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Abstract

This paper shows how a safe interface to heap storage, based on garbage collection as provided in implementations of pure func-

tional languages, can be combined with imperative languages. It also shows how expressive notation from functional languages,

such as algebraic data types and equational de®nition of functions with pattern matching, can be adopted. The paper argues that

the resulting combination is appropriate for the construction of high-integrity tools, based on an assessment against the same criteria

as have been used for assessing the suitability of imperative languages for producing high-integrity software. Ó 1998 Elsevier

Science Inc. All rights reserved.
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1. Introduction

This paper is concerned with notation and tools that
assist in the development of correct software. It is
couched in the context of high-integrity software where
correctness is the primary concern, but the ideas are
more widely applicable than that. After clarifying what
is meant by the term high-integrity software, the paper
reviews the requirements on languages for high-integrity
software. These requirements form the basis for subse-
quent assessments of the suitability for high-integrity
software of imperative languages, functional languages
and ®nally a combination of notation from functional
languages with an imperative language. A toolkit sup-
porting a combination of functional notation with the
imperative language C is presented, and some uses of
the toolkit are discussed.

2. What is high-integrity software?

Computers are increasingly being used in systems
whose failure could lead to ®nancial loss, damage to
the environment, personal injury, or even loss of life.
The software component of these systems must exhibit
a low rate of failure and good failure behaviour: any
failures must have only minor consequences (Anderson,

1989). Software that is suitable for such use is known as
high-integrity software.

For there to be con®dence in the dependability of
high-integrity software, the intended behaviour of the
software must be carefully speci®ed and the compliance
of programs with these speci®cations must be argued
(Sennett, 1989). Ideally, the speci®cations should be
written in formal (mathematical) language so that they
have a precise meaning, and the programs should be
shown to comply with the speci®cations by a process
based on formal reasoning. However, formal develop-
ment is relatively uneconomic, and the mechanical tools
needed to assist it are not yet mature enough for wide-
spread application. In current practice, con®dence in
most high-integrity software is gained by a mixture of
systematic construction and testing.

It is important to realise that it is the binary compiled
code of high-integrity software that must be dependable.
This code results from a development process involving
tools for speci®cation analysis, re®nement, proof, pro-
gram analysis, compilation, assembly and linking. A
fault in a compiler can directly a�ect the integrity of
the software, e.g. by introducing a ¯aw, whereas a fault
in an analysis tool can result in an incorrect assessment
of the software and hence a�ect integrity only indirectly,
e.g. by failing to detect a ¯aw in the code. There are
characteristic di�erences between these high-integrity
tools and high-integrity application software: tools have
no hard real-time constraints; and only application
software might have severe limitations on memory.
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High-integrity tools are usually too large and complex
to be realisable by fully formal development ± although
this situation may change as tools evolve.

The uncertainty about the degree of dependability
that is both necessary and economically achievable is re-
¯ected by the di�erent views adopted by standards. IDS
OO-55/56 (MoD, 1991a, b, 1993) require certain tools,
e.g. the compiler, to be produced to the same level of rig-
our as application software (fully formal development).
In contrast the civil standard DO-178B (RTCA, 1992)
has much less stringent requirements, based on the ap-
proach used by Airbus Industries on the Airbus family,
in its SAO (Speci®cation Aid�e per Ordinateur) tools.

3. What are the requirements on languages for high-

integrity software?

Some high-level requirements on languages for high-
integrity software have been given by CarreÂ (1989). The
following list uses Carr�e's names for the requirements,
with our own abbreviated explanations.

Logical soundness: The language must be logically co-
herent and unambiguous, with formally de®ned seman-
tics, otherwise formal reasoning is impossible.

Complexity of formal language de®nition: The formal-
ly de®ned semantics must not be too complex, otherwise
formal reasoning is impractical.

Expressive power: The programming language should
aim to approach the conciseness of expression of a spec-
i®cation language, otherwise formal reasoning, such as
involved in showing the compliance of a program with
its speci®cation, is more di�cult. 1

Security: High-integrity software must not fail at run-
time: the language de®nition should ideally permit static
detection of all misuses of the language. Potential prob-
lems include uninitialized variables and array indices out
of range. Static detection of such problems is discussed
in Garnsworthy et al. (1993), which illustrates what
can be achieved by a combination of language restric-
tions and proof obligations discharged by a theorem
prover. Although that work addresses all of the excep-
tions that can be raised during the execution of a
SPARK program, it relies on informal annotations as
well as the formal program text. These annotations typ-
ically re¯ect properties of the possible inputs to the pro-
gram, and thus are assumptions on which the static
analysis depends.

Veri®ability: The formally de®ned semantics must be
such that it is possible to show that a program is a cor-
rect re®nement of its speci®cation.

Bounded space and time requirements: It must be pos-
sible to show that any constraints on memory and time
usage (as occur in hard real-time high-integrity applica-
tion software, though rarely in high-integrity tools) are
not exceeded.

