding
both the compiled code and the source text from which it was derived
into a single object, the module. The user can extract not only the

18

source text from which a module derived but also, by chaining through
the used modules, any of the source texts associated with used modules
(provided the text is not protected, see below). The user can always be
confident that the text extracted from the module is the correct
version. This relieves him of the administrative burden of recording
which source text was used to create any given module. In fact the usual
practice is to avoid any possibility of confusion by deleting explicit
references to (capabilities for) the source text as soon as the module
has been created.

If a procedure or module is to be issued to other users, the owner may
choose to hide the source text by removing from the issued module the
capability to access the source text. This facility is available to any
programmer.

Changes
A common problem in software development is to ensure that error
corrections are propagated to all users of a compiled unit. Some
systems provide automatic propagation of changes in compiled units to
all dependent units although the propagation does not always cover
programs using the changed units. Other systems rely on manual
propagation of changes aided by tools such as a program to list where a
compiled unit has been used. The tools may depend on a programmer
remembering to insert the necessary information in a database. The
administrative burden of keeping track of changes can be reduced by
such tools, but reliance on systematic use of the naming system and on
separate systematic recording of all changes and all uses of a compiled
unit is dangerous and error prone.

Changes to Flex modules have immediate system wide effect. A change
is automatically propagated to all users of the module, to all programs
(procedures) that involve the module and across all Ada libraries that
contain the module. (It is possible to test a new compiled unit before
actually changing the module value.) When a module is changed every
instance of the module capability gives access to the new compiled unit
and associated values. (The change to the module does not violate the
non-overwriting filestore. Modules are always accessed through a
dictionary and the user is given a new dictionary, with the old module
value replaced by the new one. The user need not be aware that the
dictionary has changed. It is done automatically.) Every procedure uses
the most up to date version of its modules because linking the compiled
code is postponed until the procedure is called from curt.

There are two ways to alter a module, a change that alters the external
specification of the module and an amendment, that leaves the external
specification unchanged. The amendment procedure does not permit
alteration of the specification. Because different procedures are used
a programmer cannot unwittingly alter an external specification.
Unnecessary recompilation is avoided because modules using an amended
module need not be changed. If however the external specification is

19

changed, each instance of the capability for the changed module is
marked to show that the value must be revalidated before use.
Procedures involving invalid modules cannot be loaded. Flex thus avoids
the undefined results that can occur if accidentally using a procedure
whose specification no longer matches the call. Capabilities for invalid
module values are easily identified, and procedures exist to search for
them and revalidate them, automatically recompiling only as necessary
and calling the editor to invite change where non-matching interfaces
are involved. This enables everything to load correctly again.

Automatic propagation of changes must not be undertaken lightly, since
the results could be disastrous if a change had not first been
adequately tested. On Flex changes can be tested before automatic
propagation occurs.

Procedures are derived either from a module or directly from the
compiled code without affecting the module. The derived procedure can
be tested by calling directly from curt. It is unnecessary to form a
program, create a test harness or a file of test data to provide the
input parameters even when the Flex mode of the parameters is
complex. The user makes up an object of the correct input mode using
procedures provided for creating Flex modes and assembling complex
objects. The results can be checked using procedure "show" which
displays any value in a readable form. Special display procedures are
not needed. This makes quick testing of individual procedures very much
easier than in many systems.

Alternatively selected modules in a procedure can be replaced by the
compiled units under test using a procedure called mappedfn. The
replacement has no effect on the old version of the procedure and it is
unnecessary to alter any source text to achieve the replacement. Module
replacements can be made only if the replacement has the same external
specification as the replaced module. Replacement of modules with
altered external specification is achieved by replacing the using
module, altered as necessary to match the altered used module
specification. This is a welcome advance on systems in which it is
necessary to rename a temporary version of a procedure, to change
source text in a calling procedure, to invoke the temporary version and
to keep track of what has been changed, where and why.

