
IR-01616 663 THE USE OF VALUES WITHOUT NMES IN A PROGRAMMNING 1/1
F SUPPORT ENYIRONNENT(U) ROYAL SIGNALS AND RADAR
I ESTABLISHNENT MALVERN (ENGLAND) M STANLEY NOV 85pUNCLASSIFIED RSRE-NENO-396± DRIC-OR-98723 F/G 9/2 ML

MENNENllfl

& ,, '

lmo

1.251 11.111 .6

.-:. 54.-

Mc~ncn ~ CHORT

*i..,, .-S. !

A-" ?- ".

-S o

e ." -. € .- ,r .r, t" o -.- * -- ." . ." w ,, *, .

" " "
°

°" "
° ° 0

.. ,r : '....' .'. '.'" ..'. -.,[.,.a " .".:."" •".-".-".""..%. , -",. ". "- ";'. '." . ' " •" •" -• - -1

- -RSRE

-. ------- M EMORANDUM " No. 3901

ROYAL SIGNALS & RADAR

ESTABLISHMENT

THE USE OF VALUES WITHOUT NAMES IN A"--"""

PROGRAMMING SUPPORT ENVIRONMENT i'

Author: M Stanley ° .

PROCUREMENT EXECUTIVE, "
MINISTRY OF DEFENCE, .--

3E RSRe MALVERN,

0 MEMRANUM o. 90

ESTABLISH.MEN

*.: TEUEOVAUESIWITOU NAE IN

0P R O G R A MM.N G S U PP O R T E N VIR O N M E N T. .Z MI~~NITFDEFNE

X 1K . -b X 7q W~'I

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3901

TITLE: THE USE OF VALUES WITHOUT NAMES IN A PROGRAMMING
SUPPORT ENI IRONMENT

AUTHOR: MARGARET STANLEY

DATE: NOVEMBER 1985

SUMMARY

The Flex PSE, developed at RSRE, Malvern, allows objects to be used
without requiring that they be given names. This paper discusses how
this is achieved, and the benefit to the user.____

Accession For
NTIS GRA&I

DTIC TAB
Unlannouinced
Just if'iczjtion

By

Distribution/__ -

Availability CodeS

'Avail anid/or-
Dist Special

*o IL I

198

4%

The use of values without names in a programming support environment

CONTENTS

1. Introduction
2. What is Flex?
3. Names and values

3. 1 Values
3.2 Capability values
3.3 Procedure values
3.4- Structured Edfiles
3.5 Identifying values
3.6 The current name-space
3.7 Module values and names .
3.8 Shared values
3.9 Relationships

'. Conclusions
S. References

-- S.-N

'U~i:??

U';''.:

U--.-'.

...- .. -.

The use of values without names in a programming support environment

1. Introduction

-This paper discusses the effect on the user of a Programming Support
Environment (PSE) in which it is unnecessary to give names to objects
in order to keep them or use them. The PSE is a highly interactive
environment called Flex(S, 'that is perceptibly different from other
PSEs. It isbuit on the Flex capability object oriented computer
architecture[1,2J developed at RSRE, Malvern.

Names on Flex do not have the importance that they assume on most
other PSEs because values need not be named before they can be held on
filestore, used and located. Values can be accessed by scanning a
structured filestore without the need to use names to identify them.
The ability to use values without naming them is shown to be not only
possible but also beneficial.-.

2. What is

'-' Flex is a multi-language Programming Support Environment (PSE)
designed to simplify the development and maintenance of complex
software, with a high regard for system integrity and reliability. The
PSE development since the first Flex architecture came into use in 1978
has been mainly a response to requests from programmers using the
system. The large software base includes all normal operating system
facilities and many other procedures including compilers for Algo'68
and Pascal. An Ada(*) compiler is near completion and an ML compiler is
under development..:

The Flex capability computer architecture has (so far) been
implemented in microcode on four hardware configurations, the most
recent being the ICL Perq. The implementation with which I am most

• familiar is a multi-user system in which 3 Flex computers share a
common filestore and common peripherals.