Some of these requirements con¯ict: e.g. a language
that has greater expressive power or greater veri®ability
than another language may be less able to satisfy con-
straints on, and be less amenable to calculation of, space
and time usage.

4. Are imperative languages suitable for high-integrity

software?

The report of Cullyer et al. (1991) assesses the suit-
ability of various existing imperative programming lan-
guages to high-integrity software development. It
presents assessments of a typical structured assembler,
C, CORAL 66, Pascal, Modula-2, and Ada. As these
languages were not designed to meet the high expecta-
tions represented by Carr�e's requirements, it is not sur-
prising that they are found to be unsuitable. One
approach to this problem is to design a new language
to satisfy the requirements, but it is di�cult for a new
language to gain acceptance. A more pragmatic ap-
proach is to ®nd safe subsets: use the existing languages
but avoid problematic features, i.e. those features that
are not sound, have complex formal de®nitions, give rise
to insecurities, are di�cult to verify, or hard to cost. The
assessments of an Ada subset and C of Cullyer et al. are
now reviewed.

SPARK (CarreÂ et al., 1988) is intended to be a safe
subset of Ada. Its semantics has been formally speci®ed
(PVL, 1994) in 530 pages of Z (Spivey, 1992). Being a
subset, it is less expressive than full Ada. Much static
analysis of SPARK programs is possible, with avoid-
ance of run-time failure being guaranteed, subject to
the discharge of proof obligations. An approach to the
formal re®nement of Z speci®cations to SPARK pro-
grams based on Morgan's re®nement calculus (Morgan,
1994) has been prototyped (Jordan et al., 1994). SPARK
programs do not use heap storage; global and stack stor-
age can be accounted for statically, as can execution
times (Chapman et al., 1994).

C (Kernighan and Ritchie, 1988) is a widely used and
well understood language. Its implementation on many
di�erent computers preceded the de®nition of its formal
semantics. In order to admit these di�erent implementa-
tions, its formal semantics admits variations, e.g. the
sign of the result of the integer remainder operator is
not speci®ed. 2 Such ambiguities make formal veri®ca-

1 Note that making the speci®cation language approach the

expressiveness of a programming language, i.e. become executable,

does not help, as it loses the expressiveness needed to write abstract

speci®cations. 2 A new library function with de®ned behaviour is provided.
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tion very di�cult. There are few restrictions on the use
of pointers, making it possible to overwrite arbitrary lo-
cations in memory. This insecurity is so deep-seated in
the language that there seems to be no worthwhile safe
syntactic subset of C. As Carr�e writes (CarreÂ, 1989, Sec-
tion 5.3.2, p. 109), ``if one removed its dangerous fea-
tures, little would remain''.

The safe subsets that have been de®ned for various
languages invariably exclude heap storage. Heap storage
is useful when the quantity of space needed cannot be
determined at compile time, or when the data stored
in it is required to outlive the subroutine that creates it
but without surviving forever as it would in static stor-
age. High-integrity tools usually make great use of heap
storage: for instance a compiler would otherwise be
forced into making assumptions about the size of pro-
gram to be compiled, and would have to reserve large
quantities of static storage that would rarely be used.
The exclusion of heap storage from safe subsets results
in a loss of expressive power, so why is it excluded? Con-
sider the problems that can arise with heap storage in C.

In C, heap storage is usually managed by the stan-
dard library allocation routine malloc( ) and recla-
mation routine free( ).

extern void *malloc(unsigned size);

extern free (void *ptr);

The malloc( ) routine takes the number of bytes of
storage required, and returns a pointer to a suitable area
in the heap. The area can subsequently be reclaimed by
passing that pointer to free( ). This interface to heap
memory is open to several kinds of misuse.
· The number of bytes requested of malloc( ) might

be too many or too few.
· The call to free( ) might be omitted.
· free( ) might be called prematurely.
· The same pointer might be given to free( ) more

than once.
· The pointer given to free( ) might not have come

from malloc( ).
The consequences of these forms of misuse range from
omitting to recycle space to possible misinterpretation
of the contents of memory. In the worst cases, the imme-
diate consequence is merely the corruption of a few by-
tes of memory, and it is only when those bytes are used
later that the mistake can be detected. Such delayed con-
sequences are a programmer's nightmare. Whether cor-
rupted bytes are ever reused (or whether the program
terminates before they are reused) depends on the imple-
mentation of malloc( ) and free( ); a program
that works with one implementation of these routines
may fail with another, as might be used when the pro-
gram is ported to another machine. A further problem
is fragmentation of free memory space: although the to-
tal quantity of free space may exceed that requested of
malloc( ), if it does not occur in a su�ciently large

contiguous block then the heap will have to grow or
the request must be denied.

Not all interfaces to heap storage share all of these in-
securities, but any non-empty subset of these problems
justi®es the exclusion of heap storage from safe subsets.
A quite di�erent interface to heap storage is used within
functional programming systems. In Section 5, pure
functional languages are described and then assessed
against Carr�e's requirements.

5. Are functional languages suitable for high-integrity

software?

