
A Conformance Comparison between ANDF and GCC for

X/Open Verification of an OSF/1 MK SS Platform

Thomas J. Watt Jr.

March 1993

Open Software Foundation
Research Institute

1 Cambridge Center
Cambridge, MA 02142

Abstract

The VSX Verification Test Suite for XPG3 was used to conduct a contolled experiment to
gauge the XPG3 conformance of the ANDF compiler. An OSF/1NORMA1 Micro-Kernel
(MK) Single Server (SS) Release 4.1 platform on an i486 architecture was used to establish
the baseline environment. The native gcc compiler was used as a conformance baseline
against which to compare the maturity of the ANDF compiler.

The ANDF compiler achieved a 94.2% rating of total XPG3 conformance. We are currently
analyzing failed, uninitiated, and unresolved tests to understand, report and capture actual
problems that may exist with the ANDF technology. Several error reports have been filed
from this effort. Some tests test against a reference implementation or depend on ambiguous
parts of the XPG3 standard; others are coded incorrectly against their intended test objective
— all cases of which are thus invalid tests against the XPG3 standard and cause for request
for waiver. This experiment has served to underscore the adage that testing is insufficient to
reveal the presence of errors in program code.

This work was sponsored by a cooperative research agreement between the Open Software
Foundation (OSF) and Unix System Laboratories (USL).

1. NORMA stands for No Remote Memory Access.

page 2 of 1 2

Introduction

 1. Introduction

This paper reports on our experience in the OSF Research Institute with using
the ANDF compiler technology to build and execute the X/Open Verification
Suite, VSX.

Essentially, we are pursing the goal of increasing the robustness of the ANDF
compiler technology toward an industrial strength level of quality such that it
delivers product quality for applications across a wide variety of heterogenous
platforms. Toward that end, we have installed a version of VSX using the
ANDF compiler technology, and submitted it for execution on one of our
project’s platforms. VSX is one of a number of test suites in our robustness
project plan.

In subsequent sections we explain what VSX tests; summarize and compare the
ANDF test results in table form with gcc for an OSF/1 MK SS R4.1 platform;
review the current status of the failure analysis which gives a preliminary
explanation of the delta between the conformance of gcc versus ANDF, and
render tentative conclusions.

 2. Software Information.

Software Category

VSX is the X/Open Verification Suite used for testing against conformance
with the X/Open standard.

VSX from X/Open Ltd. tests all of the interfaces and definitions documented in
the XPG.3 volume 2, 1989. VSX includes tests for ANSI C, POSIX.1 and
XPG.3 interfaces and definitions which covers all header file, macro support
and function calls in each standard. [Note: XPG.4 is the version used for
OSF/1.2].

page 3 of 1 2

Software Information.

Version and Release Level

VSX Version 3.205 was used. It verifies conformance against the XPG3
standard.

ANDF Technology Version Release

Release TDF-93-01-27 of the ANDF Technology was used. It is based on the
TDF Specification Issue 2.0 Revision 1 dated December 1992.

GCC Compiler Version and Release

Gcc 1.37.1 OSF Release 1.2.4.2 (OSF internal release) was the native platform
compiler.

OS Platform Environment

OSF/1NORMA Micro-Kernel 13.16 Single Server Release 4.1 was used as the
native platform for this experiment.

VSX Authors and source

The authors of VSX are Unisoft Ltd, Hayne St, London EC1.

VSX 3.205 tests represent 228,675 lines of C source code which is
copyrighted (C) 1989 X/Open Company Limited.

page 4 of 1 2

Summary of Test Results and Native Compiler Comparison.

 3. Summary of Test Results and Native Compiler Comparison.

The following tables report summary results for the ANDF and gcc compilers.
Each column of data reports a particular category of result. The meaning of
these categories are given below in order to interpret the results.

Succeeded means that the test executed correctly and to completion without
any kind of problem. The implementation conforms with the definitions in the
XPG3 standard.

