1

NL

F/G 1279

HM]
MO-3915

R R

I
£ hE

i

AL

H
L

AD-A181 @36
UNCLASSIFIED

e

10 ¥k
flio § i
i - R

= K]
Ii25 e e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

9¢0 L8LV-AV

St

-

Royal Signals and Radar Establishment
Memorandum 3915

AUTHOR: Margaret Stanley.
DATE . June 1986

TITLE : Integrity and the W Programming Support Environment

This paper discusses the integrity of the Flex Programming support
environment, developed at RSRE, Malvern. It describes the special
characteristics of the environment which result in a system of
unusually high integrity. These characteristics include the capability
mechanism, non-overwriting filestore and the use of procedures as
first class objects. .-

o

“>

Accession For

NTIS GRA&I
DTIC TAB
Unannounced O
Justification . |

By
Diltribup{qn/

Availability _Co_d_ps
Copyright © Avail and/or

Controller HMSO London Dist Special

|

e &

Integrity and the W Programming Support Environment

CONTENTS

1. Introduction
2. Aspects of integrity in existing environments
2.1 Mainstore integrity
2.2 Filestore integrity

3. What is ?

k. Flex integrity features
.1 Capabilities
&.2 Mainstore allocation
4.3 Non-overwriting filestore
&.% Sharing filestore capabilities
.S Procedures as first class objects
&.5.1 Delivered procedures
&.5.2 Protection from diagnostics
4.5.3 Protection from unauthorised access
&.5.% Binding parameters to procedures
S. How good is the integrity of Flex?
5.1 Mainstore integrity
5.2 Filestore integrity
6. Conclusions
7. References

Integrity and the ln'ﬁs'»:g Programming Support Environment

1. Introduction

Integrity is a vital factor in the acceptability of a Programming Support
Environment (PSE). By integrity I mean the resistance of the support
environment to corruption, from whatever cause, snd the facilities
provided to prevent illegal or unauthorised use of objects.

In this paper | discuss the integrity of the Flex PSE developed at RSRE
Malvern. The fundamental mechanisms that enforce integrity include a
capability mechanism, a non-overwriting filestore and the use of
procedures as first class objects. | shall discuss each of these
aspects indicating how they help in enforcing system integrity.

2. Aspects of Integrity

Users of a computer system expect that the system will preserve their
data and their programs intact, coping with a hardware or a software
failure without corruption of programs or data. Loss of data following a
failure should be limited to loss of uncommitted changes. This is
particularly important where large volumes of interrelated data are
involved, such as in a database, where filestore corruption could result
in massive loss. Users also expect that their own programs and data
will not be accessible to other users without their authorisation. They
expect protection not only when the system is used as specified, but
also in the face of attempts to break the system and in the presence of
incorrect programs. It should not be possible to compromise system
integrity either accidentally or maliciously.

System integrity involves both mainstore integrity which is concerned
with the running of programs and filestore integrity which is concerned
with long term retention of values and of associations between values.
Integrity is provided by a combination of computer architecture
(hardware) complemented by features of the operating system and other
software. The software has, where necessary and as far as possible, to
supplement the architecture to prevent any unauthorised or improper
use of mainstore or of filestore. Even hardware faults, software
errors or tampering should not result in unauthorised access to values
or in corruption of wvalues. Unfortunately protection provided by
software cannot be proof against tampering or against software errors.

2.1 Mainstore integrity

A mainstore value is part of one or more executing programs. It may be
an invarient velue (program code or constants) which must not be
changed by any user or it may be program variables or workspace which
must be protected from eccess by other programs or users. Integrity

requires that mainstore values be used only in the proper way by
programs which properly have access to them. Mainstore integrity can
be compromised if a program can either read, execute or modify a part
of mainstore to which the user has no rights because it is not properly
in the current domain of his program or if a program makes wrong use of
a legally accessed mainstore value, for example by changing a value
which should be constant or by executing a data area. Mainstore
integrity is also destroyed if any part of mainstore is released for
re-use while it is still needed. If mainstore integrity is breached
programs may behave in unanticipated ways or data may be illegally used

or changed.

Illegal creation, alteration or use of mainstore addresses, sizes and
controls on type of use (read, write or execute) must be prevented if
the values to which the addresses give access are to be protected.
Mainstore addresses and offsets that can be modified or created by
program may be modified accidentally or maliciously giving illegal
access to areas of mainstore belonging to other programs. A program
such as a compiler may incorrectly calculate a mainstore address and
point to the middle of a value, or it may pick up the wrong data to
indicate the size of a value. If the data giving the size of a mainstore
value can be modified by software there is no way to prevent a user who
has access to a base address from reading a larger block of mainstore
than he has a right to, thus gaining access to a contiguous value to
which he may have no right. A user may then be able to read and even
change mainstore values in the domain of another user’s program.

