
RD-ft69 875 USING TRUE PROCEDURE YLUES IN N PROORMINIM SUPPORT /
I ENYXROMMENT(U) ROYAL SIGNALS AND RQDAR ESTABLISHNENT
I NALVERN (ENGLAND) " STANLEY FEB 86 RSRE-NEHO-39iS
UNCLSSIFRIC-OR-99598959 F/O 9/2 L

ll I3 2 $U 2

ki o 1142.

11111ir - .11111.0

IIIJIL25 .4

MICROCOPY RESOLUTION TEST CHART

NAT ONAL Buf Of STANOARDS - 965

- .JZ"

."%

. . *

%/ %

%.. ..

U- ..
,,

:,..'.,,:.-..:, 3..........-.._

• .- - .- ; .- ,.- .- ,,, ._- ... ,-.- -,,. ,,,-..- ,-.,.. ,... ,, ,,,. . ., ,, ',

UNLIMITED OR q 579

R S RE
_ MEMORANDUM No. 3916

ROYAL SIGNALS & RADAR
ESTABLISHMENT

U')00
On

| USING TRUE PROCEDURE VALUES IN A PROGRAMMING
O SUPPORT ENVIRONMENT

Author: M Stanley

PROCUREMENT EXECUTIVE,
Z MINISTRY OF DEFENCE,
E RSRE MALVERN,

WORCS.
z f DTIC

I
'U

*, UNLIMITED

. .- ' -- : - - - -... '-" S.-.". *"**",*'*- - '" "*"-*--.. '. ". -. "-- -" -":%

-N 7-

Royal Signals and Radar Establishment

Memorandum 3916

AUTHOR: Margaret Stanley.
DATE s February 1986

Using true procedure values in a programming support environment

Procedure values, as provided in the Flex programming support
environment (PSE) developed at RSRE, Malvern, are discussed. A
distinction is made between a context independent procedure value and a
context dependent procedure. The context independent procedure is
shown to provide some useful facilities to the programmer and to the
developer of a PSE.

Copyright

ContrllerHMSO ondo

*1986

Using true procedure values in a programming support environment

CONTENTS

1. Introduction
2. Flex
3. Procedure values
3. 1 What is a procedure value?
3.2 Executing a procedure value
3.3 Consequences of calling procedure values

Tools and utilities are ordinary procedures
Flexible communication between programs
Separation of concerns
Testing
Adaptability

3.- Delivering a procedure value%%
3.5 Using delivered procedure values

Communication
Information hiding
Binding critical values
Protection from unauthorised access

3.6 Some other uses for procedure values
Parallel processes
Privilege
Re-use
Separate compilation
Ada packages
Pictures

to.. Conclusions
5. References

Using true procedure values in a programming support environment

1. Introduction

In most conventional computer systems a procedure is not a context
independent value. The procedure code needs a context (its non-locals)

* to make it executable. The consequences of using a Programming Support
Environment in which every procedure is a context independent value,
bound to its context when the procedure is declared, are far reaching.
The use that can be made of procedure values is discussed, contrasting
the effect of using procedure values with more conventional means of

* achieving the same ends.

The Flex Programming Support Environment (PSE) treats procedures as
true values in the sense of Landin [5,6). The PSE, built on the Flex
capability architecture[1, 21 developed at RSRE, Malvern, supports the
ef ficient use of context independent procedure values. Flex is an
interactive PSE that is noticeably different from other PSEs. Designed
to simplify the development and maintenance of complex software, the

* PSE development since the first Flex architecture came into use in 1978
has been mainly a response to requests from programmers using the
system. Procedure values are fundamental to the Flex PSE. They work
with the capability architecture to provide a system of very high
integrity. With a command interpreter that can handle values of any
structure [3,41- they give a very flexible PSE. It has a large software
base including all normal operating system facilities and many- other
procedures, including compilers for Algo168 and Pascal. An Ada(,%
compiler is near completion and an ML compiler is under development.

The Flex capability computer architecture has (so far) been
implemented in microcode on four hardware configurations, the most

* recent being the ICL Perq. The implementation with which I am most -

familiar is a multi-user system in which 3 Flex computers share a
common filestore and common peripherals.

* A full description of Flex is beyond the scope of this paper, which will
discuss procedure values and their use, as demonstrated in the Flex
PSE.

zAda is a registered trademark of the US DoD.

* 3. Procedure values

3. 1 What is a procedure value?

