
7/2/93 watt@osf.org © 1993 OSF 1 of 15

Porting Oracle withANDF

Using an Extended Common API

Thomas J. Watt Jr.

Open Software Foundation
Research Institute

June 1993

Porting a very large existing application to the
ANDF technology presents some special
challenges. After defining an extended common
API, we compiled several major components of
the database management system Oracle into
platform-independent ANDF, installed them on
two important platforms, and tested them
successfully using Oracle’s QA suite.1

1. Introduction

This paper reports on our experience in the OSF Research Institute with
using theANDF compiler technology to build and execute several parts of
Oracle.

We assume that the reader is somewhat familiar with Oracle, and so give only
cursory information about it in the following section.

1. This work was sponsored by a cooperative research agreement between the Open Software
Foundation (OSF) and Unix System Laboratories (USL).

Porting Oracle with ANDF

Software Information

2 of 15

Essentially, we are pursing the goal of increasing the robustness of theANDF

compiler technology toward an industrial strength level of quality such that it
delivers product quality for applications across a wide variety of
heterogeneous platforms. Toward that end, we have, to date, successfully
ported two major and three minor functional parts of Oracle using theANDF

compiler in a native mode. All components of these parts have been
compiled, loaded and locally tested within the components directory
structure. The latest code drop from DRA has been used in this effort. Oracle
is but one of a number of industrial strength applications in our robustness
project plan.

We have analyzed the Oracle header files and prototyped an extended
common API which successfully abstracts the shape of the source code
beyond the purview of the XPG/3ANDF header file set in a machine and
platform independent way. This extended API is sufficient to use theANDF

compiler to distribute intermediateANDF (.j) files which install and properly
execute these parts of Oracle between the above two platforms. All of the
above mentioned components except one source code file in theRdbms
component have been compiled into this extended common APIANDF (.j
file) format. A temporary workaround utilizes the native mode version of the
(.j) intermediate file. Further investigation will insure that the API is
sufficient across a wider set of platforms. The other components have been
subjected to the internal Oracle QA test with successful results.

In subsequent sections we indicate briefly the current status of our porting
investigation, introduce the notion of an extended common API approach
with theANDF compiler technology, describe the extended API in some
detail, and render preliminary conclusions.

2. Software Information

Software Category

Oracle is the well known Relational Database Management System (RDBMS)
product.

Porting Oracle with ANDF

Current Status of the Oracle Porting Investigation

3 of 15

Oracle Version and Release Level

Oracle version 6.0.36 source code was used.

Authors and source

The authors of the OracleRDBMS product are the Oracle Corporation.

OracleRDBMS represents just under 1.9 million lines of C source code, of
which the components mentioned herein represent approximately 500,000
lines of code.

ANDF Technology Version Release

Release TDF-930127 of theANDF Technology was used; it is based on the
TDF Specification Issue 2.0 Revision 1 dated December 1992.

OS Platform Environments

Ultrix 4.2 DECstation 3100 (MIPS) and SCO System V 3.2.1 (i486) with
ODT 1.0.

3. Current Status of the Oracle Porting Investigation

The two major functional parts of Oracle which have been ported with the
ANDF compiler technology in a native mode are theRdbms andForms30.

The three minor functional parts of Oracle wereSqlcalc, Sqlplus, and
Report.

Initially, we attempted to compile using the native compilers on both
platforms and were not always successful. On the Ultrix platform we assume
this was because we were not attempting a full-blown build of Oracle from
scratch and not all parts of Oracle were being built in the usual order
including some pieces which are dynamically generated on the fly by various
Oracle preprocessors. On the SCO SYSV 3.2 platform, this was, however,

Porting Oracle with ANDF

Current Status of the Oracle Porting Investigation

4 of 15

not the case. Oracle source code caused the native compiler (rcc) to exceed
fixed table limits, and the bundledcc compiler was not able to preprocess
successfully. It seems that the versions we have, release level 3.2.1 and ODT
level 1.0, are not the latest releases of iX86 platforms in use by Oracle for
porting. Upgrades to release level 3.2.4 and ODT 2.0 were recommended by
Oracle and presumably cure the native compiler (rcc) problems.

Once the method for generating Makefiles was suitably modified to use the
ANDF compiler, and the define flags were consistent with navigating through
the native platform header files on the above platforms, theANDF compiler
sailed through builds of all of the above components (in native mode). All of
the minor components have been successfully tested in the same manner used
by Oracle Corporation for QA testing prior to shipment of product.

TheANDF Porting experiment for Oracle calls for using theANDF compiler
technology in a strictANDF header file mode,i.e. no native header files are
used. Native headers which contain target dependent definitions of C
constructs used in compiling Oracle are disallowed.2

As stated above, all but one of theRdbms component files have been
successfully ported to theANDF intermediate file format which is both
machine and platform independent. For theRdbms component alone, this
consists of a total of 596ANDF intermediate files (.j).