Modules are protected from unauthorised change. Only the creator of a
module will normally possess the capability to change it and attempts to
change a module without the appropriate capability fail. The creator can
still modify an issued module, propagating the change, because he holds
the necessary change capability. The module capability gives access to
the same content (i.e. the compiled code and the external
specification, and, if not hidden, the source text) whether issued to
another user or not.

It is possible to arrange that all changes to modules are automatically

28

recorded within a log file accessed through the module. The procedures
to change the module record the change in the log file inviting the user
to add a comment explaining the change. Other relevant information,
such as the name and address of the author and even source text of the
superseded version may also be included.

3.8 Relationships between filestore objects

General relationships
In most computer systems explicit relationships between different
objects in the environment are provided only in databases. Usually
these, if available, are provided in addition to the PSE rather than as
an integral part of it. Several systems now support tree structured
dictionaries, so that related objects can be held in the same
sub-dictionary but it is less usual to support more complex structures,
with the same object appearing in more than one place in a tree-like
structure, as in the Flex edfile.

Flex does not currently support a traditional database management
system. However,edfiles are database-like objects that hold typed
values of any mode and implicitly express relationships by holding
related values either adjacent or at different levels in the same edfile.
For example, relating a set of text files such as a requirement
specification, a design document, user guides etc. to the modules and
procedures that implement them can be done by holding all the
capabilities in the same edfile, together with the implementation, as
illustrated in the edfile example, eddatedoc. Meaning can be
documented fully in the surrounding text rather than relying on the
somewhat inadequate shorthand of appropriately chosen names. Multiple
relationships may be expressed by holding a capability in more than one
place.

The usual way to find a value on Flex filestore is either to scan a
structured edfile (provided the user knows roughly where in the
structure to look) or to name the value. Because of the acyclic nature
of Flex filestore there is no explicit route from a value to the values
that contain it. Some searches, such as trying to discover all users who
possess a specific capability, may be impossible without searching the
entire filestore (which may not be permitted!). It is however easy to
confirm whether a container (such as an edfile, a dictionary or a
module) holds the value or to search the container for a value with
some required characteristic. For example, a procedure could find all
objects in an edfile of specified mode or a procedure could search for
a module that uses a given module. It can be useful to discover which
module keeps a specific item, such as an Algol68 mode, in its external
specification and hence to look at the item in more detail. Using
existing procedures from the common dictionary, it was easy to write a
procedure which, given a source text name, searched a container and
delivered to the user a module keeping the named item in its external
specification.

21

For reasons associated with the integrity and security of" the Flex
system, a user cannot deliver from a filed procedure the module from
which it was derived. He can however discover from which (if any) of a
set of modules to which he already has access, the filed procedure was
derived.

Special relationships
There are currently some explicit relationships on Flex. There is the
binding relationship between any value and its mode and a relationship
bindioiy an edfile (including source text accessed from a module) to its
creation date. Flex dictionaries express the relationship between a
named value, its information edfile (which may be structured) and the
date of the association between name and value. The module expresses
the relationships between compiled code, its source text, its external
specification and its log file. The module also expresses the
relationship between a module and the modules that it uses. Other
explicit relationships could be added to Flex using a data structure
similar to mode Module in which related capabilities would be
accessible through the same object.

Versions
Versioning is a partial ordering, in which any object is superseded by
its successor, but parallel versions may also exist that do not affect
the currency of other versions.

Parallel versions of a procedure differing from each other in only a few
modules are easy to create and to maintain on Flex. The mapped-fn
procedure (which replaces existing modules in a procedure by new
compiled units) can be used to create the parallel version with the
differing modules replaced. (For example, a cross compiler could be a
native compiler with the back end mapped to an alternative version.)
The parallel version can be retained in filestore in the usual way, by
naming or by storing in an edfile. The use of mapped_fn to produce
parallel versions of filed procedures ensures that only one version
exists of any code that has not been replaced. Corrections to modules
that have not been replaced will therefore be propagated to both
versions in the usual way. The propagation of changes to the replacing
compilations would not be as neat as the propagation of changes to
modules, and a balance probably needs to be struck to decide when a new
module would be more appropriate than a replacement. If, however, a
replacement compiled unit is used in only one modified procedure, as
usually happens, then the inability to propagate changes automatically
to other units is irrelevant.