The integrity of any system is weakened if special privilege can be
invoked to by-pass specific integrity controls. For example
partitioning mainstore into different user areas protects mainstore
values against access by another user but the associated penalty is that
partitioning prevents different users from sharing program code and
constants in mainstore, nor does it allow procedures running in
different user areas to communicate through shared areas in mainstore.
The protection provided by partitioning is weakened if special privilege
can be invoked to break the partition rules to enable code sharing
between users of common utilities such as the editor. Similarly, if
privileges can be obtained to override specific access or type of use
controls the protection system is weakened.

Incorrect use (read, write or execute) of a mainstore value can
compromise integrity. For example if a pointer gives access to the code
of a procedure and the program interprets it as a program variable and
updates it, the code will be corrupted with unpredictable results. Such
corruption is difficult to detect and to recover from. Type of use may
be controlled by dats sssocisted with 8 value or by partitioning
mainstore so that values thet cen be updated sre physically separated
from code thst can only be executed. However, the type of use dats or
the partition boundaries may themselves be held as data that can be

modified. It is impossible to prevent tampering with values that can be
set by software.

Mainstore garbage collection is provided by some compilation systems .
It involves releasing for re-use any areas of mainstore that are no
longer needed by programs that are running. It is necessary because
executing programs run out of mainstore space but it can be a major
hazard if mainstore addresses are not distinguishable from other
values. If a value which is in fact a mainstore address is
misinterpreted as a simple data value then the space to which it points
may be released by the garbage collector for re-use, thus destroying
the data value kept in that space. If the size information in the value is
wrong the garbage collector may release part of the value. Such
corruption can cause chaos.

2.2 Filestore integrity

Values on filestore (often called files) are values retained between
user sessions. Files are often large values held as & sequence of
non-contiguous blocks of filestore the ordering of which within a file
may be indicated by chaining the blocks together as @ linked list or by
use of an index. Files are usually accessed through dictionaries or
directories which sre associations of names with files. Operating
system software presents users with files rather than with blocks of
filestore. A corrupted filestore is one in which the operating system
presents the user either with no value for an existing file or (worse)
with 8 wrong value. Integrity is breached either if any filestore
corruption that can occur is not detected and recovered from or if a
user can access or make unauthorised use of anything on filestore.

Possible reasons for filestore corruption include corruption of the
associstion between a name and the sequence of filestore blocks;
corruption of the sequencing information within the file; premature
release of a filestore block currently in use in a file or corruption of
the addresses and offsets used to locate the filestore blocks. If
filestore corruption is detected there must be facilities to recover
from it. However, detection of filestore corruption camot be
guaranteed. Operating system software camnot check the internal
consistency of files and there may therefore be undetected loss of
information. This is undesirable, and can be disastrous in critical
applicstions.

Filestore integrity is breached if s system or software crash resuits in
corruption of the filestore. One csuse of filestore corruption is
incremental updsting of filestore. In incremental file updating & file
consisting of severs! blocks is updated by a sequence of operations
that overwrite existing blocks in the file snd update the ordering of
the blocks. If the system crashes when some but not all of these
operations sre complete the result will be an incompletely updated file
perhaps with an inconsistent or a wrong index or linked list. Since the

old file no longer exists because some blocks have already been
changed, recovery is difficult. Simultaneous updating of a file by more
than one user can also result in filestore corruption. This can be
prevented by user or operating system software using semaphores and
flags, but it is always possible to bypass software checks.

As with mainstore values, if filestore can be accessed using filestore
addresses which can be created and manipulated by software there is
nothing to prevent a user from by-passing the operating system
controls to access the filestore directly using filestore addresses he
has calculated for himself. He may even write a new value to a filestore
block addressed by another user thus maliciously or accidentally
modifying all or part of an existing file. It is very difficult to detect
such unauthorised change or to recover from it. A vetting process that
relies on enforcement by correct software in the operating system
cannot be guaranteed.

Access and type of use controls are essential elements in integrity.
Like mainstore values, files and parts of files must be used only in the
proper way by users who are authorised to access them. Even privilege
should not enable a user to access anything on filestore without the
appropriate authorisation nor to use it in an unauthorised way.

Access to a file is usually provided through a directory in which it is
named. A user gains access to his directories (his private environment)
when he logs in. His private environment may be protected by passwords
that are checked when he connects to the system. Individual files may
also be protected by passwords checked by the operating system. If
passwords (possibly encoded) are embedded somewhere in the operating
system they can sometimes be decoded by a diligent hacker, particularly
if he can create or modify mainstore or filestore addresses to gain
unauthorised access to password tables.

An authorised user of a file should be unable to use it in an
unauthorised way, such as writing to a file that has been declared to be
read only or reading a file that has been declared to be execute only.
The use (read,write or execute) to which a file may be put is often
defined for different groups of authorised user such as owner only; a
named group of users or any user. Operating system software checks
that a user belongs to the appropriate group before permitting a
particular type of use. If these controls are provided by a descriptor
either attached to the file or by a textual or binary description of the
access rules (not necessarily very firmly attached to the object) it is
possible for a user (especially @ privileged user) to change a file
descriptor without necessarily being authorised (before the change) to
sccess the file content.