A procedure value is an executable value that consists of the procedure

code, constants and a set of non-local values. A local workspace is
supplied when the procedure is called. The non-local values are those
values (including any values declared in a separately compiled unit)
that are used in a procedure but declared outside it. Procedures on
conventional machines are represented not by a value but by the address
of the procedure code. The assumption is made that the procedure can
find its non-locals during execution using suitable pointers on the stack
frame. On Flex the non-local values are preserved by the existence of
the procedure value, whereas on most conventional systems the
non-local values are not bound to a procedure, they are associated with
a procedure only when it is called. The run-time system must then
search the various stack frames to find the correct non-locals to
associate with the procedure. A procedure can be executed only while
its non-local values remain in existence.

For example, consider a procedure defined by:

DECS procjm:
INT counter: =0;
PROC proc= (INT input_parameter)BOOL:
BEGIN

counter: =counter I;

counter< input-parameter
END

KEEP proc -.

FINISH

Counter is a non-local value of proc which is incremented every time -
L

proc is executed. When proc is executed on a conventional system,
perhaps from within an environment totally different to the environment
in which it was declared (i.e. with a different set of values in the
enclosing scope), the run-time system must find the environment in
which proc was declared to find the correct value of counter.

On Flex every procedure is a context independent, executable value. It

is created in mainstore (with code, constants and non-local values
bound together) when the procedure is elaborated (i.e. when the
declaration is encountered). In the example given above, proc exists as

an executable value independent of any enclosing environment, with its
non-local value, counter, bound to it as soon as it is declared. The
mechanism needed to find the non-local values when a procedure is
called are therefore much simpler than on conventional systems. A
compilation system that includes facilities for mainstore garbage
collection does not need to set up a complex mechanism to preserve
non-local values that are bound into procedure values.

The procedure value can be treated like any other value in that it can be

2

passed to other users, delivered from other procedures and used as a
parameter to other procedures without taking special steps to ensure
that the non-local values can be found.

3.2 Executing a procedure value

A procedure value can be called from within a user procedure or,
because the value is context independent, it can be executed directly by
calling it from a command interpreter. The effect is exactly the same.

On conventional systems a procedure cannot be called directly from the
command interpreter because it is not a value. It needs a context.
Certain procedures, (which I shall call main programs) can be converted
into something called a program which is a context independent value
that can be called from the command interpreter. Main programs usually
have to conform to certain rules (imposed by the programming language,
the compiler and the separate compilation system) to enable the system
to convert them to a context independent value.

For example:

DECS pr(,im.
USE proc_m:

PROC prog=VOID:
BEGIN

WHILE proc(5) DO OD;

END
KEEP prog
FINISH ,

On conventional systems proc is not a value that can be executed
without an environment, as provided here by prog. Procedure prog is
written using proc-m and all its declarations as a main program that can
be converted to an executable program that can be called from a
command interpreter. On a system that has procedure values prog is
unnecessary. The procedure value proc has counter bound into it and so
can be called directly from the command interpreter.

On conventional systems main programs often differ from other
procedures in that main programs cannot usually be called from other
procedures. To be executed a main program must be converted into a
program and called from the command interpreter. On a system with
procedure values any procedure can call any other. Procedures need not
be partitioned into two groups, those that are main programs and those
that are not main programs.

3

-. ~ ~ 71j ---.- 2-~ . .- - -. -- --

Those conventional systems that do allow a main program to be called
from a procedure usually implement the call not through the normal
procedure call mechanism but by spawning a separate process in which
the called program will run in parallel with the calling procedure.
Although procedures called using the normal mechanism can accept
arbitrarily complex parameter values and return arbitrarly complex
values to the caller as well as sharing non-local values with the caller,
procedures that are called by spawning a new process can usually
communicate only through specially programmed interfaces, or through
values written to filestore or handled by the command interpreter.
Communication is therefore less convenient than with the normal

* procedure call.

A procedure value is an executable value in mainstore but values that
are to be retained long term need to be written to backing store.
Although a procedure value is not normally held on backing store, on
Flex an analogue of a procedure value, called a filed procedure, can be
retained on backing store. A mainstore procedure value is created from
its filed analogue when it needs to be loaded for execution. This is
done automatically when the filed procedure is called from the Flex N

* command interpreter. The Flex user need make no distinction between J

calling a mainstore procedure value and calling a filed procedure value.

The filestore image of an executable program on a conventional machine
is called an executable image. An executable image is usually a I .

filestore value with its own copy of the code of all its procedures and
its own copy of all non-local values of those procedures, with all links
resolved and with a single entry point. Each program loaded from an
executable image normally contains its own copy of all its procedures
except for a few privileged procedures which can be shared between

* programs. Although normal procedure calls will not usually involve
loading new copies of procedures already in use, if a procedure calls a

* main program by spawning a new process the spawned program may use
new copies of all but a few privileged system procedures. With
procedure values there is no need for executable images. A Flex filed
procedure is not the same thing as an executable image. It does not
contain copies of all the separately compiled units, it contains
references to the required separately compiled units. The procedure
values of all used procedures are created when the declarations are
elaborated during loading. Since the Flex filed procedure does not
contain copies of all its constituent procedures, the loading process

* can take advantage of this to re-use procedure values that are already
in mainstore, thus enabling sharing of common procedures at run-time.
Thus procedure values help to reduce the number of copies of procedure
code needed by encouraging sharing of code.