A full description of Flex is beyond the scope of this paper, which will
concentrate on those aspects that relate to the use of values and names
with some discussion of the effect this has on programmers and on the
method of use of the Flex PSE.

mAda is a registered trademark of the US DoD.

.f ,.

WE..?...

3. Names and values

3.1l Values :

On conventional systems values on filestore (often called files) are

usually accessed through dictionaries or directories which are
associations of names with files. Each user has one or more private
directories of name/file associations which give him access to the
files that he owns. He usually has the right to update such a directory '.
and the values to which it gives access. Every file has at least one
name.

On Flex individual filestore values do not have to be named. A filestore
value on Flex can be a structure containing other filestore values (see .r*..

discussion on edfiles, below) and filestore values can exist within a
structure independent of any name. Only the outermost structure needs a
name.

Every object or value handled on Flex, whether on filestore or in
mainstore, has an associated Flex mode['+] (value type) that is used to
indicate how the value is to be interpreted, and the operations that are
valid on it. Values vary in type from simple integers to much more
complicated structures. In contrast to the limited set of file types
available in most computer systems the variety of Flex modes is
boundless and most mainstore objects (including procedures) have
direct analogues in Flex filestore. Users can define new Flex modes to
describe new kinds of value. Whereas naming conventions are employed ,-
on some systems to indicate file types such as source text, compiled
code and program, names are not needed on Flex to indicate the mode of
a value. The mode of a Flex value can always be displayed on request and
correct use of values of any mode is checked by the command
interpreter.

In general, filestore values on Flex cannot be modified; they can only
be created or used. Filestore values, once created, are constants. The
only exceptions are a few root pointers which are updated as a single
atomic action. The updatable root pointers are single word blocks
usually containing a reference to a dictionary from which other
filestore values can be reached. The architecture ensures that the root
pointer update is unitary. Even dictionaries are not updated. The only
way to change a dictionary is to create a new one (which is an edited ...

version of the old dictionary) and then update the root pointer to point
to the new dictionary.

3.2 Capability values

Those values in Flex which require some degree of access control to
preserve system integrity are represented by capabilities. To achieve
the necessary access control the Flex microcode allows access to such
a value only through the capability for the value. A capability can be

MW •.•

created and modified only by the Flex microcode although capabilities
can be treated like other values in that they can be held on filestore,
used in programs and can be passed to another user, giving the other
user access to the controlled value. There are mainstore capabilities
that control access to mainstore objects (such as procedures), .
filestore capabilities that control access to objects on filestore and
remote capabilities that control access to remote facilities (e.g.
objects on other Flex computers).

In a sense a capability is a pointer created on behalf of the user by the
microcode but the capability also contains information on the type of
use (read only; read/write; execute) that will be permitted by the
microcode. The mode of a capability value indicates the mode of the
value to which it gives access.

On conventional systems a file may be copied to more than one user.
Each user will allocate a name in his directory to his copy of the file,
and the names may be different. On Flex filestore values are never
copied. Each user of a filestore value needs the appropriate capability,
although only one copy exists of the value to which the capability gives
access. Like other values, capabilities do not need names, so the
potential confusion of associating the same filestore value with
different names in different directories can be avoided.

3.3 Procedure values

In conventional operating systems a procedure is placed in a context by
forming it into program before it can be invoked from the command
interpreter. On Flex a procedure is a context independent value, like
any other value. The value of a procedure is a capability to execute the
procedure. A procedure can be invoked directly by the command .-." :..
interpreter (curt)[3) (itself a procedure) by including in the command
either the unnamed procedure value or (if the procedure value has been
named) the name of the procedure value. Of course a procedure is
defined and invoked by name in the source text of a programming
language, and that name is preserved in the external specification of
the compiled unit in which it is defined, so that it can be invoked from
other separately compiled units. However, the source text name has no
meaning at the command language level. Like other values on Flex,
procedure values do not necessarily have names at the command language
level. If a name is used in a command, curt first converts the name to
its associated value.