Sharing of files should not lead to loss of control of the value by its
original owner. A user may be sble to authorise snother user to read or
to execute 8 file but after s user has permitted another user to share

something by creating a new copy of it to his own directory, the
original owner may lose control of the copied object. If the recipient
of a shared file can modify the access rights on his copy, thus
permitting, for example read access to a program that was issued with
execute only access, it is easy to compromise the system. Conversely,
if a file is shared without copying there must be protection to prevent
the owner from deleting a shared file that is used by someone else. If
not prevented, deletion of a shared file could either cause the sharer
unexpectedly to lose the file or it could release a filestore block for
re-use while still addressed from another directory.

Unauthorised access to files can occur if users are allowed to supply
critical parameters to system procedures. For example, the user may be
required to provide a parameter to a procedure for manipulating
filestore, indicating which directory he is working on. If he provides
an incorrect parameter the procedure may operate on the wrong
directory or on a part of the filestore to which the user has no access
rights. It should not be possible to supply as a procedure parameter a
value that can cause the procedure to access areas of mainstore or of
filestore to which the user would not normally have access.

3.%13&?}}.@?

Flex is a multi-language Programming Support Environment (PSE) with a
large amount of software available to users. It is built on the Flex
capability object oriented architecture developed at RSRE, Malvern. The
main design aim was to develop a system of high integrity and
reliability and to simplify the development and maintenance of complex
software. The result was a highly interactive PSE that is noticeably
different from other PSEs. The PSE development since the first Flex
architecture came into use in 1978 has been mainly a response to
requests from programmers using the system. The software base
includes all normal operating system facilities and many other
procedures including compilers for Algol68 and Pascal. An Ada(=)
compiler is near completion and an ML compiler is under development.

i
The Flex capability computer architecture(1,2) has (so far) been
implemented in microcode on four hardware configurations including one
multi-user implementation in which 3 Flex computers share a common
filestore and common peripherals. The most recent implementation is on
the ICL Perq.

A ful) description of Flex is beyond the scope of this paper, which will
concentrate on those aspects that contribute to system integrity with

mAda is 8 registered trademark of the US DoD.

some discussion of the effect this has on programmers and on the
method of use of the Flex PSE.

k. Flex integrity features

The Flex computer has several features which enhance the integrity of
the PSE. | shall describe these commenting on the effect they have on
system integrity, with particular reference to the aspects detailed in
section 2.

+.1 Capabilities

Flex is a capability machine. Those values in Flex which require some
degree of access control to preserve system integrity are represented
by capabilities. The capability mechanism ensures that values
represented by capabilities can be used only in the way authorised by a
capability and only by the holder of the appropriate capability. The Flex
architecture provides the capabilities and enforces the mechanism,
which is therefore not susceptible to interference from the software.
The microcode (which is fixed and inaccessible to users, being used as
an extension to the hardware) controls all access to values in
mainstore and on backing store, permitting only legal operations to be
performed. This ensures that only operations of the right kind are
applied to mainstore and filestore values and only legally accessible
values can be reached.

A capability can be created and modified only by the Flex microcode
although capabilities can be treated like other values in that they can
be held anywhere in mainstore or filestore and can be used in
procedures. An important aspect of capabilities is that they are values
that can be passed about quite freely in the same way as any other value
such as an integer or a character string. There are mainstore
capabilities that control access to mainstore objects (such as
procedures), filestore capabilities that control access to objects on
filestore and remote capabilities that control access to remote
facilities (e.g. objects on other Flex computers). In a sense a
capability is a pointer created on behalf of the user by the microcode,
but the capability also holds the size of the value to which it gives
access and contains information on the type of use (read only;
read/write; execute) that will be permitted by the microcode.

The only way to use a facility on Flex or to get any access to mainstore,
to filestore or to remote facilities is by using a capability. It is
impossible to use software to create a capability either by manipulating
other capabilities or store addresses or in any other way; a user can
only get a capability by using an appropriate instruction (which issues
it via the microcode). Mainstore addresses and filestore addresses
have no meaning for a user, since the capability is not an address. It is
rather a permission to use something (such as a region of store or a

remote facility) in an authorised way. This means that users are unable
to compromise the integrity of the system by unauthorised use of
mainstore or filestore or by using store addresses.

Capabilities are more than pointers in that they also control the type of
access that they provide (e.g. read only, execute only, read/write).
The type of access provided is part of the capability. Since
capabilities cannot be modified, the type of access permission that
they allow cannot be changed. A user who wishes for a different type of
access to an object must request a new capability, which can only be
granted by the microcode. For example, a user with a read only
capability to a block of mainstore cannot manipulate it to obtain
read/write access. A new capability may give different access rights to
the same value. Similarly, a user with a capability to execute a
procedure can execute the procedure but he cannot do anything else to
it, such as reading any internal values.

An example may clarify the concept of capabilities. Suppose that a user
wishes to create a text file on filestore. He has a capability to execute
the editor which gets a read/write capability for a region of mainstore,
in which it holds the text being edited. When the editor is ready to
write the text to filestore it requests a capability to create a read
only block of appropriate size on filestore. It writes the text, using
the create block capability, and gets back a read only capability for the
block of text, which it passes to the user. This capability can be used
only to read the text, and the text can only be accessed by using this
capability. A user can pass the capability to another user, thus giving
someone else read access to the text, or he can relinquish the
capability if he no longer wishes to have access to the text. No other
use can be made of that area of filestore as long as the capability
exists, so the filestore cannot be over-written and then the old
capability used to gain access to new data. The microcode takes care of
this.