We are not aware of any existing assessments of pure
functional languages against the requirements listed by
Carr�e, so we present a short review of functional lan-
guages followed by our own assessment. The review in-
troduces examples of the notation which will be used in
subsequent sections.

5.1. A review of functional languages

A characteristic di�erence between pure functional
languages and imperative languages is in the use of vari-
ables. In imperative languages, variables denote storage
locations whose values vary with time. In pure function-
al languages, variables denote values, as in mathematics:
there are no assignment statements, and hence no side-
e�ects.

Suppose a type is needed to represent logical proposi-
tions, e.g. A Ú B Ù ØC. Propositions can be literals or
other propositions combined by binary disjunction, bi-
nary conjunction and unary negation. A functional no-
tation known as an algebraic type de®nition can be used
to de®ne the type of propositions as follows. This de®ni-
tion assumes that sym is the type of literals.

prop: Lit sym

j Or prop prop

j And prop prop

j Not prop

A transformation that one might wish to apply to a
proposition is to rearrange it into literal normal form
(Bundy, 1983), i.e. a form in which all (if any) negations
apply to literals. The rules for this transformation are
shown in Fig. 1. Any part of the proposition that match-
es the left-hand side of one of these rules should be re-

Fig. 1. Transformation rules for literal normal form.
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placed by something of the form of the right-hand side
of that transformation rule. The rules must be applied
repeatedly until no more can be applied (termination be-
ing guaranteed because the operands of Ø in the right-
hand sides are all smaller than those in the left-hand
sides). One way of expressing the literal normal form
transformation in a functional language is shown in
Fig. 2. This de®nes a recursive function, named lnf,
by a sequence of equations. When lnf is applied to a
proposition, the earliest equation in the sequence whose
left-hand side pattern matches the whole of that propo-
sition is determined and the appropriate instantiation of
its right-hand side is taken to be the value of the appli-
cation. The ®rst two equations assist in ®nding proposi-
tions to be transformed. The next three equations
correspond directly to the transformation rules. The last
equation is matched by propositions that are already in
literal normal form. This ordering is important: if the
last equation were written ®rst, then lnf would behave
as an identity function.

Functional programs may be type-checked to ensure
things such as that applications of Lit, Or and lnf

are to expressions of the appropriate types.
As another example, consider the following type def-

inition for binary trees.

tree A : Node �tree A� �tree A�
j Leaf A

In this type, A is a parameter standing for an arbitrary
type. The data items appearing in the leaves of a tree
must all be of the same type, while those of another tree
can be of a di�erent type. This is ensured by a polymor-
phic type-checker (Cardelli, 1987). If there are proposi-
tions in the leaves of a tree, then A would be prop

and hence the type of the tree would be tree prop.
Suppose a function is needed to compute the sum of

the numbers in a tree containing a number in each leaf.
It could be written in a functional language like this.

treesum (Node t1 t2)

�treesum t1 + treesum t2

treesum (Leaf n)�n
In this function, the ordering of the two equations

does not matter, as they cover disjoint cases. In the ®rst,
both recursive applications of treesum must be fully
evaluated (to numbers) before the sum can be comput-

ed. The same result is computed whichever application
is evaluated ®rst. Indeed, the evaluations could be inter-
mingled and the result would not be a�ected. This inde-
pendence from evaluation order is a characteristic
di�erence from imperative languages, where evaluation
of one operand of + might have side-e�ects that could
a�ect the value of the other operand.

Input and output can be treated in a functional lan-
guage as unbounded streams of data items. In this con-
text, evaluation order matters: a program must avoid
consuming all the input it can get without doing any use-
ful computation or producing any output. Lazy evalua-
tion ensures that as much output is produced as possible
before any more input is consumed.

The algebraic style of type de®nition, illustrated by
the above examples, subsumes enumerations, record
and union types, and is similar to notation used in spec-
i®cation languages, e.g. free types in Z.

The lnf function de®ned in Fig. 2 is not the most ef-
®cient functional program for the literal normal form
transformation: the matching of Not patterns by three
separate equations is redundant. Another lnf program
can be formally synthesized from this one by applying a
sequence of equivalence-preserving transformations.
The ®rst transformation completes the set of Not pat-
terns by replacing the last equation by two separate
equations for the patterns that it covers

lnf (Or p q)�Or (lnf p) (lnf q)

lnf (And p q)�And (lnf p) (lnf q)

lnf (Not (Not r))�lnf r

lnf (Not (Or r s))�And (lnf (Not r))

(lnf (Not s))

lnf(Not (And r s))�Or (lnf (Not r)) (lnf
(Not s))

lnf (Not (Lit p))�Not (Lit p)

lnf (Lit p)�Lit p

Next, introduce a new function to deal with the four
Not cases, which assumes that the outermost Not has
already been matched.

notlnf (Not r)�lnf r

notlnf (Or r s)�And (lnf (Not r)) (lnf

(Not s))

notlnf (And r s)�Or (lnf (Not r)) (lnf

(Not s))

notlnf (Lit p)�Not (Lit p)

This notlnf de®nition can then be folded in lnf's
equations for Not patterns.

lnf (Or p q)�Or (lnf p) (lnf q)

lnf (And p q)�And (lnf p) (lnf q)

lnf (Not p)�notlnf p

lnf (Lit p)�Lit p

Lastly, the third of these equations can be folded in the
notlnf function.Fig. 2. Functional program for literal normal form.
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notlnf (Not r)�lnf r

notlnf(Orrs)�And(notlnfr)(notlnfs)
notlnf(Andrs)�Or(notlnfr)(notlnfs)
notlnf (Lit p)�Not (Lip p)

The last two function de®nitions are the new literal nor-
mal form program.