3.3 Consequences of procedure values

Increased orthogonality

With executable procedure values the artificial distinction between
main programs and other procedures disappears. Because Flex supports
procedure values all tools or programs in the Flex PSE, whether system
provided or user provided, are just procedure values. There is no
distinction on Flex between a procedure value and a program or tool.
The effect of calling a procedure from the Flex command inteipreter,
curt[3] (itself a procedure) is the same as that of calling it from any
user procedure. Similarly any programmer can, without privilege, call
procedures such as the system utilities from his own procedures.
System utilities such as the editor and the command interpreter are
procedures that can be (and are) used by other procedures to
communicate with the user.

When a procedure value is called from curt the data required by the
procedure are the parameters of the procedure, and the result of
obeying the procedure is delivered to curt in the same way as the result
is delivered to any other calling procedure at the point of call. For ..
example proc, supplied with an integer parameter, will deliver a
boolean result whether called from prog or from the command .-

interpreter. Each call of proc will increment counter. If proc were '

always called with input_parameter=S then the fifth call of proc would
be the first to deliver the result 'FALSE'.

Flexible communication between programs

A command interpreter that can call any procedure directly must be
capable of handling procedure parameters and results of arbitrary
complexity. The Flex command interpreter does not impose any
artificial restriction on the data types of the parameters or of the I-.
results of procedure calls. Arbitrarily complex values can be delivered
from a procedure directly to the command interpreter for input to
another procedure or for retention for future use. This is in contrast
to several conventional systems in which a procedure that is a main
program must have only very simple values (such as a single integer) as
input parameters and can deliver only simple data structures as results.
More complex values, if needed, must be supplied or delivered through
values read in from or written to backing store or peripherals by the
program.

Communication between procedure values called from the Flex command
interpreter does not rely on one procedure writing values to filestore
so that the next can access them, as is necessary for inter-program
communication on many conventional systems. The parameters and the
result of a procedure call may be a mainstore value of arbitrary
complexity.

5 7'-]

', . "

Adaptability

Procedure values can be called from anywhere. They behave the same
whether they are called directly from the command interpreter or from
another procedure. There is no need to anticipate the calling pattern
and write a program to implement it, thus restricting the context in
which the procedure is used. Users can re-use procedures in
unanticipated ways and combine them in unanticipated ways by calling

* them directly from the Flex command interpreter.

Separation of concerns p

One consequence of calling procedures directly from a command
interpreter able to handle arbitrarily complex data structures is
separation of concerns. Single purpose procedures can exist as
executable entities no matter what non-local values or parameter
structures are involved. They do not have to be embedded in programs.
There is no need to combine different procedures into a single program
to enclose the non-local values; to pass results from one procedure to
the next or to perform a complex function. Complex functions are
achieved by applying single purpose procedures in sequence, each
performing one simple function. Each procedure is applied to the result

L"%delivered by its predecessor.

For example, consider four distinct procedures.

PROC line=(FILE edfile)VECTOR (I CHAR:
(extracts character strings from an editable file)

PROC convert= (VECTOR [ICHAR line)VECTOR [lINT:
(converts the character string to a vector of integers)

PROC mean= (VECTOR [I INT ints)INT: ,z
(calculates the mean of a vector of integers).

PROC sd=(VECTOR [INT ints)INT:
(calculates the standard deviation of a vector of integers)

A user wishing to discover the mean of some integers held in character
form in an editable file would call the first three procedures in turn
from the command interpreter, delivering the result of each call as
input to the next call. If he later decided he also needed the standard
deviation he would need only to write the last procedure and call it on
the result delivered by the second. It is unnecessary to combine the
procedures into a single program to allow them to pass the result of
each call to the next procedure nor need the results be written to
filestore to be passed between the procedures.

The separation of concerns applies equally to svstem utilities. The Flex
editor processes only editable files. If a user wishes to change the
text of a module (a value qiving access both to compiled code and to the
text from which it was derived), he first applies a procedure to the
module deliverinq the text as an edita!'le file and then applies the

6

editor to the result. Similarly, he may apply a procedure to the module
delivering its external specification as an editable file and then apply
the editor to the result in order to display the specification. It is
unnecessary to merge the distinct functions into a single tool. The
separation of concerns into distinct procedures makes it easy to re-use .-

them.