When the owner of a capability is willing to share the object to which it
gives access, he gives the other user a copy of the appropriate
capability. The object itself is not copied. Since capabilities cannot be
tampered with, the recipient can use the shared object only in the
authorised way.

The capability mechanism is a very powerful way of ensuring the
integrity and security of the computing system. The fact that it is
impossible for software to by-pass the microcode checks (which
prevent unauthorised access to, or inappropriate use of, objects in
mainstore or filestore) and that it is impossible to use software to
forge or to modify capabilities or to retain them after the object to
which they give access has ceased to exist, gives a degree of
protection that is not available at this level on conventional computers.
The protection is normally provided by the operating system software,
which may usually be by-passed given sufficient knowledge.

P - —

%.2 Mainstore allocation

Mainstore allocation is handled by the Flex microcode and cannot be
tampered with by a user. The store is allocated in disjoint blocks,
which may be of any size, according to user requirements. The user is
given a capability only for appropriate use of any block allocated to him
(read only, read/write, execute) and the Flex system releases the
block when it is no longer required.

The capability mechanism not only ensures that a block of store is
correctly used but also that no user can gain access to any part of store
unless he has an appropricte capability. A user cannot therefore corrupt
store belonging to another user. Since the mainstore addresses,
offsets and sizes are embedded in the capabilities and cannot be forged
or altered by software, it is impossible for software to corrupt the
store allocation. There is no concept on Flex of allocating a specific
area of mainstore to any one user. A block of mainstore is allocated to a
capability which may then be held by several users. Sharing objects
such as system utilities is therefore easy and does not adversely
affect the integrity of the mainstore. No privilege is required to make
objects shareable.

When a user requires a larger block of mainstore than is available a
rapid garbage collection is automatically invoked. User procedures
(including utilities) are not involved in this process. The fact that any
size of block can be allocated removes the difficulties and store waste
associated with fixed size blocks. The fact that mainstore capabilities
are easily distinguished from other types of mainstore values and that
all mainstore allocation is controlled using capabilities enables the
garbage collection to be undertaken without need for special software
to check that the pointers have not been interfered with in any way.

4.3 Non-overwriting filestore

Filestore or backing store allocation is also dealt with by the Flex
microcode. Filestore values may be of any size and can contain
capabilities for other filestore values although they cannot contain
mainstore capabilities. The fact that all filestore allocation is handled
by the capability mechanism and that the filestore capabilities cannot
be forged or tampered with by software gives a high degree of integrity
to the filestore.

No user can delete a filestore value explicitly. He can merely release
his copy of the capability for the value. The value itself cannot be
erased while a capability for it exists in any other filestore value.
This means that it is impossible to delete a filestore value shared by
snother user, for which the other user has a capability.

The Flex architecture is designed to prevent the possibility of

ey eeniiom. -

v Q,Y'h-

e g

partially updating filestore. Flex filestore is non-overwriting, apart
from a few root pointers which are updated as a single atomic action.
There is no capability to alter an existing filestore value (other than a
root pointer) 50 a user cannot alter the content or size of an allocated
block of filestore. He can either request the microcode to write
something to filestore for him or he can read or execute something that
has already been written. The updatable root pointers are single word
blocks updated as a unitary operation. They usually contain a reference
to a dictionary from which other allocated blocks can be reached. The
dictionary contains a set of associations of names with filestore
capabijlities.

An apparent change to a filestore value involves getting a capability for
the new (changed) value. The old (unchanged) value continues to exist
until all copies of the capability for it have been deleted. For example,
when an editable file is apparently changed by editing, as described
earlier, what actually happens is that the editor writes the edited file
to new filestore blocks and returns a new capability for the edited file.
At this stage both the old and the new (changed) files exist as separate
values. A user may have capabilities for both. He may choose to retain
both capabilities or to delete his copy of the capability that he no
longer wants. The old file has not changed and holders of a capability
for it will still be able to access it. The user has simply gained access
to another editable file. The new editable file, although written to
filestore, will not be accessible in subsequent user sessions unless a
root pointer is updated to point to a value, such as a dictionary, that
gives access to it.

The architecture ensures that the root pointer update is unitary. Since
the only operation that can overwrite anything on disc is unitary,
partial overwriting is impossible. Successive values of a root pointer
each give access to a completely consistent set of unchangeable
filestore values. If the system crashes at any time the user will either
have the old value of the root or the new value. He cannot have a
partially updated value. Since partially updated filestore is impossible
software to detect or recover from partial updates is unnecessary.