The de®nition of literal normal form provided in
Fig. 1 is an operational one. An alternative structural
de®nition is given in Fig. 3. This islnf de®nition is
in functional notation (assuming appropriate de®nitions
of True, False and and). Given this intuitively correct
de®nition, we can gain more con®dence in the correct-
ness of the new literal normal form program by consid-
ering the truth of the expression islnf (lnf p), by
exhaustive cases of p.

If there were another auxiliary function eqv for test-
ing the equivalence of two propositions, then it would be

possible to synthesize lnf from the following speci®ca-
tion,

islnf (lnf p) and eqv p (lnf p)

Many examples of program synthesis may be found
in the literature (Bird and Wadler, 1988; Paulson,
1992). They are based on the method of fold/unfold
transformation (Burstall and Darlington, 1977). There
are tools that can check the correctness of each step in
a formal program synthesis (Runciman et al., 1993).
More details of functional languages may be found in
the textbooks, such as those by Bird and Wadler
(1988), Reade (1989) and Field and Harrison (1988).
They all stress the simplicity, logical coherence and ease
of formal reasoning in functional languages.

5.2. Assessment of functional languages

The suitability of functional notation for high-integri-
ty software can be assessed relative to Carr�e's require-
ments. Functional notation is known to be logically
sound with simple semantics. There is considerable ex-
pressive power in the algebraic de®nition of types and
equational de®nition of functions. This notation avoids
the many insecurities associated with imperative
languages, and type-checking ensures a high degree of
security. Veri®cation is relatively straightforward, as
illustrated by the example of program synthesis and
transformation. However, functional notation has ma-
jor di�culties with regard to calculation of space and
time requirements.

As functional programs are devoid of updatable vari-
ables, every value computed during execution must be
stored separately, with that storage being reclaimed only
when those values are no longer of any use. Consequent-
ly, it is di�cult to predict space usage. The control ¯ow
during the execution of a functional program is not ex-
plicit but determined from the evaluation strategy. If a
lazy evaluation strategy is used, as is necessary for the
functional stream view of input and output, then it is
di�cult to predict space or time usage. The best that
can be done is to observe the space and time costs using
pro®ling techniques (Sansom and Jones, 1995; Runci-
man and Wakeling, 1993), and then to revise the soft-
ware accordingly. This is not a predictive approach,
and so functional languages are unsuitable for high-in-
tegrity application software.

islnf (lnf(Lit s))

) islnf (Lit s)

) True

islnf (lnf(Or p q))

) islnf (Or (lnf p) (lnf q))

) islnf (lnf p) and islnf (lnf q)

) True, by induction

islnf (lnf (And p q))

) islnf (And (lnf p)(lnf q))

) islnf (lnf p) and islnf (lnf q)

) True, by induction

islnf (lnf(Not (Lit s)))

) islnf (notlnf (Lit s))

) islnf (Not (Lit s))

) True

islnf (lnf (Not (Or r s))) ) islnf (notlnf

(Or r s))

) islnf (And (notlnf r) (notlnf s))

) islnf (notlnf r) and islnf (notlnf s)

) True, by induction

islnf (lnf (Not (And r s)))

) islnf (notlnf (And r s))

) islnf (Or (notlnf r) (notlnf s))

) islnf (notlnf r) and islnf (notlnf s)

) True, by induction

islnf (lnf (Not (Not r)))

) islnf (notlnf (Not r))

) islnf (lnf r)

) True, by induction

Fig. 3. Test for literal normal form.
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In addition to the problems of space and time, func-
tional languages su�er from lack of acceptance in
industry. This is due partly to the lack of quality imple-
mentations for industry-standard computers, and partly
to their novelty: programming in a functional language
can require a di�erent mind-set to programming in an
imperative language ± idioms that work in an imperative
language and upon which a programmer has come to
depend do not necessarily transfer to functional lan-
guages. Moreover, the space and time costs cannot usu-
ally be reduced to those of equivalent imperative
programs.

The di�erences between high-integrity tools and high-
integrity application software identi®ed earlier suggest
that space and time are less of a problem for high-integ-
rity tools. The expressive data abstraction notation of
functional languages inevitably requires use of heap
storage in executing programs±the very feature that is
excluded from safe subsets of existing languages and
needed for high-integrity tools. Yet none of the prob-
lems listed for C's interface to heap storage are su�ered
by functional languages. This observation forms the ba-
sis for another approach.