Testing

When a procedure has been written, it can be tested directly by calling
it from the command interpreter. The procedure value does not need to
be put into a test harness as is required in many other operating
systems. The results are delivered directly to the command interpreter
and can be examined (using other procedures) without writing them to
filestore. This encourages users to test procedures individually as
they are written rather than waiting until they can be combined in some
larger program or procedure.

3.4. Delivering a procedure value

One consequence of treating a procedure as a value, with its non-locals
bound into it, is that procedures may be parameters for other
procedures or may be delivered by other procedures (provided the
language also supports this notion, as does Algol68). Values (both local
and non-local) and input parameters of the delivering procedure can be
bound into the delivered procedure, and thus hidden or protected from a
caller of the delivered procedure.

For example, consider a procedure, make_channel, that creates a
channel for passing messages and a pair of procedures for accessing
that channel. (Each message consists of a vector of characters.)
Makechannel takes an integer giving the size of channel (i.e. the
number of messages it can hold). It delivers two procedures,
write_channel that writes a message into the channel and readchannel
that reads a message from the channel. One channel is created by each
call of makechannel, and that channel can be accessed only by using the
procedures delivered by that call.

The Algol68 mode of procedure make channel is:

PROC makechannel=(INT size)
STRUCT(PROC (VECTOR(CHAR)VOID write-channel,

PROC VECTOR] CHAR read-channel):

The first delivered procedure (write_channel) takes a vector of

characters and delivers a void. Each time it is executed it writes one
message (a vector of characters) into the channel (taking action as
defined in procedure make_channel to deal with a full channel or a busv "''

channel).

7

The second delivered procedure (readchannel) takes no parameters and ,V
delivers a vector of characters. Each time it is executed it reads one
message from the channel (taking action as defined in procedure
makechannel to deal with an empty channel or a busy channel).

The user who invokes makechannel need not know how readchannel and
writechannel work. He can use the procedures to access the channel
and he can pass the the delivered procedures to other users to enable
them to access that channel. The users of procedures readchannel and V,
write_channel need not know the size of channel (input to procedure
makechannel), nor how the procedures work. The channel is a non-local
value of both read-channel and writechannel bound to these procedures
when makechannel is executed.

Note that this example cannot be implemented using only a stack-based
machine. When the procedure make_channel returns, delivering the
procedures that use the channel, one cannot destroy the channel
declared locally in makechannel because it is still used in the
delivered procedures. It continues to exist as long as either procedure
of which it is a non-local (read-channel and write-channel) exists.
Each call of makechannel creates a new channel with a new pair of
procedures for using the channel.

Another way of using procedure values is to use curried functions to
bind a parameter value to the delivered procedure. The delivered
procedure can still take parameters. For example a procedure, p, that - -

could be written to take two parameters, a and b:
p(ab)

could alternatively be written as a procedure q ,taking the first
parameter, a, delivering a procedure r, such that r(b) gives the same
result as p(a,b)
i.e. p(a, b)=q (a) (b) " "The delivered procedure q(a)=r can be used without knowledge of or

access to the value of a, which is bound into it when q is executed.

3.5 Using delivered procedure values

Delivered procedure values can be used to solve a number of common
problems in programming environments. The facilities provided are not
privileged. They can be used by any programmer.

Protection from unauthorised access

Procedure values provide a particularly flexible and powerful way to
protect values. Any value can be hidden by enclosing the only copy of it
within a procedure. The protected value cannot be reached except by
executing the protecting procedure because the value is bound into the
procedure and does not exist elsewhere.

The protecting procedures are ordinary procedures created by a user.

8 7'- ,

No privilege is required. Before allowing a user to reach a protected Oe

value, the protecting procedure may perform whatever checks it likes.
It may require a complicated sequence of actions. It may even record
for future analysis all attempts at unauthorised use. It will not
necessarily request a password, although it may do so. If a password is
requested it need not be a single word. When a protection check fails
the protecting procedure fails, denying the user access to the internal
values of the procedure. Having successfully executed all protection
checks, the protecting procedure allows the user to reach the
protected value, perhaps by calling the command interpreter. The user,
will still be executing the protecting procedure. The value will again be
hidden from the user on exit from the protecting procedure. The -.

protecting procedure can be given to anyone in the knowlelge that they
still need to satisfy the built in checks before they can reach the
protected value.