Conventionally a sequence of versions of an item share a common name,
optionally qualified by a version identifier. Flex does not have this
concept. A Flex name in a given dictionary references a unique value,
not a sequence of values. If a user wishes to retain a sequence of
values he will probably keep them all in a single edfile, with suitable
text or labels to indicate status.

22

Values previously associated with a name or held in a previously named
value may be retrieved through old dictionaries, which are
automatically retained on Flex until the next disc garbage collection.
The Flex computers do not currently have infinite filestore (e.g.
suitable tape drives). If they had there would be no reason why all
previous versions of dictionaries could not be retained. However, with
limited filestore available it has been arranged that old dictionaries
can automatically be discarded by disc garbage collection. (Disc
garbage collection is not automatic. It must be initiated explicitly and
the user always knows when it occurs.) If another user possesses the
capability for an old value it will still exist after disc garbage
collection. A discarded value continues to exist as long as a capability
for it is retained somewhere.

The user of a conventional system cannot usually recover a prematurely
discarded file. He may retrieve an earlier version by use of the system
back-up facilities, but the earlier version (if accessible) may not be
the same as the discarded file and may be inconsistent with other files
or dictionaries in the current filestore. On Flex a discarded value can
be recovered by access to the old dictionaries, in the knowledge that
the value recovered is precisely the value that was lost and not some
arbitrarily selected earlier version. The fact that root pointers are the
only values on Flex that can be over-written means that each root
pointer gives access (indirectly) to a completely consistent snapshot
of filestore.

A user worried about losing access to old versions at garbage
collection can arrange to keep old versions automatically. I felt very
uneasy about losing old versions of a changed module at disc garbage
collection so I modified my procedures that change modules to give the
option of retaining the superseded version in the log file associated
with the module. This was a very easy task because I could reuse
existing procedures to extract text from a module and to change
modules. Other tools to handle old versions could be developed.

3.9 Some results of Flex characteristics

Separation of concerns
As illustrate in the edfile example, Curt commands are unusual in
structure. The structure combined with the ability of Curt to handle
arbitrarily complex data structures encourages separation of concerns.
Each procedure is applied to the result delivered by its predecessor.
Procedures are executable values no matter what non-local values or
parameter structures are involved. It is unnecessary to combine
different procedures into a single program either to enclose the
non-local values or to pass results from one procedure to the next.
Complex functions are achieved by applying single purpose procedures
in sequence, each performing one simple function.

For example, the editor processes only edfiles. If a user wishes to

23

change the text of a module he first applies a procedure to the module
delivering the text as an edfile and then applies the editor to the
result. Similarly, he may apply a procedure to the module delivering the
external specification as an edfile and then apply the editor to the
result in order to display the specification. It is unnecessary to merge
the distinct functions into a single tool. The separation of concerns
into distinct procedures makes it easy, not only to test procedures, but
also to re-use them.

Orthogonal interface and re-use
The Flex PSE is the first system I have used where there is no
artificial distinction between system procedures, utilities and user
procedures. The utilities are not privileged and can be re-used
anywhere in the system. They are distinguished only by the fact that
they are accessible to all users. Most procedures use the system
supplied procedures such as the editor and the command interpreter to
interface with the user making for a much more orthogonal user
interface than is usual. For example the "diagnose- procedure calls the
editor to display diagnostic information. The user therefore interacts
with "diagnose" exactly as he interacts with the editor. He can examine
on-line documentation while diagnosing a procedure error or he can obey
commands to create new values and Flex modes which he may retain
within an edfile if he wishes.

One of the more tiresome characteristics of some operating systems is
the cumbersome way of moving from one program to another. Because
programs can be invoked only from Lhe command interpreter a user is
usually required to perform the apparently unnecessary step either of
returning to the outermost (operating system) level in order to invoke
another program or of spawning a new process running a separate
invocation of the command interpreter from which he can call other
programs or utilities. Flex avoids this by allowing any procedure
(including a utility) to be called in any context.