6. Is a combined notation suitable for high-integrity

software?

6.1. An approach to high-integrity software development

There is a third approach besides those of de®ning a
new language or a safe subset of an existing language:
take an existing language and extend it with notations
that satisfy the requirements for high-integrity software.
This proposal is in the spirit of Carr�e's remark (CarreÂ,
1989, Section 5.3.1, p. 109) that ``new languages point
the way; adaptations of standard languages persuade
people to follow''.

By introducing to an imperative language an interface
to heap storage similar to that used in functional lan-
guages, it becomes possible to extend the imperative lan-
guage with functional notation. The extensions are
intended to be used wherever applicable, so that the ad-
vantages of the functional notation can be exploited,
and the disadvantages of the imperative language avoid-
ed. This is a less safe approach than the other two, be-
cause use of the unsafe features of the imperative
language is not precluded. Nevertheless, it has an impor-
tant role to play, as argued below.

Our toolkit provides the extensions to C in the same
way as the original version of C++ provided its exten-
sions: a preprocessor to translate the new notation to
C accompanied by a library of auxiliary routines. The li-
brary of auxiliary routines is named Compost. There is
one preprocessor for algebraic type de®nitions named
Peat, and a separate preprocessor for function de®ni-

tions named Coir. Fig. 4 shows how these tools are used
in program development. The algebraic type de®nitions
are prepared in separate ®les and translated by Peat to
abstract data types comprising interface speci®cations
(C header ®les) and operations, which are then compiled
into a library. The user program is processed by Coir be-
fore being compiled, so as to translate equational de®ni-
tions of functions to C routines. The compiled code is
®nally linked with the Compost library to form the
runnable program.

6.2. Compost ± The interface to heap storage

Heap storage is managed by the allocation routine
mkcell( ) and garbage collection routine gc( ).

typedef void *celltype;

typedef unsigned short ord;

extern celltype mkcell (ord cons);

extern void gc(void (*rootsfn)());

extern void collroot (celltype *root);

The mkcell( ) routine takes an ordinal number de-
noting the value-to-be-stored's constructor (for exam-
ple, for the type prop, this is one of Lit, Or, And
and Not), and returns a pointer to a suitable area in
the heap ± a cell. The gc( ) routine reclaims all cells
whose values can no longer be used. It determines which
values can still be used (and hence those that cannot) by
tracing all cells that can be reached from those referred
to directly by root pointers ± the pointers stored in pro-
gram variables. The routine supplied as the roots-

fn( ) argument to gc( ) must identify every root
pointer by passing the address of each to coll-

root( ). The address is passed rather than the value
so as not to preclude the use of a copying garbage col-
lection algorithm. The constructor given when a cell is
allocated allows mkcell( ) to determine the size of
the cell and gc( ) to determine where within the cell
are pointers to other cells. Both of these mappings are
generated by Peat.

This interface to heap storage avoids all the problems
listed for malloc( ) and free( ), so long as the val-
ue stored in the cell respects the given constructor. The
memory fragmentation problem can be solved by using
a garbage collector that compacts the reachable cells
(and hence the free space). The details of the garbage
collection algorithm are irrelevant to the approach, in-

Fig. 4. How the toolkit ®ts together.
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deed there can be several alternatives (Compost current-
ly o�ers two). One new problem is introduced: that of
omitting to identify a root pointer. This can cause stor-
age to be reclaimed prematurely. It is avoidable with a
functional language, where the run-time system is able
to keep track of all root pointers. It cannot be avoided
with the combined notation, but there are coding prac-
tices that ease its detection.

The ability to traverse data structures of arbitrary
types enables several other polymorphic operations.
The Compost library provides operations: to preserve
the contents of the entire heap in a ®le, to restore the
contents of the entire heap from a ®le, to write (eagerly
or lazily) the binary representation of a heap data struc-
ture (Toyn and Dix, 1994), to read the binary represen-
tation of a heap data structure, to write an ASCII
representation of a heap data structure, and to compare
two heap data structures for equality of representation.
Note that these are all library routines: they work what-
ever type of data is in the cells, given suitable descrip-
tions of the data formats as generated by Peat.
Compost additionally provides an operation to deter-
mine the constructor that was given when a cell was al-
located.

extern ord cellcons(celltype cell);

Further details of Compost may be found in its user
manual (Toyn, 1994a).

6.3. Peat ± The algebraic type de®nition preprocessor

Peat translates each algebraic type to an abstract data
type comprising a C type representation and a collection
of operations. These operations are named by compos-
ing constructor name, attribute name and type name
in various combinations.

Consider again the prop type of propositions, here
written in notation accepted by the Peat preprocessor.

prop : Lit sym

j Or prop1:prop prop2:prop
j And prop1 prop2

j Not prop

The two disjuncts in the Or construct are shown with
distinct names to distinguish them. The two conjuncts
in the And construct illustrate a permitted abbreviated
notation: the form as written is taken as the name,
and trailing digits are stripped to determine the type.