The unitary updating of root pointers is supported by a microcode check
that removes from the user the responsibility of preventing two users
from corrupting the filestore by updating the same value
simultaneously. The microcode checks that when a user attempts to
write a new value to a root pointer he knows the existing value. He will
fail if another user has changed the value of the root pointer since he
read it. If he fails he simply needs to read the new value of the root
pointer and change the new dictionary instead of the old one. The only
way to change a dictionary is to create a new one (which is an edited
version of the old dictionary) and then update the root pointer to point
to the new dictionary. If two users having parallel access to the same
filestore value both attempt to update the same root pointer both will
succeed. Unless both users are changing the association with the same

]

name nothing will have been lost. However, if both users are changing
the association with the same name, the earlier update will be lost,
although the filestore will remain in a consistent state so there is no
loss of integrity. The loss of an update could be controlled by
software, using semaphores, if users were sufficiently concerned.

&.% Sharing filestore capabilities

The Flex module (the unit of separate compilation on Flex) illustrates
the flexibility of the access protection provided by the ability of a
filestore value to contain other filestore capabilities. A Flex module is
a filestore value containing both the capability to use some compiled
code and a capability to deliver the source text from which it was
derived. If the owner of the compiled code wishes to share the
capability to use the code, while denying to others the ability to
examine the source text he issues a capability for the module with the
source text capability removed. This allows sharing of software while
providing protection against unauthorised access to the source text of
the software.

4.5 Procedures as first class objects

Flex treats procedures as first class, context independent values or
objects[5,6). A procedure is a true procedure value in the sense of
Landin{%]. Procedure code needs a context (its non-locals) to make it
executable and on Flex the context or environment in which the
procedure runs is bound in as a part of the procedure value. The
procedure value is a capability to execute the procedure. The
possession of a procedure capability allows the holder only to execute
the procedure. It does not allow him to dismember the procedure to find
how it works, the values of its non-locals or what other procedures it
might use. An important consequence of treating a procedure as a value
like any other value is that procedure capabilities may be passed to
other users, used as parameters for other procedures and even
delivered by other procedures (provided the language also supports
this notion, as does Algol68).

%.5.1 Delivered procedures

Delivering a procedure from a procedure means that values (both local
and non-local) and input parameters of the delivering procedure can be
bound into the delivered procedure and hidden from a caller of the
delivered procedure. This facility is a useful means of information
hiding and provides a safe way of hiding passwords and other access
controls from prying. The facilities provided are not privileged. They
can be used by any programmer.

For example, consider a procedure, make_channel, that creates a
channel for passing messages and a pair of procedures for accessing

18

that channel. (Each message consists of a vector of characters.)
Make_channel takes an integer giving the size of channel (i.e. the
number of messages it can hold). It delivers three channel access
procedures, write_channel that writes a message into the channel,
read_channel that reads a message from the channel and change_key that
allows a user to lock the channel, hiding the new key. One channel is
created by each call of make_channel, and that channel can be accessed
only by using the procedures delivered by that call.

The Algol68 mode of procedure make_channel is;

PROC make_channel=(INT size)
STRUCT (PROC(VECTOR[1CHAR)VOID write_channel,
PROC VECTOR [] CHAR read_channel,
PROC VOID change_key)

The first delivered procedure (write_channel) takes a vector of
characters and delivers a void. Each time it is executed it writes one
message (a vector of characters) into the channel (taking action as
defined in procedure make_channel to deal with a full channel or a busy
channel).

The second delivered procedure (read_channel) takes no parameters and
delivers a vector of characters. Each time it is executed it reads one
message from the channel (taking action as defined in procedure
make_channe!l to deal with an empty channel or a busy channel).

The third delivered procedure (change_key) allows a user to lock the
channel. Change_key prompts the user for a key or password. The key
that is supplied will be required by procedures change_key,
read_channel and write_channel before they give access to the channel.
Failure to respond with the correct key will cause the access
procedures to fai).

The user who invokes make_channel need not know how the access
procedures work. He can use them to access the channel and he can pass
them to other users to enable them to access that channel. The users of
the channel need not know the size of channel (input to procedure
make_channel), nor how the procedures work. The channel is a non-local
value of both read_channel and write_channel bound to these procedures
when make_channel is executed. The key or password is a non_local of
8ll three access procedures bound to them when make_channel is
executed and changed only by change_key. It does not exist outside
these procedures.

Similarly, a filestore capability can be hidden inside a set of access
procedures, as in the example below.

11

PROC make_read_file= (INT file_capability)
STRUCT(PROC INT read_next_int,
PROC BOOL read_next_bool,
PROC BOOL is_empty):

The delivered procedures (all giving access to the same file parameter
of make_read_file) may be stored on backing store because all the
internal values and non-locals can be stored on backing store. Different
procedures may be issued to different users, providing communication
through the shared data structure. No user need know the structure of
the stored data, nor need they have access to every value in the
structure. The access procedures may perform any desired checks
before giving access to the file,