For example, if a compiler on Flex successfully compiles some source
text it delivers a compiled unit to the user. If, however, errors are
detected in the course of the compilation, the compiler calls the editor
on the faulty source text, with marks in the text at each detected
error. The editor can position the cursor at each error in turn, allowing
the user to edit the source text, if necessary consulting on-line
documentation or even compiling and running a separate procedure,
while still in the editor. On exit from the editor, the edited text is
returned to the compiler which delivers it to the caller of the compiler
(usually the command interpreter). The user can then immediately
invoke the compiler again on the modified edfile if he so wishes. This
greatly eases the process of obtaining a clean compilation, since there
is no need to exit from the compiler and to invoke the editor in order to
correct errors, nor is there a need to note down line numbers and have
paper listings always available.

24-

The facility to call any procedure directly from any other is more
powerful than the facility to spawn a new process to rin a utility such
as the command interpreter because there is n artificial limitation on
the data structures passed between caller and called. When a new
process is spawned most systems limit communication between spawning
and spawned process to simple data such as an integer or a file name.
There is also sometimes a system limit on the number of processes that
can be spawned from a single parent.

The ability to re-use utilities from within user procedures is initially
disconcerting, because it can be difficult to keep track of where you
are. I was used to returning to the command interpreter on exit from a
utility, and now I might return to the editor, to one of my own
procedures or to another utility, depending only on which procedure
called the utility. However the improvement in the user interface
achieved by the re-use of procedures needs to be experienced to be
appreciated.

Parallel processes
Flex provides facilities for parallel processing. Any procedure can
launch any other procedure, to run in parallel with it as a separate
process. The facility is not privileged. The Flex editor allows users to
launch independent processes in parallel in separate screen windows.
The command is similar to that for a normal procedure call. It allows a
user to continue with foreground work in one window while the launched
process runs in another.

Delivered procedures enable Flex to provide semaphores to control
shared data. A Flex semaphore is a procedure shared by the
communicating processes, of mode Bool -> Void . It reserves or
releases a semaphore according to the boolean parameter. A call to
reserve an already reserved semaphore causes the caller to be
suspended until the semaphore is released by another process. Each
call of procedure makesemaphore delivers a semaphore procedure with
the value of the semaphore hidden inside it.

The capability to fail a launched process is a procedure delivered when
the process is launched. It cannot be used to fail any other process
because it is delivered with the identity of the process that itcan fail
bound into it. Both the launching and the launched process can provide
this fail capability to another process giving the receiving process the
power to fail only that process and no other.

k. Performance of Flex as a PSE

How well does Flex measure up to the listed objectives of a PSE (going
through the objectives in the order given in section 2)?

1. Flex is trustworthy. The capability architecture and the
non-overwriting filestore provide a very robust system in which

25

hardware or system failure cannot result in inconsistent filestore.
Neither filestore addresses nor mainstore addresses have any meaning
on Flex so they cannot be misused. All addressing is handled by
capabilities which cannot be manipulated or forged. Corruption cannot
be caused either by simultaneous updating of filestore objects or by
partial updating. Programmers need not therefore provide software to
guard against possible corruption of filestore objects.

Parallel access to a filestore object cannot cause corruption although
it can result in loss of an update. If two users, working in parallel
(perhaps using different copies of the capability for the filestore
object) both attempt to change the same object in the same dictionary
(by naming an object or by changing a module) both users will succeed
but the last update to be made will supersede the first. Although such
loss is frustrating, since the changes made by the first user will
apparently have been ignored, the integrity of the filestore is
maintained. In practice it is unlikely that two users will want to work
simultaneously on the same named value in the same dictionary although
if users felt strongly about this, software semaphores could be
provided to protect filestore values from parallel access.

2. The access controls on Flex are unusually flexible and powerful. A
value cannot be accessed without the appropriate capability which can
be neither modified nor forged and which enforces correct use.
Flexibility of access control is achieved by allowing programmers to
hide capabilities in access procedures which they write themselves,
with user defined tests to protect the values. Procedures can only be
executed and not dismantled, so the internal values cannot be reached
except when executing the access procedure. Failure of procedures
does not enable unauthorised access to the protected values.