A procedure called by curt takes a value holding the procedure
parameters and delivers the result as an unnamed value which may be
re-used immediately in a new command or retained for future use. The
Flex mode of a procedure value indicates the modes of both the
parameter ;nd the result and curt will call a procedure only on values of
the correct mode. .

3

3.A Structured Edfiles

As mentioned above, unnamed filestore values can be held in structures
on filestore. One such structure is a filestore value of Flex mode
Edfile, a value that can be processed by the Flex screen editor. A user '.P
normally interacts with Flex using the Flex screen editor, which, as
well as editing text, can manipulate values of any mode and can call .. .

procedures via the command interpreter (curt). Thus an editable file
(an edfile) is a database-like object that may contain a mixture of
characters, other edfiles, integers, filed procedures (i.e. a value held
on filestore from which a procedure value can be loaded) etc. Since any
edfile may contain others, edfiles may be a structure of edfiles and
other values, with the restriction (enforced by the Flex architecture)
that the structure must be acyclic.

The following is a trivial example of the content of a structured edfile
as displayed by the Flex editor. The unnamed values are displayed in
cartouches (boxes). Anything not enclosed in a cartouche is normal
text.

", . o..

. . -;* ,

-% • . °

.4.,L:.

.. .- .~ .

.44, ,. %°

* IIi1'

This is the first line of the outermost level of this edfile.
This line includes an Integerj35, value 35.

Note that the value is held anonymously. The string displayed in
the cartouche is not a name: it is a label selected by the user to
describe the value. The label is completely independent of the
value. It is associated only with a cartouche representing the
value, and can be changed without affecting the value. On request
the editor will replace the displayed label with a label indicating
the mode of the value.
The value r5 could also be displayed as

The unnamed (labelled) edfile leddate_doc (listed below)

contains a procedure and its associated c umentation.

Next we display a command, which can be obeyed directly from the
editor. It calls the algol68 compiler on the sojeedfile:

s~ource algo168! .

When t e command is obeyed, each new value is enclosed in its own
cartouche. The result of obeying the command is in the enclosing
cartouche as shown below:

Note that this command includes source as an unnamed value and
algol68 as the name of a procedure, w ose name has been replaced
by its value, algole6B, by the command interpreter. .

The unnamed value sue l68 is the result of obeying

the command.

ed_date_doc:

This edfile,held within the first edfile, is the documentation on
the filed procedure, Filed (Edfile->Vec Char) . This procedure
takes an edfile and delivers its creation date in the form
dd/mm/yy hh mm. It was created from eddate:Module.

d,e e->Vec Char)1 '
is a command delivering the date on which jiile was created.

Note the convenience of holding documentation about the
procedure with its value and its derivation all in one edfile.

The example given above is a tree structure. In general,however an

5

edfile is not strictly speaking tree structured because the same value
may appear in more than one place in the acyclic structure. I loosely
refer to such a structure as a tree because it can conveniently be
thought of as tree-like.

This example shows the use of unnamed values both in commands and in
the structured edfile. A capability for the same value can be held in
several places in the structured filestore, and each may be displayed
with a different label in the cartouche. Only a single copy of any value
exists, regardless of the number of copies of the capability for it or
the number of different labels appearing in the cartouches that
represent it. The label cannot be used to find the value represented by
the cartouche because labels are not included in any dictionary
associating names with values. The labels are used only to display
information about that instance of the value. The default label in a
cartouche gives the mode of the value that it represents.