%.5.2 Protection from diagnostics

When using procedures to hide values such as the channel and key in the
above example it is clearly important that users of the procedures
cannot look at the internal working to find the protected values. A
procedure capability allows execution of the procedure but does not
permit the user to read the code. The use of a debugger and dump
facilities to investigate the reason for a procedure failure must not
give access to values normally protected in a procedure. It is possible
on Flex to prevent such illegal access. Following a failure (because of
an explicit failure or as a result of an internal error such as dividing
by zero, or an Ada exception) a value (called an exception value) will
normally be returned to the calling procedure giving information on the
cause of the failure and on the local values of the failed procedure that
are currently in scope. Values bound in to a procedure as non-locals are
automatically excluded from exception values. In addition the Flex
architecture allows a programmer to protect sensitive procedures by
preventing them from providing any information to the exception value.
The calling procedure can handle the exception value internally or it can
itself fail, adding information on its own values to the exception value
that it passes to its own calling procedure. Exception values thus
accumulate information as they are passed out through the calling
procedures to the command interpreter. The information contained in an
exception value will normally give the user access to local values in
the failed procedure and to the source text from which the procedure
was derived. If a module is being used from which the source text
capability has been removed, an exception value cannot be used to gain
access to source text. The exception value is the only value delivered
by a failed procedure.

An exception value can be used by a diagnostic procedure to present to
the user information on the state of the failed procedures at the point
of failure. In the channel example given above, if any of the channel
access procedures failed the exception value would give access to the
local values of the procedure but not to the channel or to the key which

12

> \‘"Eb:- h_—

.

ettt

are non-local values. The content of the channel can be discovered only
by invoking read_channel and only the content of the channel will then
be delivered.

%.5.3 Protection from unsuthorised access

Since to use any object in Flex filestore or mainstore a user must have
the appropriste capability, which cannot be forged or aitered, it is
clearly important that capabilities themselves be protected from theft
by other users. Like other values, capabilities are protected by hiding
the only copy of the capability within access procedures. The protected
capability can then be shared safely by issuing the capabilities for the
access procedures. The protected value cannot be reached except by
executing an access procedure because the value is bound into the
procedure and does not exist elsewhere. The access control provided by
the capability mechanism combines with the protection provided by
procedure values to give an unusually powerful and flexible form of
access control that can be used, not only by the operating system, but
also by any programmer, to protect vailues.

The access procedures are ordinary procedures created by a user. No
privilege is required. Before allowing a user to reach a protected
value, the access procedure may perform whatever checks it likes. It
may require a complicated sequence of actions. It may even record for
future analysis all attempts at unauthorised use. It will not necessarily
request a password, although it may do so. If a password is requested
it need not be a single word. When a protection check fails the access
procedure fails, denying the user access to the protected values.
Having successfully executed all protection checks, the access
procedure allows the user to reach the protected value, perhaps by
calling the command interpreter. The user will still be executing the
access procedure. The value will again be hidden from the user on exit
from the access procedure. The access procedure can be given to
anyone in the knowledge that they still need to satisfy the built in
checks before they can reach the protected value.

An example of the use of procedures on Flex to protect capabilities is
found in the protection of each wuser's private environment
(dictionaries of name/value associations). The capabilities for the
dictionaries in the environment are embedded in @ procedure called a8
user-id procedure. Access to the environment is granted only while the
user-id procedure is running and only after the protection checks (such
as passwords) have been satisfied. A user-id procedure cannot be
invoked from within another user-id procedure because the environment
set up within a8 user-id procedure does not include the names/values of
the other user-id procedures. Invoking the user-id procedure is the
Flex analogue of logging in, and exiting from the user-id procedure is
the Flex analogue of logging out on 8 conventional system. An entire
session on Flex therefore takes place during a single execution of the

13

e e T S

user-id procedure. The passwords do not exist outside the user-id
procedure and so cannot be discavered. They can only be used.

&.S.% Binding parameters to procedures

As illustrated above, the facility to deliver procedures from
procedures allows critical parameters to be bound into procedures that
operate on sensitive data. Critical parameters can therefore be hidden
from the user, who canmnot change them. Safeguards against misuse of
system procedures by users are provided by binding the user dependent
critical parameters, such as the user’s dictionary, into the procedures
delivered to a user. The user is therefore protected against calling
such procedures with a wrong parameter.

For example, @ procedure to modify a dictionary on Flex does not have
the dictionary as a parameter. It is delivered to the user environment
with the dictionary that it modifies bound into it. It cannot operate on
another dictionary, or on any other filestore object. A user is thus
prevented from accidentally or maliciously modifying a dictionary to
which he has no right or from using a parameter to access someone
else's values.

Another example illustrating the binding of parameters to prevent
unauthorised change to shared values is provided by the way in which a
module (compiled unit) is protected against change except by its
creator. Every Flex user possesses a capability for an amend procedure
that allows him to amend modules created by him with new compiled
code derived from changed source text. The amend procedure is
delivered to the user with the capability for the user’s dictionary
bound into it. Every module on Flex includes a capability for a
procedure to assign new compiled code to the module. The assign
procedure in @ module has the dictionary of the creator of the module
bound into it. In order to modify any specific module the user calls his
amend procedure with the existing module and the changed code as
parameters. The amendment will take place only if the dictionary bound
into the user’'s amend procedure is the same as the dictionary bound
into the module’s assign procedure (i.e. only if the user also created
the module).