Read access to the source text of shared modules can be prevented by
removing from the issued module the capability to examine the source
text. Use of a shared module does not give the user the capability to
change, it. The change capability is normally retained only by the module

4creator.

3. The need for privilege on Flex is minimal. It is unnecessary to break
the normal access rules to allow operations on privileged values
because the privileged values are made available only within procedures
that use them only in the authorised way. Access to special values

f needed to archive or to use peripherals can safely be granted to any
Flex user by providing the value bound into a procedure. Procedures to
communicate with a vdu and keyboard have the pointer to the specific
vdu bound into them.

Code sharing between procedures does not require privilege. Code is
automatically shared by procedures using the same module. Any
procedure value can be called from any other so privilege is not needed
to make a system procedure or utility callable from another procedure.

26

I. Flex gives good support for program evolution. Programmers need
never be confused as to the version of the source text from which a
compiled unit or procedure was derived. Source text is kept in a
module. Relationships between the different modules that constitute a
product are maintained by keeping the module capabilities within the
source text of a using module. A log file, recording changes and
possibly keeping old versions, is maintained as part of the module.
Documentation and descriptive text are kept with the modules,
procedures and other values in a structured edfile instead of in
separate files.

A programmer cannot accidentally change the wrong module when
updating a module without specification change. The requirement
explicitly to request a specification change prevents this. Support for
change control includes automatic propagation of module changes not
only to all using modules but also across all Ada libraries and to all
using programs. Tools are provided to assist in recompilation of
dependent code where necessary.

Procedures are tested prior to propagation of updates without any need
for temporary changes to source text. Programmers can create and call
procedures directly from the command interpreter without affecting a
module or writing a test stub, or they can test compiled code by
selective replacement of the modules in a procedure. The diagnostic
tool displays relevant source text to programmers and shows internal
values in readable format. Users can examine documentation or invoke
any other procedures and utilities while still diagnosing an error. This
gives very powerful facilities for locating program errors.

5. Flex provides excellent facilities for using data structures to suit
the problem. Modes provide explicit description of data structures and
new modes can easily be defined. Values are always associated with
their mode even on filestore so the structure information is not lost.
The structure used within a procedure is retained when values are
delivered from a procedure. Appropriate use of the structured data is
enforced by the command interpreter, using procedure modes.

6. Flex is growing all the time. Adding new tools to Flex is simply a
matter of writing new procedures and adding them to the common
environment if they are to be shared. Augmenting Flex with new
procedures or new Flex modes has no unwanted side-effects. It does not
impose changes on existing procedures and modes.

7. Flex minimises the need for new software in several ways. The Flex
architecture means that neither operating system nor application
software need concern itself with mainstore allocation and release,
filestore allocation, checks against misuse of store addresses, garbage
collection, filestore inconsistency (detection or recovery) or "type of
use" access controls. Mode checking by the command interpreter before
procedures are called reduces the need for parameter checking within

27

individual procedures. The use of the Moded mode, combining a value
with its mode, means that a single procedure can be provided to handle
any mode without losing the mode information, so different procedures
are not needed for different modes.

Re-use of modules and of procedures is fundamental to Flex[12]. Tools
and utilities are normal procedures that are easily re-used within user
procedures. Flex tools tend to perform simple functions because it is
so easy to pass the result of one tool invocation directly to the next
tool. They are therefore appropriate for re-use. No privilege is
required to re-use modules from the operating system procedures. Any
module may be re-used and any can be made available through the common
dictionary. Although parallel processes can be spawned on Flex it is not
necessary to spawn a new process to invoke the command interpreter
from an ordinary procedure.

It is unnecessary for programmers to provide special software to
handle exceptions. Exceptions are handled in a uniform way. The
exception values provided when a procedure fails can be handled by user
procedures and provide information to the diagnostic program without
special software for each possible exceptional case.