Failed tests imply that some condition necessary for test success was not
satisfied for some reason. In order to understand the reason for failure, it is
necessary to understand the test strategy and identify the conditions which led
to the failure.

Warnings happen when the system behaves in a way which is different from
the functionality described explicitly in the XPG. Whenever a warning is
given, the functionality is acceptable, but later issues of VSX may change the
requirements in this area.

FIP is information which cannot be easily checked by the system and is given
for you to validate manually. For example, the result of the uname test is non-
negative and needs visual verification.

Unresolved means that the test started but did not reach the point where the
test was able to report a result.Uninitiated means that the particular test in
question did not start to execute. When a test is reported as uninitiated or
unresolved, the reason why the test was not performed may be because of
incorrect test parameters, preceding failures or external events.

Unsupported means that an optional feature within XPG3 is not available or
supported in the implementation under test.

TheUntested category is reported because there is no test written to check a
particular feature. For example, it is not possible to check that session IDs are
inherited accross a fork() when job control is not available.

TheNotInUse category pertains to a number of tests which are reserved for
future use. These are not failures and require no further work.

page 5 of 1 2

Summary of Test Results and Native Compiler Comparison.

Table 1: VSX3.205 on OSF/1 MK R4.1 (i486) with ANDF 93-01-27:

To
ta

l t
es

ts

S
uc

ce
ed

ed

F
ai

le
d

W
ar

ni
ng

s

F
IP

U
nr

es
ol

ve
d

U
ni

ni
tia

te
d

U
ns

up
po

rt
ed

U
nt

es
te

d

N
ot

 in
 U

se

ANSI.hdr 336 314 12 2 8

ANSI.os F 1521 1479 16 1 2 3 20

ANSI.os M 56 56

POSIX.hdr 332 312 13 7

POSIX.os F 1388 1264 12 4 3 11 1 54 5 34

POSIX.os M 2 2

XOPEN.cmd 16 16

XOPEN.hdr 60 44 15 4 1

XOPEN.os 219 162 10 1 46

lang.C 1292 1285 4 3

TOTAL 5222 4918 82 9 5 13 63 72 5 54

Table 2: VSX3.205 on OSF/1 MK R4.1 (i486) with gcc 1.37.1:

To
ta

l t
es

ts

S
uc

ce
ed

ed

F
ai

le
d

W
ar

ni
ng

s

F
IP

U
nr

es
ol

ve
d

U
ni

ni
tia

te
d

U
ns

up
po

rt
ed

U
nt

es
te

d

N
ot

 in
 U

se

ANSI.hdr 336 185 6 145 0

ANSI.os F 1521 1472 9 1 16 3 20

ANSI.os M 56 56

POSIX.hdr 332 224 2 5 101

POSIX.os F 1388 1266 11 4 3 29 36 5 34

POSIX.os M 2 2

XOPEN.cmd 16 16

XOPEN.hdr 60 42 1 17

XOPEN.os 219 216 2 1

lang.C 1292 1279 3 10

TOTAL 5222 4758 24 9 25 45 0 302 5 54

page 6 of 1 2

A Side by Side Comparison of ANDF vs gcc.

 4. A Side by Side Comparison of ANDF vs gcc.

The raw data in the previous summary tables can best be viewed in a side by
side presentation given below. The data for each cell is [ANDF gcc] with
blank spaces substituted for “0” data :

page 7 of 1 2

A Side by Side Comparison of ANDF vs gcc.