We have analyzed the Oracle header files and prototyped an extended
common API which is both machine- and platform- independent. For each
install site, it is then necessary to build an extended API token definition
library which maps into the native platform. At present, Install scripts with
the .j files for each Oracle component comprise theANDF distribution. The
work which remains for theRdbms component requires only that some
unresolved symbol linking problems be resolved on either platform. This
appears to be a straightforward porting task which may involve rebuilding
some of the libraries which participate in the linking.

2. See “Porting toANDF” by S. Macrakis, inANDF Technology: Collected Papers, Volume 1, Jan-
uary 1993

Porting Oracle with ANDF

The Extended Common API Approach

5 of 15

4. The Extended Common API Approach

The notion of an extended common API approach to porting application
software with theANDF compiler technology is nothing more than building
ANDF tokens which abstract source code fragments that may vary from
platform to platform. The extension occurs due to the fact that new header
files are scanned prior to the common API on top of which the extension is
built, i.e. in this case the XPG/3 header file set. The token declarations are
usually introduced in header .h files as opposed to executable source.c
files. These new header files reside under a directory namedoracle which
is sibling to the otherANDF common API header file directories. It is not
strictly required to introduce new token header files. For instance, the token
BITVEC is introduced indefs/orastd.h . An oracle.tl file contains the
token definitions and is placed in the API token definition libraries which
are distributed with theANDF technology. The environment file mentioned
below contains a pointer to theoracle.tl library file.

Upon initial inspection, it was necessary to determine how best to utilize the
existing infrastructure of the Oracle Porting Kit in order to expedite our
investigation. We determined that it was straight-forward to modify the top-
level prefix.mk andlibrules.mk files such that when aMake.file >
Makefile command was given within any component subtree directory, the
appropriateANDF actions would get built into the local source code
Makefiles.

The next step was to create a vanilla version of the machine and platform
independent environment forANDF. This consisted of constructing anANDF

environment file, namedoracle , which resided with the otherANDF

technology environment files for the code drop. The trigger to instantiate its
use was edited into theprefix.mk modifications above such that the
compilercc was invoked astcc -Yoracle …. Theoracle environment
file contains a directory pointer to scan for the extended common API header
files that needed to be created, and also turned on thenot_ansi andnepc
flags for theANDF compilation.

What we saw at the beginning of the port were application-dependent header
files which hard-coded absolute path names of platform/usr/include
header files. There are also application dependent versions of these header
files in the directories which are searched prior to theANDF header file set.
Since this was a violation of theANDF rule to avoid using native header files,

Porting Oracle with ANDF

The Environment Files

6 of 15

the obvious fix was to again modify theprefix.mk file in the Oracle root
directory to avoid scanning the include directorystandard_def . In other
words, the ANSI standard header files then were picked up via theANDF

header file set in accordance with ourANDF porting guidelines.

It was necessary to provide some#define definitions in the required oracle
header files, and some in theANDF environment file.

For the most part, minor source code changes were required to the extent that
casts were required for prototyped call interfaces, such as thestrlen
interface.

It should also be noted that several bug reports with regard to limitations of
theANDF compiler technology were submitted due to the Oracle porting
investigation.

5. The Environment Files

The environment files created for theANDF porting investigation were either
native orANDF, each of which were unique for the particular platform due to
differences in directory paths on each platform or native flags required.

For example, the contents of the mips native environment file was:

+INCL “-I/usr/include”
+FLAG “-not_ansi”
+FLAG “-nepc”
+FLAG “-D__mips”
+FLAG “-Dmips”
+FLAG “-DLANGUAGE_C”
+FLAG “-D__LANGUAGE_C”
+FLAG “-DMIPSEL”
+FLAG “-D__MIPSEL”
+FLAG “-Dunix”
+FLAG “-D__unix”
+FLAG “-Dultrix”
+FLAG “-D__ultrix”
+FLAG “-Y32bit”

Porting Oracle with ANDF

The Environment Files

7 of 15

In contrast, the contents of the i486 native environment file was:

+INCL “-I/usr/include”
+FLAG “-not_ansi”
+FLAG “-nepc”
+FLAG “-DM_I86”
+FLAG “-DM_I86SM”
+FLAG “-DM_SDATA”
+FLAG “-DM_STEXT”
+FLAG “-DM_I386”
+FLAG “-DM_XENIX”
+FLAG “-DM_BITFIELDS”
+FLAG “-Di386”
+FLAG “-DM_INTERNAT”
+FLAG “-Dunix”
+FLAG “-DM_UNIX”
+FLAG “-DM_COFF”
+FLAG “-DM_SYS5”
+FLAG “-DM_SYSV”
+FLAG “-DM_SYS3”
+FLAG “-DM_SYSIII”
+FLAG “-DM_WORDSWAP”
+FLAG “-Y32bit”