Note that because filestore is non-overwriting, there is no need to take
a back-up copy of any edfile or simple value to guard against unwanted
changes- filestore objects cannot change underneath you. An apparent
change to any filestore value involves getting a capability for a new
(changed) value. The old (unchanged) value continues to exist as long
as any instance of the capability for it is retained. When an editable
file is apparently changed by editing, what actually happens is that the
editor writes the edited file to a new filestore block and returns a new
capability for the edited file. At this stage both the old and the new
(changed) files exist as separate values so a user may have
capabilities for both. He may choose to retain both capabilities or to
discard his copy of the capability that he no longer wants. The old file
has not changed and holders of a capability for it will still be able to
access it. The user has simply gained access to another editable file.

The immutability of a filestore value contrasts with the use of names
for values. On any system (including Flex) the same name may refer to
different values at different times because the name/value association
has been changed to associate a new value with the name. On systems
other than Flex when a value is changed (updated) it may automatically
continue to be associated with the same name following a convention
which associates the most recent version of a value with its name. Even
when a name/value association has not explicitly been changed the name
may refer to different values at different times.

3.5 Identifying values

Because values can be held anonymously in the structured edfiles and
can be used anonymously by the command interpreter, names on Flex do
not have the importance that they assume on most other PSEs.

Each Flex user has a private dictionary of name/value associations for
filestore values named by him. In practice these dictionaries tend to be

16L 6

- . -, -, .o. - - - ,"

very small. Only those values to which a user wishes to refer in a wide
variety of different contexts are named, plus one outermost edfile that ____

contains a structure of other edfiles, text, and values of various -
different Flex modes. All other objects are accessed (using the editor) .".

via their position in some edfile. Only the outermost edfile need be
named.

Typically there will be one named edfile for each major piece of work
of interest to a user. The grouping of objects within a single
structured edfile is purely a matter of convenience, a way of keeping
related things together. In particular, documentation can be naturally
structured with each chapter in a different sub-edfile, which in turn

contains sub-edfiles for sections.

Systems that use tree-structured directories of name/value
associations often use a structured naming convention to navigate from
the root directory to any filestore value. The Flex editor, in addition
to the usual functions of text file editing, allows the user to navigate
through the tree-like structure to find unnamed values. After the editor
has been called on a named edfile the editor displays a window on the
outermost level of that file. To proceed down the tree-like structure
to the next level in the tree, a user calls the editor recursively on an
edfile in the current level of the tree. He proceeds, calling the editor
recursively, until he reaches the position in the tree-like structure
containing the object he seeks. This is usually a very rapid process,
because the window selected for display at each call of the editor
includes the cursor at its position when that edfile was last used. (In
fact the position when it was created, since edfiles are not modified,
only re-created.)

Values surrounded by explanatory text are easier to identify correctly
than if the user must rely only on names, however well structured the
dictionary hierarchy and however clear the naming convention. It is
therefore easier to find an object in a tree structured hierarchy that
includes descriptive text, (particularly because capabilities can be
repeated wherever appropriate and can be displayed with helpful
labels) than to keep track of an ever increasing dictionary of artificial
file names. It is of course difficult to locate an anonymous value if the
hierarchy is not well thought out. However, since capabilities can be
repeated, it is possible to have an object (anonymous or named) in more
than one hierarchy. Using the Flex editor it is easy to move the
capability to a different place, or to restructure the hierarchy, so a
badly structured hierarchy need not be a persistent problem.... P"" "'

3.6 The current name-space

Although values are frequently used anonymously, the Flex command
interpreter can take a name and find an associated value. The meaning of
a name in Flex is dependent on the context.

7

".-.____.;._-

-.....,

Name/value associations on Flex may be temporary or persistent.
Persistent names persist from session to session and therefore apply
only to filestore values. A user normally has access to two dictionaries
of persistent names (his private dictionary and the common dictionary)
although when users are created they can have any number of
dictionaries associated with them. Dictionaries can be shared between
individuals.