Table 3: A Side by Side Comparison of ANDF vs. gcc

Total Succeeded Failed Uninitiated Unsupported

ANDF gcc ANDF gcc ANDF gcc ANDF gcc

Header Tests

ANSI.hdr 336 314 185 12 8 145

POSIX.hdr 332 312 224 13 2 7 101

XOPEN.hdr 60 44 42 15 1 17

Subtotal 728 670 451 40 2 16 263

Function Tests

ANSI.os 1521 1479 1472 16 9 3 3

POSIX.os 1388 1264 1266 12 11 1 54 36

XOPEN.os 219 162 216 10 2 46

Subtotal 3128 2905 2954 38 22 47 57 39

Macro Tests

ANSI.os M 56 56 56

POSIX.os M 2 2 2

Subtotal 58 58 58

Other Tests

XOPEN.cmd 16 16 16

lang.C 1292 1285 1279 4

FIP Unresolved

Header Tests ANDF gcc ANDF gcc

ANSI.hdr 2 6

POSIX.hdr 5

XOPEN.hdr 4 1

Function Tests

ANSI.os 2 16

POSIX.os 3 3 11 29

page 8 of 1 2

Preliminary Failure Analysis.

 5. Preliminary Failure Analysis.

In this section, we will address the reasons for failure and uninitiated results of
the ANDF compiler in order to understand the delta between it and gcc. For
this report, we are not interested in tests which fail for both gcc and the ANDF
compiler, and point this out where relevant by use of an asterisk (*).

5.1 ANSI header test failures occur for one of three reasons:

1. Seven tests contain source code which declares a local old-style pointer to a
function returning an int, e.g.int (*func)();, and attempts to assign the
address of a prototyped ANSI function of the same return type to the old-style
pointer to a function. The ANDF compiler correctly rejects this code because
it does not conform to ANSI C. If the local pointer to a function were properly
prototyped for ANSI C, the ANDF compiler would succeed for these tests.

2. Four tests are affected by a deficiency in the current release of the ANDF
compiler related to name space pollution between macros and ANDF tokens.
This problem occurs when a #ifdefANDF-token is used, e.g #ifdef bsearch. The
cause of this problem is improper detection of anANDF-token as a macro where
the token is declared as a function abstraction and no macro definition exists
for the function. This deficiency caused another problem when #undef errno
was used in the VSX source code. In this case, an “Undeclared” message was
generated against errno which is an lvaluedANDF-token.

3. One test fails due to a generic CISC installer deficiency related to testing the
values of mathematical constants in XPG3 (a floating point accuracy problem).

5.2 POSIX header failures occur for one of three reasons:

1. Five are for the same address of function assignment as cited above in 5.1.1.

2. Five are due to token variety mismatches between ANDF header file
constructs and the source code. The mismatch occurs only because the source
code is not properly casting an address of an expression which matches the
pointer type of the lvalue assignment target. If the right hand side of the
expression were properly cast, the ANDF compiler would properly compile
and pass these tests.

page 9 of 1 2

Preliminary Failure Analysis.

3. One is due to the same macro name space pollution cited above in 5.1.2.

4. *Two tests also fail with gcc2.

5.3 XOPEN header failures occur for one of three reasons:

1. Seven are related to lack of support for the “compile” token construct in the
ANDF header file xpg3/regexp.h by the ANDF compiler (tdfc).

2. Six are related to the macro name space pollution cited above in 5.1.2.

3. Two are related to the same address of function assignment problem cited
above in 5.1.1.

5.4 ANSI Function failures occur for one reason:

1. Fourteen are related to the floating point CISC installer problem cited above
in 5.1.3.

2. *Two also fail with gcc.

5.5 *ElevenPOSIX Function failures also fail with gcc.

One failure has been identified for retesting, and is undergoing further analysis.

5.6 All XOPEN Function failures (10) are related to the floating point CICS
installer problem cited above in 5.1.3.

5.7 Fourlang.C failures occured because they all violate some aspect of
ANSI C.

5.8 SixteenXOPEN.cmd tests resulted in anuninitiated status due to type
incompatibilities between the source code and the ANDF header file
declarations. The ANDF compiler correctly rejects them as invalid ANSI C.

5.9 Thirty-oneXOPEN Function tests resulted in anuninitiated status due to
the same reason cited in 5.3.1 above.

2. All tests also failed by gcc are the same tests in all instances cited in this report.

page 1 0 of 1 2

Preliminary Failure Analysis.