Those values in Flex which require some degree of access control to
preserve system integrity are represented by capabilities. The
capability mechanism provided by the Flex architecture ensures that
values represented by capabilities can be used only in the way
authorised by a capability and only by the holder of the appropriate
capability. A capability can be created and modified only by the Flex
microcode although capabilities can be treated like other values in that
they can be held on filestore, used in procedures and can be passed to
another user, giving the other user access to the controlled value.
There are mainstore capabilities that control access to mainstore
objects (such as procedures), filestore capabilities that control
access to objects on filestore and remote capabilities that control
access to remote facilities (e.g. objects on other Flex computers). In
a sense a capability is a pointer created on behalf of the user by the
microcode, but the capability also contains information on the type of
use (read only; read/write; execute) that will be permitted by the
microcode. Users can pass capabilities to other users.

A capability for a procedure value (also called a procedure capability)
allows the holder only to execute the procedure. It does not allow him
to dismember the procedure to find how it works, what other
procedures it might use or the values of its non-locals. It is not
possible, using software, to dismember a protecting procedure to
discover the actions required to gain access to the values it protects.

Like other values, capabilities are protected from theft by hiding them
inside protecting procedures. The access control provided by the
capability mechanism combines with the protection provided by
procedure values to give an unusually powerful and flexible form of
access control that can be used, not only by the operating system, but
also by any programmer, to protect values.

The flexible access protection provided by procedures is used on Fle\
to protect a user's private environment (dictionaries of name/value

9

associations). The capabilities for the dictionaries in the environment
are embedded in a procedure called a user-id procedure. Access to the
environment is granted only while the user-id procedure is running and
only after the protection checks (such as passwords) have been
satisfied. A user-id procedure cannot be invoked from within another
user-id procedure because the environment set up within a user-id
procedure does not include the names/values of the other user-id
procedures. Invoking the user-id procedure is the Flex analogue of
logging in, and exiting from the user-id procedure is the Flex analogue
of logging out on a conventional system. An entire session on Flex
therefore takes place during a single execution of the user-id
procedure.

Information hiding

A critical value (such as a password) may be needed within a procedure.
If such a value is actually a non-local of the procedure rather than a
data value held in some associated data area then it cannot be illegally V-

accessed because it does not exist outside the procedure. Any value can
be protected in this way, not just passwords.

It can be desirable to hide from the user of a data structure the details
of the structure itself. If a structure is complicated it is often
unnecessary that the user be aware of the details. He needs only to have
access to or to be able to update the values contained in the structure.
A hidden structure may also inclh!'" values that a user does not need to
know. Procedure values allow programmers to provide procedures to
create and use a data structures whose implementation and detailed
structure is hidden. In the make-channel example the user or users of a
channel need not know the channel structure. They interact with it only
through the delivered procedures.

The hidden structures may be mainstore values as in the makechannel
example or they may be filestore values. For example, consider a
procedure of Algo168 mode:

PROC makeread file= (FILE file-ptr) STRUCT(PROC INT readnext_int,
PROC BOOL readnext bool,
PROC BOOL is-empty);

The delivered procedures all give access to the same filestore value,
identified by the file.ptr parameter to makereadfile. The set of -
delivered procedure values may be stored on backing store because all
the internal values and non-locals can be stored on backing store.

A sp-cific data structure, whether it be a mainstore or a filestore
value, may be shared by a number of users, with different operations on
the values available to different users. None of the users need know the

, structure of the stored data, nor need they have access to every value
in the structure. The caller of makereadfile can, if he wishes,

to

deliver the different file access procedures to different users so that
one user can only discover whether the file is empty, another can read
the boolean values and a third can read the integer values. Each user is
interacting with the same data file, but has only limited access to the
values in it.

Sometimes a programmer may wish to retain the freedom to change the
internal structure of a particular kind of data value. If a value is
always created by a procedure that delivers, instead of the actual
value, a set of procedures for accessing the value, then the internal
structure of the value can be changed without affecting users, provided
the external specification of the delivered procedures for using the
structure remains unchanged.

Binding critical values

It is possible using procedure values to permit direct use of critical
operating system procedures without the risk that they will be abused
by supplying them with wrong parameters. Programmers can embed
critical values in procedures both to prevent unauthorised access and
to prevent the use of wrong parameters where the correct use of
parameters is crucial. This is achieved by embedding the value in a
procedure delivered from another procedure which performs the
necessary binding. In particular critical parameters to system
procedures can be embedded in the procedures supplied to users, so
they cannot be changed. The same kind of protection can be applied to
any procedures.

On some conventional systems, a peripheral device may be booked for
use by calling an authorisation procedure. The operating system then
needs to check that the user requesting access to a device is the
authorised user and is using the device that he booked and not a
different device. If the device identity is supplied as a parameter to
the using procedure a user could supply a wrong parameter to gain
access to a device he had not booked. If the using procedure is created
when the device is booked, with the identity of the device embedded in
the using procedure then the user need not supply the device identity as
a parameter. The created procedure is issued to the authorised user and

-l the device remains booked until the user relinquishes the specially
created procedure by leaving the procedure to which it was issued. .'