Temporary names do not persist between sessions and may therefore be .,- -

associated with values of any Flex mode, including mainstore values.
Temporary names are therefore useful for objects needed frequently
during a session, and which contain mainstore capabilities, such as a
vector of objects for testing a procedure. Although temporary
name/value pairs are held in a temporary user dictionary in mainstore,
temporary name/value associations can also be set up within any
procedure, to apply only to calls to curt made within that procedure.
This enables a user to write procedures to interact with the rest of the
Flex PSE while using their own name space, that does not apply outside
the procedures.

Flex dictionaries are not tree structured. They are usually so small that
a tree structure is unnecessary. Tree structured dictionaries suffer
from the disadvantage that a name is only in scope at the appropriate
level in the tree, so it is necessary to navigate through a tree
structure to the appropriate level for a name to have the correct
meaning. If the same name can appear at different levels in a tree this
-an cause confusion. All names in a Flex dictionary are in scope
simultaneously. There is less probability of confusion when using
values directly from a structured edfile because the process of
navigation throuol - the edfiie does not affect the name-space within
which a user is n "g.

3.7 Module values and names

The unit of separate compilation on Flex is a value of Flex mode Module
which like other values is usually stored and used anonymously. A
module is a filestore value that gives access to the compiled code
resulting from a single run of the compiler, to its external
specification (the data and procedure types and source language names
that are visible to users of the compiled unit) and to the source text
from which it was derived (with certain restrictions to protect the
source text from unauthorised access). A module also gives access
indirectly to all the modules that it uses. The Algo168 source text of a
module that uses other previously compiled modules includes an unnamed
capability for each used module. This has the advantage of being
context independent, whereas, if the reference to used modules were by
name there would need to be a context (or library) for each module to
associate the module names with the correct module or the correct

k version of a compiled unit.

4.-

a _

A module on Flex is displayed by the editor in a cartouche with a label ..:.,

giving the source text name of the module. It is therefore easy when
reading source text to identify the modules used by the unit being read.
As elsewhere in Flex, the labels are not names: they are displayed for
information.

A module value can be changed, so that the module capability gives
access to a different compiled unit and associated values. (The change
to the module does not violate the non-overwriting filestore. Modules
are always accessed through a dictionary and the user is given a new
dictionary, with the old module value replaced by the new one. The user
need not be aware that the dictionary has changed. It is done
automatically.) When a module value is changed after a recompilation,
every instance of the module capability gives access to the new value.
The effect of the change is immediate and system wide. (It is possible
to test a new compiled unit before actually changing the module value.)
Provided that the new value has the same external specification as the ..-

old value, the using modules need not be changed. They simply use the
new value. If a change to a module involves a new external
specification, each instance of the capability for the changed module is
marked to show that the value must be revalidated before use.
Capabilities for invalid module values are easily identified, and
procedures exist to search for them and revalidate them, amending the
using module to hold a capability for the revalidated module. This
process is simplified by holding the values of the invalid modules in
the using modules rather than their names because it cuts out the
intermediate step of associating a name with the correct value.

Since used modules are included as context independent values rather
than as names there is no need to change any build commands or module
libraries to associate a name with the new version of the compiled unit.
Build commands, that allow a user to rebuild a procedure or program
after changes to some compiled units, are not required on Flex since
executable images are not kept on Flex filestore. Procedure values are
only assembled when they need to be loaded for execution. The current
code from each used module is then included. Build commands are
sometimes used on conventional systems to allow reconstruction of an
old version of a program. "rhe required compiled units are identified by
name and version number or date. On Flex a procedure is provided that
makes it possible to reconstruct an old version of a procedure by
replacing selected modules used within the procedure. If the user has
retained the old version of the source text or of the compiled unit he
can use this to replace the current version. It is possible to arrange
that all changes to modules are automatically recorded in a log file
bound to the module. Other relevant information, such as the name and
address of the author and source text of the superseded version may
also be included. Version numbers and module names are not required --

for this process.

9

.7-7= -W7'. IT-.,7

° .-.. .