5.10 Fifteen tests resulted in anuninitiated status due to the presence of some
amount of ambiguity with type definitions in the XPG standard regarding
nl_catd. [Note: nl_item is similarly affected by the lack of a precise definition]

VSX does not claim to be ANSI conformant itself, i.e. implemented in ANSI
C, but does claim to test the ANSI interfaces — there is a difference. It does
this with source code that violates ANSI C — a condition that causes several of
the XOPEN Function tests to result in an uninitiated status manifested during
run-time test compilation.

All of the tests are locale related and contain source code similar to the
following code fragment:

#include <nl_types.h>
nl_catd catval;
if((catval = catopen (...)) == (nl_catd)-1) {...}

The ANDF compiler correctly rejects this code fragment for two non-ANSI
behaviorisms:

(1) the number -1 is being cast to something to which it may not necessarily
convert, and

(2) the “==” operator is being used between two operands which are not
necessarily comparable, e.g. where nl_catd may be defined as a structure on
some platforms, ANSI C does not allow structure comparisons (due to padding
holes, etc.).

The source of the problem appears to be a shortcoming in XPG where nl_catd
is defined as an arbitrary general type, and requires(nl_catd)-1 as the error
return type for catopen. In principle, nl_catd could be defined on a platform as
a struct or union, and in fact, several of our platforms define it asint while
others define it astypedef struct *.

Under ANSI C conversion rules, integers can be converted to arbitrary pointer
types, which would allow(nl_catd)-1.

Currently, XPG implies that nl_catd should be defined to be any type to which
a -1 can be converted, including all arithmetic and pointer types.

page 1 1 of 1 2

Preliminary Conclusions.

We believe the correct solution is to replace(nl_catd)-1 in the XPG
specification and in the VSX source code by a constant,nl_catd_error.

5.11 TheUnsupported ANSI and POSIX Function tests are under
investigation and are not reported here.

 6. Preliminary Conclusions.

Despite having 3.4 times as many failures as the gcc compiler, the ANDF
compiler recorded more successful tests than gcc. The ANDF compiler
provided 94.2% of complete XPG3 conformance for this version of VSX. As a
comparison, this version of the gcc compiler provided 91.1 % under the same
environmental conditions in a controlled experiment.

It is clear that the ANDF compiler provides more comprehensive API header
file support for ANSI C, POSIX.1 andf XPG3 than this version of gcc: i.e.
ANDF provides 92% of the total support required for complete conformance,
while gcc provides only 62%.

The ANDF compiler provides the same macro support for ANSI C and POSIX
as gcc, where both provide 100% conformance.

Since VSX is not implemented in ANSI C, we conjecture that an ANSI C
implementation of the VSX suite would allow the ANDF compiler to achieve a
higher conformance to XPG3 than the the data reported here indicates for this
implementation of VSX..

We noticed that some tests were not accurately coded to test against their
intended test objective. For example, there are a number of tests which attempt
to test against a macro version of a function, and increment local counter
arguments to determine if the arguments are evaluated only once. In particular,
where the setjmp and longjmp tests are concerned, these tests should declare
the local counters as volatile to determine their test objective accurately.

There remains a question about the validity of the VSX test suite given the
above findings in the area of tests which are either incorrectly encoded or
encoded against a reference implementation instead of the XPG3 standard. One
can understand the reason for this in the following context: If any area of the

page 1 2 of 1 2

Preliminary Conclusions.

standard is ambiguous, this leaves little room but to test against a reference
implementation. Such is not the intention of a verification suite, and needs to
be addressed in the XPG4 standard as well — nl_catd and nl_item are not
precisely defined!

Copyright 1993 by Open Software Foundation, Inc.

All Rights Reserved

Permission to reproduce this document without fee is hereby granted, provided that the copyright notice and
this permission notice appear in all copies or derivative works. OSF MAKES NO WARRRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for any direct or indirect, incidental, special or consequential
damages in connection with the furnishing, performance, or use of this material.