For example, procedures that operate on the vdu screen need the
identity of the current vdu. Each user can be supplied with procedures
containing the basic code for displaying on a vdu. The pointers
identifying the current vdu are bound to them when the procedure values
are created at run-time. The supplied procedures all use the same basic
code but they will only affect the vdu to which they are bound. The user
does not need to have the pointers identifying the vdu. Indeed he has no
access to them and cannot replace them with other values to gain access
to another vdu.

On some conventional systems procedures that handle dictionaries must
be supplied with the dictionary by the user. If supplied with an
incorrect dictionary parameter they may run with disastrous results.
Flex procedures to access a dictionary do not have the dictionary as a
parameter. They are delivered to the user with the dictionary bound
into them. They can be retained on filestore because the bound-in value
(the dictionary) is a filestore value. They cannot operate on another
dictionary, or on any other filestore object. A user is thus prevented
from accidentally or maliciously modifying a dictionary to which he has
no right or even from reading it. He does not need to know the internal
structure of the dictionary, since all access is through procedures.
Different functions such as modifying the dictionary, delivering a
named value from a dictionary, adding a named value to the dictionary or
displaying the content of the dictionary will all be bound to the same
dictionary. Another user will get a similar set of procedures bound to a
different dictionary parameter. Where a dictionary is shared ~
procedures to update it may be restricted to a single user.

Communication

On a conventional system communication between programs called fromi
the command interpreter is usually achieved by writing the shared data
to filestore for later use by another program. As already indicated,
Flex procedures called from the command interpreter can deliver
arbitrarily complex data structures to the command interpreter for use
by other procedures, without need to use f ilestore.

Using procedure values Flex achieves a more flexible and safer form of
communication. Private communication between procedures is achieved
by sharing non-local values, as in the make_channel example. If two or
more procedures are bound to the same non-local value they can use it
to communicate without any interaction from any external process such
as the command interpreter. The shared value cannot be accessed from
other procedures. A shared non-local value can be used for
communication between users or for passing data between the
procedures of a single user. Procedures communicating through shared
data are bound to the non-local data when the procedure values are
created and the data continues to exist as long as a procedure value
that is bound to them exists. In the case of procedures communicating
through a filestore value, the procedures and the shared value can be
retained on backing store between user sessions.

3.6 Some other uses for procedure values 'p.

Procedure values can be used in many different ways to provide
facilites which might be more difficult to implement in other ways.
Some of the uses are described below.

12

Parallel processes

Procedure values provide a neat way to implement parallel processing. A
process on Flex is a chain of active procedure calls. Each process is
therefore a procedure value that can be launched from any other
procedure (including from the command interpreter). A procedure
called make-process delivers a procedure known as the soft_interrupt
procedure containing the identity of a new parallel process.
Soft_interrupt takes a procedure as parameter. When softinterrupt is
called for the first time it launches a new parallel process, calling its
parameter as the top of the process chain. Subsequent calls to
softinterrupt (with any parameter) fail the launched process. The
launched process can be controlled only through the soft_interrupt
procedure, which holds the identity of the process.•

A process can explicitly give the ability to cause it to fail to another
process. The process calls a procedure which delivers a procedure with
the identity of the calling process bound to it. If called, the delivered
procedure will cause the bound-in process to fail. This procedure can
be delivered to another process thus giving the receiving process the
power to fail the bound-in process.

Interprocess communication can be achieved by sharing non-locals as 0e
with any other procedure values. If an outermost procedure launches
several parallel processes with several separate calls of
make-process, the separate processes communicate by sharing
non-local data. Control of parallel access to shared data can be
achieved by using semaphores. A semaphore is a procedure shared by
the communicating processes, with the value of the semaphore hidden
inside the semaphore procedure (as in the makechannel example) by a
makesemaphore procedure. Each semaphore procedure, created by a
call of makesemaphore, is a procedure taking a boolean and delivering
a void (i.e. the empty result). Each call of the semaphore procedure
either reserves or releases the semaphore. A call to reserve an already
reserved semaphore causes the caller to be suspended until the
semaphore is released by another process.

Privilege

Procedure values can be used to provide normally privileged operations *.•" *.,

in an unprivileged way. For example, most conventional operating
systems have to allow certain privileged users to break the normal
access rules to allow access to operating system values. Privilege is
needed to access the special values needed in order to archive or to
access peripherals. Any Flex user can have access to the archive
procedure, which has bound to it, hidden from the user of the
procedure, the values needed to achieve the archive. As already
mentioned, procedures to communicate with a vdu and keyboard have the
pointer to the specific vdu bound into them.