3.8 Shared values

Capabilities for those values that are shared by all Flex users are
accessed through the common dictionary, which is accessible to every " -
user. Most such values are not named. The capabilities are held in one
common documentation edfile, named in the common dictionary. The
common documentation file, containing capabilities not only for all
shared documentation but also for modules, procedures and other shared
values, is structured by topic. Capabilities are repeated as necessary
if they belong to more than one topic. Users can extract the unnamed
capabilities from the common documentation edfile for their own use.
The shared values are not copied. Only the capabilities are copied.

3.9 Relationships. -

In most computer systems explicit relationships between different
objects in the environment are provided only in databases. Usually"
these, if available, are provided in addition to the PSE rather than as
an integral part of it. Naming conventions are employed on some systems
to indicate implicit relationships between objects such as source text,
compiled code and program and to associate a meaning with a value.

Names are not needed on Flex to indicate the meaning or the
relationships of a value. Edfiles are database-like objects that
implicitly express relationships by holding related values either
adjacent or at different levels in the same edfile. For example,
relating a set of text files such as a requirement specification, a
design document, user guides etc. to the modules and procedures that
implement them can be done by holding them all in the same edfile,
together with the implementation, as illustrated in the edfile example,
eddatedoc. Meaning can be documented fully in the surrounding text
rather than relying on the somewhat inadequate shorthand of
appropriately chosen names. Multiple relationships may be expressed by
holding a capability in more than one place.

The usual way to find a value on Flex filestore is to scan a structured
edfile (provided the user knows roughly where in the structure to
look). It is easy to write procedures to search from the outermost
level of a container (such as an edfile, a dictionary or a module) for a
value having some required characteristic. For example, a procedure
could find all objects in an edfile of specified mode or a procedure
could search for a module that uses a given module. It can be useful to
discover which module keeps a specific item, such as an Algol68 mode,
in its external specification and hence to look at the item in more
detail. Using existing procedures from the common dictionary, it is
easy to write such a procedure which, given the source text name of the
sought item, searches for a module that keeps the item in its external
specification, and delivers the module to the user.

There are currently some explicit relationships on Flex none of which

relies on a naming convention. There is the binding relationship between
any value and its mode and a relationship binding an edfile (including
source text accessed from a module) to its creation date. Flex
dictionaries express the relationship between a value, its . .,*.
documentation and the date of association between a name and the value.
(A dictionary entry associates a name with both a value and an edfile
holding its documentation. The information procedure on Flex delivers
the documentation associated with the named value.) The module
expresses the mandatory relationships between compiled code, its
source text, its external specification and its log file. The module also
expresses the relationship between a module and the modules that it
uses. Other explicit relationships could be added to Flex using a data
structure similar to mode Module in which related capabilities would be
accessible through the same object.

hi.. Conclusions

*i I have described the use of structured filestore holding anonymous --
values, supported by a command language that uses capability values in
preference to names. The advantages of such a system need to be "-
experienced to be fully appreciated.

Capability values are context independent whereas names are context.
dependent. Indeed on some conventional systems the file associated
with a name can be deleted while the name is still preserved (perhaps
in a list of files needed to link a program). The value accessed by a
capability cannot be deleted as long as the capability exists
somewhere. Only when all capabilities for a value have been discarded
is the value itself deleted.

Structured edfiles, that can hold values as well as text, make it
possible to keep values on filestore without naming them. The value
held in an edfile does not change with time because with
non-overwriting filestore the edfile does not change. The use of
unnamed values is encouraged by the recognition by the command
language of unnamed values both for procedures and for their
parameters. The use of values directly in the command language avoids
the intermediate step of associating a value with a name and the
potential ambiguity of context dependent names. Similarly, the use of
values rather than names for modules eases the problems of propagating
the results of changes to affected users by avoiding the intermediate
step of associating a module name with a value in a specific library and
of ensuring that the user knows which version of a module is being
used.