A module issued to another user still contains its assign procedure
capability but the recipient does not have access to the capability for
the creator's amend procedure. The capability for a module can
therefore be shared, giving use of the compiled code and access to the
source text from which it was derived (unless that capability was
excluded) while denying the ability to change the module. A shared
module is thus protected against unauthorised change.

S. How good is the integrity of Flex?

The capability mechanism, the non-overwriting filestore, and the

1

ability to treat procedure capabilities as first class objects combine
to give a very robust system in which hardware or system failure or
software sbuse cannot result in a corrupted system. It is impossible,
using software, to by-pass the safeguards against corruption provided
by the Flex architecture.

Teking the points raised in section 2.
5.1 Mginstore integrity

Since all mainstore allocation on Flex is handled by capabilities that
include not only the base address but also size and type of use
information, and capabilities cannot be forged or modified using
software it is not possible to corrupt the system by misuse of
mainstore addresses or by using incorrect size and or type of use
information. A user cannot accidentally or maliciously read or destroy
values from another user's program.

It is not necessary to separate user areas nor to partition mainstore
according to type of use. Mainstore capabilities belonging to a single
user may be scattered throughout the mainstore. Sharing mainstore data
values to provide communication between users or sharing procedure
code when different users invoke the same procedure, can be done
safely, with proper use of the values enforced by the capability
mechanism. Privilege is not needed. The different users each hold a
capability for the same shared object.

Mainstore garbage collection is safe and rapid because capabilities are
easily distinguished from data values. It is impossible to confuse a
mainstore pointer and a data area or to pick up the wrong size
information from a capability.

Protection provided by mainstore capabilities is proof against
tampering. There is no need to rely on operating system software to
enforce either access to or correct use of mainstore.

S.2 Filestore integrity

The risk of corruption resulting from partislly updated filestore
objects and dictionaries after a hardware or system failure is avoided
on Flex. Incremental updating of files is impossible because the
filestore is non-overwriting with the exception of a few root values
that can be updated only as unitary operation. Detection of and recovery
from filestore corruption, always difficult and error prone, is
therefore unnecessary.

Parallel updating of filestore values by more then one user on Flex
cannot resuit in filestore corruption. If two users do access a
filestore value in perallel and both sttempt to change the same value in
the same dictionary (by naming an object or by changing 8 module) both

15

A i d

users will succeed but the last update to be committed will supersede
the first. Although this can be frustrating since the changes made by
the first user will apparently have been ignored, the integrity of the
filestore is maintained. Some nugatory work may have been done but the
resultant loss of information never leads to inconsistency. Loss of
updates could be avoided by provision of software semaphores and flags
to prevent parallel access.

Direct access to filestore using filestore addresses has no meaning on
Flex. All filestore allocation is performed by the microcode which
issues capabilities to use filestore. Users cannot address filestore
except by using an issued capability in the authorised way. Since
capabilities camnot be forged or modified by software, and since
filestore addresses have no existence independent of the capabilities,
no user, even with privilege, can access anything on filestore without
the appropriate authorisation. Normal integer data cannot be confused
with capabilities or with filestore addresses so a user cannot create a
capability or modify one to write to a part of the filestore already
occupied by a filestore value.

The type of use which may be made of a filestore value is part of the
capability and canmnot therefore be modified or ignored. Operating
system software is not involved in enforcing correct use of values
reached through capabilities. Sharing filestore objects is safe on Flex
because even when a user has permitted another user to share something
by issuing the appropriate capability or by placing the capability in a
shared dictionary the original owner does not lose control of the
shared object. The recipient cainot modify the access rights on his
capability, for example to gain read access to & program that was
issued with execute only access, nor can he modify a filestore value to
which he has access rights. He can use the shared value only in the
authorised way. A user who reads and updates a filestore value issued
by another user (which he can do only if the capability gives him read
access) has created a new value. He has not affected the value that was
originally given to him.

Protection for @ user’'s private environment (dictionaries of
name/value associations) or for any other capability value is provided
by embedding the cepability in a procedure. Access is granted only
while the procedure is being executed and only after a)l access checks
have been satisfied. The access checks may involve passwords and can
be as complicated as the user wishes. The checks are embedded with
the protected item in the procedure and it is impossible for users to
dismember any procedure to find out what checks have been imposed.
The Flex srchitecture excludes non-locsl vslues hidden in 8 procedure
from the exception value created when the procedure fsils so
diegnostic techniques cannot be used to give sccess to protected
values. Programmers can also explicitly deny informstion to the
exception value. Embedding vslues in procedures is not @ privileged
operation so programmers have complete flexibility in imposing their

16

own access controls over and sbove the controls provided by the
capability mechanism. This is much more secure than the usual access
protection where passwords and type of use access controls are values
only loosely sssociasted with the protected filestore value and with the
operating system goftware that checks them.

If @ shared capability is protected within an sccess procedure the
sharer is given the capability for the access procedure (with its built
in access checks) rather than the capability for the value that is
protected. The facility to include capabilities for filestore values
within other filestore values allows flexible protection such as is
given to the source text from which the compiled code in a shared
module was derived. The capability to deliver source text need not be
delivered to a user of the module to enable him to use the compiled
code.