The abstract data type that Peat generates has opera-
tions that are named according to the rules given in
Fig. 5. Other naming conventions could work just as
well, for instance some users might prefer more under-
score characters.

For the prop example, the type of pointers to the
representation is named proptype. There are alloca-
tors named mklitprop, mkorprop, mkandprop

and mknotprop. These take parameters in the order
given in the algebraic type de®nition, and return a value
of type proptype. Constructors are denoted by the
constants named n_litprop, n_orprop, n_and-

prop and n_notprop. These constants are passed in
calls to mkcell( ) by the allocators. Projectors are de-
®ned to extract attributes, named litpropsym, or-
propprop1, orpropprop2, andpropprop1, and-
propprop2 and notpropprop. Predicates are de®ned
for testing for particular constructs named islitprop,
isorprop, isandprop and isnotprop, but more
useful is the operation propcons which returns one
of the constructor constants and so can be used in a
multi-way branch statement. Also de®ned are updators
for overriding the values of particular attributes, named
setlitpropsym, setorpropprop1, setorprop-
prop2, setandpropprop1, setandpropprop2

and setnotpropprop.
The implementation of the above abstraction in C

generated by the Peat preprocessor is shown in
Figs. 6±8. Not shown is the code generated by Peat to
assist Compost in traversing data structures. All this

Fig. 5. Templates for names generated by Peat.

Fig. 6. Representation type generated by Peat.
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generated code is compiled into a library for linking into
programs that use the types. The quantity of code
generated by Peat re¯ects the expressive power of the
functional notation.

The generated typedef allows the C compiler to
check that these operations are used in a type-correct
manner, and hence helps to ensure that ``the value
stored in the cell respects the given constructor'' as re-
quired by Compost. The C compiler cannot detect all
misuses of the abstractions where polymorphic types
are concerned; this problem is avoided by Coir, as ex-
plained in Section 6.4.

Some other interesting features of the Peat notation
that are not illustrated by the prop example are worth
mentioning.

Common attributes are attributes needed by every
construct in an algebraic type. Peat provides an abbre-
viated notation for de®ning them, and special opera-
tions in the abstraction so that they can be projected
and updated without naming a particular construct.

Initial values may be speci®ed for attributes in alge-
braic types. Values for such attributes are not passed
as arguments to the allocators. Instead, the allocators
set the attributes to the initial values. These values
can be overridden using the updator operations later.
This notation is convenient with data types represent-
ing the abstract syntax of a language: attributes whose
values are deduced by a parser are passed to the alloca-
tor, while other derived attributes such as type and
binding information are set later once they have been
computed.

A repeated attribute provides array-like functionality
within an algebraic type. The projector and updator op-
erations have an extra index argument, and the attribute
must have an initial value which is assigned to every el-
ement in the array.

The scheme used by Peat for generating operation
names has no trouble coping with the same name being
used for di�erent constructors, so long as they are for
di�erent types. This constructor overloading is an exten-
sion to the usual functional notation that is sometimes
very convenient.

Peat recognizes certain type names as denoting prim-
itive C types, e.g. nat denotes unsigned long. Attri-
butes having such types have their values stored in so-
called unboxed representation, i.e. immediately within

Fig. 7. Operations de®ned by macros generated by Peat.

Fig. 8. Allocator functions generated by Peat.
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a cell rather than via a pointer to a separate cell. The de-
tails of this representation can be hidden by the ab-
straction.

A di�culty with tools such as Peat that generate large
abstractions comprising many operations is how to or-
ganize the code for e�cient compilation. If the interface
speci®cation for each type is generated in a separate ®le,
then the programmer's source ®les will be cluttered with
many inclusions of interface speci®cations. On the other
hand, if a single ®le is generated, every source ®le will
take a long time to compile, and any symbolic informa-
tion retained to assist run-time debugging will be enor-
mous. Peat permits the programmer to engineer a
compromise: the typedef declarations all go in a single
®le for inclusion ®rst so as to allow mutually recursive
types, but the rest of the interface speci®cations can be
clustered however the programmer chooses.

Further details of Peat may be found in its user man-
ual (Toyn, 1994b).

6.4. Coir ± The equation preprocessor

Coir looks for so-called rewrite functions in C source
®les and translates them to C routines. The following ex-
ample shows the ®rst de®nition of lnf coded as a re-
write function for Coir.

rewrite lnf: prop -> prop

{ Or p q �> Or {lnf p} {lnf q}

\/ And p q �> And {lnf p} {lnf q}

\/ Not (Not r) �> {lnf r}

\/ Not (Or r s) �> And {lnf (Not r)}

{lnf (Not s)}

\/ Not (And r s) �> Or {lnf (Not r)}

{lnf (Not s)}

\/ p �> p

}

The rewrite keyword marks the start of a rewrite func-
tion. It is followed by type declarations for all static (top-
level) identi®ers used within the body of the rewrite func-
tion. Note that braces are used to distinguish applications
of static identi®ers from applications of constructors.