1.

13l

, a...]

.7 r_7

Users do not need privilege to use the sensitive operating system
capabilities on Flex because the privileged values are made available
only within procedures that use them only in the authorised way.

Privilege is not needed on Flex to make a system procedure or utility
callable from another procedure. Any procedure value can be called

* from any other. Code sharing between procedures does not require
privilege because the procedure value makes the executable image

* unnecessary.

* Re-use

It is widely recognised that the failure by the software industry to
re-use existing software in new products contributes to the high cost

* of software development. One reason for the failure to re-use software
is that existing software products are monolithic. Programmers cannot

*pick up only the parts that they require. They are forced to have a
whole program or nothing. An additional factor is the difficulty on many
conventional systems of calling a main program from within an
application procedure and the risk of permitting use of privileged
procedures by non-privileged users.

General re-use of procedure values in new contexts is easy because the
user of a procedure can rest assured that the procedure will always
behave in the same way, whether called from his own program or from
the command interpreter. Its action is totally independent of the
context in which it is called. Procedures are included in a user
procedure by providing the separately compiled units defining these
procedures for inclusion in user procedures. Since most operating
system procedures can be unprivileged, even when handling privileged
values, they can be made available for re-use. It is normal on Flex to

* re-use system procedures such as the editor and the comniand
interpreter to interface with the user. This leads to a much more
consistent user interface than is usual, as well as reducing the number
of new procedures written by users to interface with the screen.

It is sometimes difficult on conventional systems to allow programmers
to re-use code in a new context, particularly code that uses operating
system values (normally protected from general access) as parameters.
Procedure values allow the same code to be bound to the different
parameter values before being delivered to users as procedure values.
The bound in values can neither be accessed nor changed by the user.
For example, procedures for handling filestore, or other peripherals
such as the current vdu are provided with the operating system pointers
bound in as non-locals. Procedures for handling dictionaries are
provided with the dictionary bound in.

Ada packages

On a system such as Flex, where procedures are values, Ada packages

can be treated as procedures delivering the procedures declared in the
visible part of the Ada package. For example consider an Ada package
used to define a structure such as a stack and a set of procedures for
handling the structure such as push and pop. The Ada package delivers
the two procedures, push and pop just as procedures are delivered in
the make-channel example. Each use of package stack delivers a new
stack embedded in the two new procedures.

package STACKINT is
procedure PUSH (I:INTEGER);
function POP return INTEGER

end;

Unfortunately, Ada imposes the limitation that if the package
specification contains simply the procedures push and pop, with the
stack embedded in the procedures then it can create only one stack in
any compiled unit that uses it.

with STACKINT; use STACKINT;

push(t2); -- pushes '2 onto built in stack

--cannot get another stack, with
-- separate push and pop procedures
-- from the same package specification

If more than one stack is needed there are two possible solutions. One
solution is to declare the stack itself as a data type within the package
specification with each procedure having the stack as a parameter.

package STACKS is
type STACK is limited private;

procedure PUSH (S :STACK; I:INTEGER);
function POP (S :STACK) return INTEGER

private
end;

then _
with STACKS; use STACKS

S,T•STACK;

push(S,t2); --pushes '.2 onto stack S
push(T,pop (S)); -- takes value from stack S

-- and puts it onto stack T

Alternatively the stack may be declared as a generic package with a new
instantiation for each new stack.

15*

i,.s.

generic
type X is private;
package GSTACKS is

procedure PUSH (I:X);
function POP return X

end;

then
with GSTACKS;
S is new GSTACKS(INTEGER);
T is new GSTACKS(INTEGER);

S.push('-2); -- push -2 onto stack S

T.push(S.pop); -- take value from stack S
-- and put it onto stack T

Thus procedure values are useful in the implementation of Ada packages,
although Ada enforces a somewhat more complicated implementation of
stacks on a user than can be achieved simply by the use of procedure
values.

Pictures

Procedure values are used on Flex to extend the power of the basic
editor to handle diagrams as well as text. The editor on Flex can handle
not only text strings but also values of many different kinds. However
it does not include facilities for displaying and editing graphs or other
forms of diagram within the text. In order to accommodate these needs
the basic editor has been extended to handle objects called pictures[7]
which provide for displaying and editing diagrams. A picture is a value
manipulated by the basic editor that includes not only the data to be
displayed but also a set of procedure values that tell the editor how to
display, edit and store the diagram. Each different kind of picture has
its own definition which includes the structure of the data and
associated procedures for displaying the data, editing the data and
storing the data on backing store. Each new diagram is defined by
supplying the picture definition to a procedure to make a new picture of
that type. A picture procedure is delivered which converts the data
structure into a value handled by the normal screen editor. The
delivered procedure has bound into it the procedures for displaying the
data structure and editing, as supplied in the picture definition. New
kinds of picture with arbitrary properties can thus be introduced. This
is only possible because Flex allows the use of true procedure values
and allows the procedure values to be placed on backing store.