It is possible using procedure values to permit free use of critical
operating system procedures thet operate on dictionaries and other
sensitive values without the risk that they will be sbused by supplying
them with wrong parameters. Programmers can embed critical values in
procedures both to prevent unauthorised access and to prevent the use
of wrong parameters where the correct use of psrameters is crucial.
This is achieved by delivering the holding procedure from another
procedure which performs the necessary binding. In particular critical
parameters to system procedures are embedded in the procedures
supplied to users, 80 they cannot be changed. For example, system
procedures which cen affect a8 user environment by altering @
dictionary, are available only within that environment, and have the
user dictionary bound into them.

Protection to prevent unauthorised change to shered modules is
provided by embedding dictionaries within procedures. Each user has an
amend procedure with the capability for his own dictionary bound into
it. Each module has sn sssign procedure with the capability for the
dictionary of the creator of the module bound :1to it. A module cen be
amended only if these two dictionary capabilities are the same.

8. Conclusions

Flex is a PSE of unusally high integrity. The three main features that
provide integrity are aveilable to eny user without privilege. They are
capabilities, non-overwriting filestore and procedure values.

Every user of Flex uses the capsbility mechanism, since there is no
other way to access values on Flex. This, together with the
non-overwriting filestore gives confidence that the integrity of the
filestore will not be breached by hardware fsilure or system crash and
makes it uwmecessary to provide specisl facilities to detect or to

17

recover from filestore corruption or to enforce correct use of values
in mainstore or in filestore.

Any programmer can protect his values, be they capabilities or other
values, by embedding them inside procedures, providing his own
procedures to check passwords. He can protect values from access
through diagnostics by keeping them as non-local values in the
procedures. He can share modules with other users and yet retain
confidence that they cannot amend the shared compiled code and he can
if he wishes deny a sharer access to the source text from which the
shared compiled code was derived. Since any programmer can bind
critical parameters into procedures, system procedures and other
procedures can be issued for general use without the danger that they
can be abused to gain illegal access to values by supplying & wrong
parameter.

The improvement in software productivity resulting from use of a PSE
with the integrity that is provided by Flex has not been measured, but
the sbsence of many of the problems that beset programmers on
conventional systems and the knowledge that it is umnecessary to
provide special software to recover from filestore corrruption must
result in improved productivity.

The integrity features of Flex just described are but a few of several
unusud) and useful features of the Flex PSE. Future work on Flex is
simed at making the PSE and the ideas it demonstrates more widely
aveilable, and at improving the facilities. The underlying capability
architecture and the non-overwriting filestore are not expected to
change but additional facilities are being worked on to extend the
capability mechanism to work across networks of computers. The
possibility of implementing Flex on existing computer systems (without
re-microcoding) is being considered as a topic for future research.

18

7. References

1.

“PerqFlex Firmware" by I.F.Currie, P.W.Edwards and J.M Foster.
RSRE Report 85815 December 1985

. "Flex: A working computer with an architecture based on procedure

values.* by 1.F.Currie, P.W.Edwards and J.M Foster.
RSRE Memorandum 35680. 1982.

“Curt: The command interpreter for Flex” by I.F.Currie and
J.M.Foster. RSRE Memorandum 3522. 1983.

. "The mechanical evaluation of expressions” by P.J.Landin

Computer Journal Vol 6, No &, pp388-328. Jan 196%.

. “In praise of procedures” |.F.Currie RSRE Memorandum 1982

. "Using true procedure values in a programming support environment "

M.Stanley. RSRE Memorandum 3916, 1986

19

1 —

DOCUMENT CONTROL SHEET

Overall security classification of sheet UNCLASSIFIED ..

{As far as possible this sheet should contain only unclassified inforsation 1f it is necessary to enier
classified inforsation, the box concerned sust be sarked to indicate the classification eg (R) (C) or (S))

1. ORIC Reference (if known) | 2. Originator's Reference | 3. Agency Reference S, Report Security .
Memorandum 3915 U/c Classification
5. Originator's Code (if 6. Originator (Corporate Author) Name and Location
knoun)
‘ Royal Signals and Radar Establishment
5a. Sponsoring Agency's 6a. Sponsoring Agency {Contract Authority) Name and Location
Code (i f known)

1. Title
Integrity and the flex programming support environment

7a. Title in Foreign Language (in the case of translations)

. Presented at (for conference napers) Title, place and date of conference

8. Author 1 Surname, initials| 9(a) Author 2 9(b) Authors 3.4... 10. Date po. ref.
Stanley M
11, Contract Wumber 12. Period 13. Project 14. Other Reference

15, Distribution statesent

Unlimited

Descriptors [or keywords)

continue on separate piece of paper

Abstract
ihis paper discusses the integrity of the Flex Programming support

environment, developed at RSRE, Malvern. It describes the special
characteristics of the environment which result in a system of unusually
high integrity. These characteristics include the capability mechanism,
non-overwriting filestore and the use of procedures as first class
objects.

$80/48