8. Flex provides a very comfortable and consistent user interface. The
simple command language, with its facilities for calling a sequence of
procedures easily encourages simplicity in the tools. The high
orthogonality results in part from re-use of the edito: and the command
interpreter within user supplied procedures. Because it is easy to move
between the editor or the command interpreter and other procedures,
Flex avoids the clumsiness of needing to re-enter the operating system
between each call of a utility.

9. Flex protects the user from himself in several ways.

The risk of passing an incorrect data structure between procedures is
reduced by the refusal of the Flex command interpreter to call a
procedure with parameters of the wrong Flex mode.

A user cannot accidentally change the specification of a module, nor can
he modify someone elses module.

Critical values can be bound into procedures to prevent the use of
wrong parameters where the correct use of parameters is crucial. For
example, system procedures which can affect a user environment by
altering a dictionary, are available only within that environment, and
have the user dictionary bound into them.

The use of values in preference to names for most Flex objects reduces
the risk that a user will unknowingly access a wrong value. A name can
change meaning (be associated with different values at different times
or In different contexts) but a value is context independent.

28

Users are protected to some extent from premature deletion of
filestore objects by the persistence of the object as long as a
capability for it exists and by the retention (until disc garbage
collection) of old root pointers. A user can recover from his error
even if he has no other copy of the capability, by recovering a
discarded capability via an old dictionary.

If a user issues a command which he subsequently regrets he can easily
revert to the previous state by undoing the command.

18. Help is always easily accessed on Flex by calling the editor to
examine the tutorial, the structured documentation file or the
information provided on named values. Flex documentation is reasonably
well structured, bearing in mind that no two people will ever structure
a document in exactly the same way.

Machine held documentation is easier to maintain with a short update
cycle than paper based documentation. The potential for inconsistency
when repeating the same information in several places is reduced by
inserting a capability for the repeated information in every document
that refers to it. A procedure that lists all objects in a dictionary that
do not have an info file assists in ensuring that information is provided
when new named values are added to a dictionary.

11. Although a general database management system with explicit
relationships between different types of object in the environment does
not exist on Flex, there are some database like aspects to the system.
Every value has an associated mode indicating the operations that are
valid on it. Relationships are implied by keeping related values
together in a structured edfile, repeating values in different contexts
to imply multiple relationships. Such relationships are random in the
sense that no rules exist which either enforce, forbid or in any way
control them. There are some explicit relationships (those provided
between a named value and its information file, and those provided by
the module, binding compiled code to its source text, its external
specification and its log file and a module to the modules that it uses).
Other explicit relationships could be developed using the same sort of
structure as a module.

Searches of a container (such as a dictionary, an edfile or a module) to
find a specific value or a value with with some specific characteristic
is easy. The structures provided by Flex edfiles must be acyclic. This
is a consequence of non-overwriting, the benefits of which probably
outweigh the need for indirection in creation of cyclic entities.
However, it does mean that there is no way, short of scanning the
entire filestore, of discovering where a given value is held. This is not
as serious as it might be because propagation of corrections to modules
taken from the shared dictionary does not require knowledge of who is
using the modules and any container can be searched.

29

From the above list it is clear that Flex satisfies most of the
requirements for a PSE. It does involve a total change in the way of
working, which is initially difficult. Some tools that I would like to see
have not yet been developed. (in particular, tools that are not
interactive), but at present I can see no insuperable obstacle to their
development. The toolset is constantly growing, and existing tools are
being improved.

5. Summary

Flex has several unusual features that contribute to its power as a PSE
and that make it different from a conventional PSE.

All access to data is hardware or microcode controlled using the
capability architecture and the storage management system. The
non-overwriting filestore ensures that successive values of a root
pointer each give access to a completely consistent set of unchangeable
filestore values. The programmer need not therefore protect his data
against potential corruption, nor need he concern himself with store
management. The protection provided by the hardware does not impose
the performance penalties that would apply if the same functions were
performed by software. Despite the non-overwriting filestore, Flex
does not consume filestore particularly rapidly. Several
characteristics contribute to this. The fact that only one copy of any
value is held on the filestore no matter how many capabilities exist for
it combine with structured edfiles to reduce the quantity of new values
created when writing a new edfile. Filed procedures and modules using
the same module actually share the same copy of the module instead of
needing their own copy bound into an executable image.