Coir's translation to C is based on the work of Au-
gustsson (1985). The C code generated makes use of
the operations de®ned by Peat. For the lnf function,
the code generated by Coir is a little verbose, so to save
space here a simpler equivalent is shown in Fig. 9. The
expressive power of the functional notation is re¯ected
in the relative closeness to the speci®cation in Fig. 1 of
the rewrite function given to Coir compared with that
of the generated C code.

As another example, consider the treesum function
de®ned earlier. It is coded as a rewrite function for Coir
in Fig. 10. The initial design for Coir hoped to intermin-
gle C notation and rewrite functions rather more than
the code in that ®gure, so that the separate add( ) rou-

tine would not be needed. However, this proved to be in-
compatible with the wish to perform polymorphic type-
checking of rewrite functions. Cattrall's algorithm (Cat-
trall and Runciman, 1992, 1993) is used for type-check-
ing in Coir. It is an extension of Milner's (Milner, 1978)
(necessary to cope with constructor overloading), and
has been proven to be complete and sound (Cattrall,
1993). This achieves the same degree of security as a
type-checker for a functional language.

Some other interesting features of the Coir notation
that are not illustrated by the above examples are worth
mentioning.

As patterns are a common functional language nota-
tion for expressing that an equation is applicable only if
the pattern matches despite the fact that the transforma-

Fig. 9. Literal normal form transformation using Peat.

Fig. 10. Summing the leaves of a tree using Coir.
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tion performed by the equation on the matching value is
merely an identity. From the implementation perspec-
tive, an as pattern eases the retention of the original val-
ue, rather than rebuilding a new value from matched
pieces.

Wildcard or anonymous patterns are another com-
mon notation. They match any value without introduc-
ing a name for the value, which is useful where an
equation does not incorporate that value in its result.

Guards are also a common notation. They allow a
computational condition to be associated with an equa-
tion in addition to the structural condition imposed by
pattern matching. Coir guards must be Boolean-valued
applications of named C routines.

Constructor-polymorphism is a less conventional
Coir notation for expressing equations over an explicit
set of di�erent types. It is especially useful in express-
ing commutativity and associativity transformations,
where it allows a single equation to deal with many
operators.

6.5. Assessment of the combined notation

The combined notation supports the algebraic de®ni-
tion of types and the speci®cation of functions by equa-
tions, based on a much safer interface to heap storage
than C's standard interface. The functional notation im-
poses an e�ective discipline on the use of C's heap stor-
age, type coercions and pointers. It is slightly less secure
in this combination than it is in a functional language:
there is the root pointer identi®cation problem with
Compost, and Coir's assumption that type declarations
for static identi®ers match the types of those identi®ers,
de®nitions (checking this would require Coir to parse all
of C, rather than starting to parse at the rewrite key-
word). The combined notation does, however, o�er a
more expressive and more secure style of programming
than C alone, while clearly maintaining the space and
time e�ciency advantages of C.

The implementation of the functional notation by
preprocessors is not the best approach from the point
of view of debugging, which has to be done in terms
of preprocessed source rather than original source.
However, debugging is nevertheless feasible, thanks to
the mnemonic names generated by Peat.

None of the languages that have been assessed as suit-
able for high-integrity software provide heap storage.
Yet for high-integrity tools, heap storage is a necessity.
The combination of a safer interface to heap storage
with an e�cient systems programming language is an
appropriate choice for developing high-integrity tools.

This pragmatic approach, exempli®ed by the combi-
nation of functional notation with C, should be applica-
ble to combinations of functional notation with other
imperative languages.

7. Some applications of the combined notation

7.1. The CADiZ tools for Z speci®cations

CADiZ (Toyn and McDermid, 1995) is a set of tools
for manipulating Z speci®cations. CADiZ includes pars-
ers, a type-checker, typesetters, a browser and a proof
tool to assist in reasoning about properties of the spec-
i®cations. Compost and Peat were developed in tandem
with CADiZ, and hence there is great dependence from
CADiZ on Compost and Peat. Coir, however, was begun
much later, after most of CADiZ had been written, and
so is used little. CADiZ has been very successful, receiv-
ing one of the three British Computer Society (BCS)
Awards in 1992.

Almost all of CADiZ's data structures are managed by
Compost and Peat, most notably the abstract syntax
tree representing the user's Z speci®cation. A functional
style of programming is used throughout the CADiZ
tools, but with imperative style used where the bene®ts
(convenience or e�ciency) outweigh the insecurities.

Coir was expected to be suitable for expressing trans-
formations in CADiZ's proof assistant tool, but this use
was disappointing. The problem was more to do with
the functional notation than with Coir, it being that
CADiZ represents conjectures, goals, theorems, laws,
etc. by sequent constructs having about 13 attributes:
patterns matching such large constructs are simply not
readable, nor are they easy to maintain when the type
is changed. One solution would be to alter the data
structures to ease use of Coir, but there is no great mo-
tivation to change: the Peat notation is quite readable
and very easy to maintain.