1.
; V 16

I. Conclusions

The use of a procedure as a value independent of context has resulted in
a PSE with several unusual and desirable features.

Access controls are extremely flexible and powerful when provided
using procedure values. Any programmer has the right to enclose any
value in a protecting procedure which can impose any tests desired
before granting access. Since procedures can only be executed and not
dismantled, the internal values cannot be reached except when
executing the procedure.

Data structures can easily be hidden within a set of procedures that
give access to the structure without revealing its form. The structure
can be modified without affecting the user of the issued procedures,
provided that the issued procedures retain the same exterrnl
specification. Data can safely be shared between procedures without
making it accessible to any who do not have copies of the procedures,
thus avoiding the danger that other users may gain unauthorised access
to shared data.

Procedures can be issued safely to other users even when they use
critical parameters, by binding the user-dependent critical parameters,
such as the user's dictionary, into procedures delivered to a user. The
user is therefore protected against calling such procedures with a
wrong parameter. Procedures that would normally be regarded as
privileged can be issued to ordinary programmers because the
privileged values can be bound into the issued procedures and thus
hidden from the user. There is no need to deny the right to use the
privileged values.

Programs are unnecessary. The artificial distinction between
procedures that are main programs and procedures that cannot be
formed into programs disappears. All procedures are equal. Any"
procedure can be called either from the command interpreter or from
any other procedure. A highly consistent user interface is achieved
because programmers can re-use operating system procedures and other
software more easily than on conventional systems, without needing any
special privileges. The procedure value behaves the same way in every
context.

Procedure values can easily share the procedure values that they use
and parallel processes are simply procedure values that are executed in
parallel with other procedure values. Interprocess communication
involves sharing data between the different processes and has the same
flexibility and protection as for shared data between any other
procedure values.

A PSE such as Flex that supports the use of procedure values thus
provides some very useful facilities particularly for enforcing

17 ,

•-s.J

integrity. Future work on Flex is aimed at making the PSE more widely
available, and at improving the facilities. The body of software
available to the user of the PSE is constantly growing.

5. References

1. "PerqFlex Firmware- by l.F.Currie, P.W.Edwards and J.M Foster.
RSRE Report 85815 December 1985

2. "Flex: A working computer with an architecture based on procedure
values. " by I.F.Currie, P.W.Edwards and J.M Foster. 4
RSRE Memorandum 3508. 1982.

3. "Curt: The command interpreter for Flex" l.F.Currie and
J.M.Foster. RSRE Memorandum 3522. 1983.

. Extending data typing beyond the bounds of programming languages"
M.Stanley. RSRE Memorandum 3878. 1985.

5. The mechanical evaluation of expressions P.J.Landin Computer
Journal Vol 6, No Lo-, pp388-328. Jan 196.-.

6. "In praise of procedures" l.F.Currie RSRE Memorandum 31f99 1982

7. "Extending the Flex graphics editor: an object oriented approach"
P.W.Core and J.M.Foster RSRE Memorandum in preparation, 1985

1...

-i'-4

'a.
18:

[,k

DOCUMENT CONTROL SHEET

Overall security classification of sheet Unclassified .. ,. . .

(As for as possible this sheet should contain only unclassified information. If it Is necessary to enter iy..

classified information, the box concerned must be marked to Indicate the classification eg (R) (C) or (S))

1.)RIC Reference (if known) 2. Originator's Reference 3. Agency Reference A. Report Security
MEMORANDUM 3916 U/C Classi fication .

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location

known)
Royal Signals and Radar Establishment

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location

Code (if known)

7. Title

Using true procedure values in a programming support environment

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference vapers) Title, place and date of conference

8. Author 1 Surname, Initials 9(a) Author 2 9(b) Authors 3.4... 10. Date pp. ref.
Stanley, M %.
11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

Descriptors (or keywords)

Unlimited

continue on separate piece of paper

Abstract

Procedure values, as provided in the Flex programming support environment

(PSE) developed at RSRE, Malvern, are discussed. A distinction is made

between a context independent procedure value and a context dependent procedure.

The context independent procedure is shown to provide some useful facilities

to the programmer and to the developer of a PSE.

S80/48 ~1

- j

V ~
A - ~ ~C'j.~ ~** **~*

- f

I
A'