The Flex mode system supported by the command interpreter gives the
same benefits at the operating system level as is gained by data typing
in programming languages. It provides visibility of data structures and
confidence in the correct use of data. The programmer can create and
select Flex modes freely to suit his problem and can rest assured that
his procedures will not receive invalid data structures. He need not
include software within each procedure to check the validity of the
input.

An editor that handles values of any mode as well as text leads to the
tree-like structured edfiles. These structures make it easy to hold
related objects together, to document values in the edfile that holds
them and to search the structures for unnamed values. The ability to
call commands from an editor that handles values makes it easy to
construct commands and to create and keep new values. At every
interaction of every procedure it is possible to use the results
obtained so far to determine future actions, without having to program
alternatives in advance. The use of values as opposed to names gives a
freedom which is difficult to appreciate without experiencing it. The
programmer no longer has to invent names for every object he handles

30

nor to keep systematic records of what the names mean in different
contexts.

A procedure is a value, independent of context. This has far reaching
consequences. The distinction between utilities, programs and
procedures disappears, so that programmers can move freely between
them. Any procedure, including system procedures can be called in any
context, without privilege and without spawning a new process. The
amount of new software needed in an application is reduced by re-use of
system and other procedures. Re-use of the editor and the command
interpreter result in a consistent user interface. Procedures can be
delivered from other procedures and are used to provide very flexible
control of access to values, to bind critical values such as dictionaries
to user procedure and to provide parallel processing.

Binding source text to the module removes the potential confusion of
working with the wrong version of source text and enables the
diagnostic procedure to deliver the actual text in which an error has
been detected. Listings are rarely used.

Amendments to modules have system wide effect. Programmers need not
therefore worry about keeping accurate records of the recipients of
modules. Controls are provided to prevent accidental specification
changes, use of modules with non-matching interfaces and a change to a
module other than by its creator, Automatic means are provided to
locate capabilities for modules with changed external specification and
to recompile only as necessary. A potential change to a module can be
tested without propagation of the change either by creating a procedure
from the compiled unit under test and calling it directly from curt or by
replacing a module in a procedure with the compiled unit under test.
Replacement of modules is also used to produce parallel slightly
different versions of a procedure.

Exception values, containing information about the state of a failed
procedure, give great flexibility in the handling of failures. They can
be handled internally within user programs or passed out through the
calling procedures to the command interpreter. One result is the power
of the diagnostic procedure, with its ability to present the current
state of a failed program. Another is a reduction in the amount of
software needed in application programs that cater explicitly for
exceptions. The fact that specific values can be withheld from the
exception value enhances the access control provided by procedure
values.

6. Conclusions

Flex performs well as a programming support environment. It is
particularly suited for developing software prototypes and for testing
new ideas on software methods and designs. Once a user has learned the
totally new way of working that Flex requires the system is easy to use.

31

The resultant improvement in software productivity has not been
measured, but the absence of many of the problems that beset
programmers on cooventional systems must result in improved
productivity.

Future work on Flex is aimed at making the PSE more widely available,
and at improving the facilities. The body of software available to the
user of the PSE is constantly growing. Although Flex is not yet a
project support environment because it lacks the tools needed for some
phases of the software life cycle, such tools could be developed.

RSRE are anxious to get reactions to Flex from a wider user community.
To that end a Flex evaluation kit, running on an ICL Perq2[S., is
available to users from industry, the universities and the UK% Ministry
of Defence. Users are supplied with the microcode and software to
create a Flex PSE on their ICL Perq2, together with the machine held
tutorial and documentation. It is hoped that feedback from this exercise
will assist in improving Flex, with a view to eventual commercial
exploitation.

Development has started on a network of Flex computers. It is possible
to attach Flex to a network and to transfer data between Flex systems
and between Flex and other computers. Work is currently underway on
the problems of transferring Flex capabilities between Flex systems.