Although several conventional systems support tree structured
directories, more complex structures, with the same object appearing
in more than one place in a tree-like structure, as in the Flex edfile,
are less usual. It is easy to find an anonymous value in a tree structured
edfile, with labelled values surrounded by explanatory text and -

"-b "' "

II I I I I I1

associated values kept together. Repetition of the same capability in
more than one hierarchy does not lead to multiple copies of the
associated value and can be useful both for ease of access and to

* indicate relationships between values. The problem of changing
name-space by moving to a different level in a tree structured
directory is avoided by using very small single level dictionaries and ,
keeping the structure in the edfiles.

Flex does not need to use naming conventions to show the type of an
object. The Flex mode of any value can be displayed directly. Similarly
Flex does not rely on naming conventions or on structured directories
to indicate relationships. They are shown by keeping values in the same
structured edfile or by using explicit relationships such as those
provided between source text and compiled code and between modules. .

The freedom from cumbersome naming conventions is a bonus. The
programmer no longer has to invent names for every object he handles
nor does he need to employ a complex naming convention or keep
systematic records of what the names mean in different contexts. The
difficulty of choosing new names for a wide variety of values is
avoided and any problems arising either from associating a single value
with different names in different contexts or from associating a single
name with different values in different contexts, can be avoided.

The structured filestore just described is but one of several unusual
and useful features of the Flex PSE. Future work on Flex is aimed at
making the PSE and the ideas it demonstrates more widely available, and
at improving the facilities. The underlying architecture is not expected
to change, but additional facilities are being worked on to enable Flex
to be networked anid to support host/target software development. The -'-

possibility of implementing Flex with its powerful mode system on
existing computer systems (without re-microcoding) is being
considered as a topic for future research. -

. * .

° .

,- i

. ~~12 II "' '

7 Ir 7, 7 r ":17 771-7i-

5. References

1. "Flex Firmware" by l.F.Currie, P.W.Edwards and J.M Foster.
RSRE Report 8188I9. Sept 81.

2. "Flex. A working computer with an architecture based on procedure
values." by I.F.Currie, P.W.Edwards and J.M Foster.MA
RSPE Memorandum 3588. 1982.

3. "Curt. The command interpreter for Flex" by I.F.Currie and
J.M.Foster. RSRE Memorandum 3522. 1983.- . *

It. "Extending data typing beyond the bounds of programming languages"
M.Stanley. RSRE Memorandum 3878. 1985.

5. "A personal evaluation of the Flex Programming Support Environment'
M.Stanley. RSRE Memorandum in preparation, 1985

. 40

X"

13.

DOCUMIENT CONTROL SHEET ~J

Overall security classification of sheet UCLASSIFIED

(As for as Possible this shoet should contain only unclassified Information. If It Is necessary to enter W W
* classified Information. the box concerned must be marked to Indicate the classification e9 (R) (C) or (S))

1. URIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security

MEMORANDUM 3901 U/C Classification

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location-
known) ROYAL SIGNALS AND RADAR ESTABLISHMENT

5a. Sponsoring Agency's 6la. Sponsoring Agency (Contract Authority) tome and Location
Code (if known)

* 7. Title
THE USE OF VALUES WITHOUT NAMES IN A PROGRAMMING SUPPORT ENVIRONMENT

* 7a. Title in Foreign Language (in the case of translations) rJ*.

lb. Presented at (for conference napers) Title, Place and date of conference

8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3,4... 10.uae pp. ref.
STANLEY,

11. Contract Number 1?. Period 13. Project 14. Other Reference

15. Distribution statement

UNLIMITED

Descriptors (or keywords)

continue on separate piece of paper

The Flex PSE, developed at RSRE, Malvern, allows objects to be used
without requiring that they be given names. This paper discusses how
this is achieved, and the benefit to the user.

S80/48 4.~

Ve.

m a t - In