7.2. The Ten15 Distribution Format installer

Ten15 Distribution Format (DRA, 1993) (TDF) is a
porting technology and hence is part of a shrink-wrap-
ping, distribution and installation technology. TDF
has been chosen by the Open Software Foundation as
the basis of its Architecture Neutral Distribution For-
mat. It was developed by the United Kingdom's Defence
Research Agency (DRA). DRA are working with Unix
System Laboratories to commercialise the TDF technol-
ogy. TDF is not UNIX speci®c, although most of the
implementation has been done on UNIX.

Software vendors, when they port their programs to
several platforms, usually wish to take advantage of par-
ticular features of each platform. That is, they wish ver-
sions of their programs on each platform to be
functionally equivalent, but not necessarily algorithmi-
cally identical. TDF is intended for porting in this sense.
It is designed so that a program in its TDF form can be
systematically modi®ed when it arrives at the target
platform to achieve the intended functionality and to
use the algorithms and data structures that are appropri-
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ate and e�cient for the target machine. A fully e�cient
program, specialised to each target, is a necessity if
independent software vendors are to adopt a porting
strategy.

The TDF compiler (or installer as it is called) is coded
in C and one of its components is an optimiser that per-
forms TDF-to-TDF transformations. Coir was devel-
oped for, and used to re-implement, this component of
the installer.

Since the TDF installer was an existing program, with
its own memory management code and data type repre-
sentations, Compost and Peat could not be used. How-
ever, the abstraction de®ned by Peat and used by Coir
proved to be a suitable interface between Coir and the
TDF installer. By hand-coding an implementation of
this interface in terms of the TDF installer's existing da-
ta representations, Coir was made usable in the absence
of Compost and Peat.

The use of Coir to recode TDF transformations has
made the code clearer, more readable and easier to mod-
ify. Con®dence in integrity has been increased: one ma-
jor transformation has been derived from an inductive
proof. The cost of executing the TDF installer has risen
by an acceptable amount: for quite large programs
(5000±8000 lines), execution time increased by between
one-quarter and one-third.

8. Related work

Compost, Peat and Coir are based on technology that
is widely used amongst implementors of functional pro-
gramming systems (Peyton Jones, 1987; Augustsson,
1985).

There have been many tools that take data type spec-
i®cations and generate programming language imple-
mentations. Perhaps the best known is Interface
De®nition Language (IDL) (Lamb, 1987). As its name
suggests, the translator for IDL speci®cations generates
not just representations for data types but also readers
and writers for communicating data structures. The de-
signer provides IDL with both abstract descriptions of
data types and also representation speci®cations for
use in generating representations tailored to the needs
of speci®c programs. This contrasts with Compost and
Peat, where a single representation is generated auto-
matically from a more abstract speci®cation by Peat,
and single reader and writer operations in Compost
cope with all data types.

Coir's use for TDF transformations is related to var-
ious tools for transforming syntax trees. Estra (Grosch
and Emmelmann, 1990) and OPTRAN (Lipps et al.,
1988) are similar to Coir in that they express transfor-
mations by rules. Each rule consists of a pattern describ-
ing a tree fragment, a condition or predicate to restrict

the applicability of the rule (like a Coir guard), and an
action or output description. Estra and OPTRAN di�er
from Coir in that they use a search procedure to ®nd
trees to which rules are applicable. Estra o�ers a choice
of two pattern matchers: a dynamic programming algo-
rithm and a table-driven pattern matcher. OPTRAN al-
lows user-de®ned search procedures. Coir leaves the
search to the programmer, who must decide which rule
to apply. A major di�erence between Coir and the Estra
and OPTRAN tools is that Coir is a pattern matching
compiler ± the appropriate rule is found by the control
¯ow passing through C switch statements ± which ob-
viously aids e�ciency.

9. Conclusions

This paper has shown how functional notation can be
combined with C, based on a di�erent interface to heap
storage and abstract data types for manipulating values
of algebraically de®ned types. The approach can be sup-
ported by a toolkit comprising a library of routines of-
fering relatively secure heap storage, and separate
preprocessors for algebraic de®nition of types and equa-
tional de®nition of functions. Two large real-world ap-
plications of the toolkit have been discussed, revealing
bene®ts from use of only subsets of the toolkit.

The combination of notations o�ers a practical com-
promise between the integrity of functional languages
and the e�ciency of C. The functional notation is log-
ically sound, has a simple semantics, considerable ex-
pressive power, is relatively secure and veri®able. C
has a direct implementation on conventional von Neu-
mann hardware thus o�ering e�cient execution. The
combined notation's basis on heap storage makes it
more appropriate for the construction of high-integrity
tools than recognised languages for high-integrity soft-
ware.

This pragmatic approach of introducing functional
notation into C should help to persuade programmers
toward the more reliable style of programming o�ered
by functional languages. We believe that the same
pragmatic approach should be applicable to combina-
tions of functional notation with other imperative lan-
guages.
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