Implementation of Flex on existing computer systems (without
re-microcoding) is being considered. Even if Flex is not transferred to
existing computers as a whole, some of the ideas demonstrated on Flex
could usefully be adopted on other systems. For example, the support
for data typing by the operating system, provision of an editor that
handles values as well as text, thus supporting a structured file system
like edfiles, provision of non-overwriting filestore to improve system
integrity, binding compiled code to the source text from which it
derived and to a log file recording all changes to the text, automatic
propagation of change to compiled units throughout the system and the
ability to re-use all or part of operating system procedures in user
programs.

Research has started on an on-the-fly garbage collector to avoid the
automatic invocation of mainstore garbage collection which could limit
the usefulness of Flex for time-critical applications.

7. Acknowledgmenta

I would like to thank my colleagues in Computing Division RSRE for their
helpfulness and patience while I was learning to use Flex and for their
help in reviewing this paper.

32

8. References

I. "PerqFiex Firmware" by l.F.Currie, P.W.Edwards and J.M Foster.
RSRE Report 8S815 December 1985

2. "Flex: A working computer with an architecture based on procedure
values." by I.F.Currie, P.W.Edwards and J.M Foster.
RSRE Memorandum 3500. 1982.

3. "Kernel and system procedures in Flex" by I.F.Currie, P.W.Edwards
and J.M Foster. RSRE Memorandum 3626. 1983.

1. "Curt: The command interpreter for Flex" by I.F.Currie and
J.M.Foster. RSRE Memorandum 3522. 1983.

5. "A software development system supported by a database of
structures and operations" by Kanasaki, Yamaguchi and Kuni.
Proc. of IEEE COMPSAC 1982.

6. "Software Engineering Environments" edited by H.Hunke,
North Holland Publishing Co. 1988.

7. -The mechanical evaluation of expressions" by P.J.Landin Computer
Journal Vol 6, No '+, pp388-328. Jan 19 61t.

8. "in praise of procedures" l.F.Currie RSRE Memorandum 1982
9. "Using true procedure values in a programming support environment-

M.Stanley. RSRE Memorandum 3916, 1986
18 "The use of values without names in a programming support

environment" M.Stanley. RSRE Memorandum 3981 1985
11. Extending data typing beyond the bounds of programming

lanquaes" M.Stanley. RSRE Memorandum 3878. 1985.
12. "Some practical aspects of software re-use" M.Stanley and

S.J.Goodenough. in "Software Engineering Environments" edited by
I.Sommerville, Peter Peregrinus Ltd. 1986.

13. integrity and the Flex Programming Support Environment"
M.Stanley. RSRE Memorandum 3915 1986.

I'. "Some IPSE aspects of the Flex project" I.F.Currie in "Integrated
project support environments" edited by J.McDermid,
Peter Peregrinus Ltd 1985.

15. "Flex and the ICL Perq2" M.Stanley. University Computing Vol 8,
No 2, Summer 1986.

33

DOCUR[NT CONTROL SHEET

overall security classification of sheet .NCLAS.F IED

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter

classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security
Classi ricat,on

Report 86003 1UNCLASSIFIED

5. Originator's Code (if 5. Originator (Corporate Author) lame end Location

known)
ROYAL SIGNALS AND RADAR ESTABLISHMENT

Sa. Sponsoring Agency's ba. Sponsoring Agency (Contract Authority) Nle and Location

Code (if known)

7. Title
AN EVALUATION OF THE FLEX PROGRAMMING SUPPORT ENVIRONMENT

1a. Title in Foreign Language (in the case of translations)

7t. Presented at (for conference nacers) Title, place and date of conference

8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3.4... 10. Date pp. ref.
STANLEY, M 4ug '86

11. Contract lumber 12. Period 13. Project 14. Other Reference

15. Distrlbution statement

UNL:M-'TED

Descriptors (or keywords)

continue on separate piece of pacer

b.troct

This paper gives a personal reaction to the Flex Programming support
environment, developed at RSRE, Malvern. It discusses the new approach
to program development necessary to take advantage of the environment,
and evaluates the environment against some criteria for programming
environments in general.

SACO/,a