TheANDF environment file for the mips platform was:

+INCL “-I/u2/rsandf/feb-93/tdf/include/include/oracle \
-I/u2/rsandf/feb-93/tdf/include/include/xpg3”

+LIB “-loracle -lxpg3”
+FLAG “-DUNIX”
+FLAG “-DANDF”
+FLAG “-DANSI_HEADERS”

In contrast, the contents of the i486ANDF environment file were:

+INCL “-I/usr/rsandf/feb-93/tdf/include/include/oracle \
-I/usr/rsandf/feb-93/tdf/include/include/xpg3”

+LIB “-loracle -lxpg3”
+FLAG “-DUNIX”
+FLAG “-DANDF”
+FLAG “-DANSI_HEADERS”

Porting Oracle with ANDF

Token Declarations

8 of 15

6. Token Declarations

The tokens required for the OracleANDF port, as explained above, were
distributed between either the extended API header files or integrated into
the Oracle application header files.

The token declared in each header file were as follows:

Oracle Extended API header files (…/ feb93/tdf/include/include/oracle):

math.h

#pragma token STRUCT TAG exception #
#pragma token MEMBER int : struct exception : type # \

_exception_type_
#pragma token MEMBER char * : struct exception : name # \

_exception_name_
#pragma token MEMBER double : struct exception : arg1 # \

_exception_arg1_
#pragma token MEMBER double : struct exception : arg2 # \

_exception_arg2_
#pragma token MEMBER double : struct exception : retval #\

_exception_retval_

sparams.h

#pragma token EXP rvalue : int : SSTPBLCK #
#pragma token EXP rvalue : int : SSTKBLCK #

unistd.h

#pragma token FUNC char * (int) : sbrk #

Oracle header files [Extended API] ($SRCHOME/include):

kdi.h

#pragma token FUNC int (ktbbh *) : kdidxl #
#pragma token FUNC int (int) : kdidvl #

kdo.h

#pragma token FUNC int (int, int) : kdousz #

kdr.h

#pragma token FUNC int (int) : KDRHSZ #

Oracle header files [Extended API] ($SRCHOME/defs):

orastd.h

#pragma token FUNC int (int) : BITVEC #

Porting Oracle with ANDF

Token Definitions

9 of 15

#pragma token \
PROC (EXP lvalue : bitvec[] :, EXP rvalue : uword :) \
EXP rvalue : void : \
vecclr #

#pragma token \
PROC (EXP lvalue : bitvec[] :, EXP rvalue : uword :) \
EXP rvalue : void : \
vecset #

#pragma token \
PROC (EXP lvalue : bitvec[] :, \
 EXP lvalue : bitvec[] :, \
 EXP rvalue : uword :) \
EXP rvalue : void : \
veccpy #

#pragma token FUNC bool (bitvec vtr[], uword bt) : vecbit #
#pragma token FUNC bool (bitvec vtr[], uword bt) : vecbis #
#pragma token FUNC bool (bitvec vtr[], uword bt) : vecbic #

Oracle header files [Extended API] ($SRCHOME/sqlcalc/include):

usdunx.h

#pragma token EXP rvalue: unsigned char : HLPFILE #
#pragma token EXP rvalue: unsigned char : OVLFILE #
#pragma token EXP rvalue: unsigned char : MSGFILE #

7. Token Definitions

The method used to define the above tokens required the use of thetld
command which can be invoked with parameters,e.g. -mc -o oracle.tl
*.j , in order to create theoracle.tl token definition library.

TheANDF driver, tcc , is used with the- Fj flag and perhaps some- Idir
paths in order to create the.j files containing the platform dependent token
definitions on each platform. Path names were modified as required for the
i486 platform dependent pathname.

The source files used for this purpose were as follows:

kdi.c

#define __BUILDING_TDF_ORACLE_KDI_H
#ifndef __WRONG_ORACLE_KDI_H
#pragma implement interface \

“/u2/oracle/pmax_ul4/include/kdi.h”

Porting Oracle with ANDF

Token Definitions

10 of 15

#undef kdidxl
#define kdidxl(tbhdr) ktbdxl(tbhdr, 1, sizeof(kdige))
#undef kdidvl
#define kdidvl(nitl) ktbdvl(nitl, 1, sizeof(kdige))

#endif

kdo.c

#define __BUILDING_TDF_ORACLE_KDO_H
#ifndef __WRONG_ORACLE_KDO_H
#pragma implement interface

“/u2/oracle/pmax_ul4/include/kdo.h”
#undef kdousz
#define kdousz(n, siz) \

((sword) (-((sword)kcbdtl) + ((sword)ktumxr((n)+3)) + \
((sword)sizeof(ktbru)) + \
((sword) \
 max(sizeof(kdoi), sizeof(kdom)+(n)*sizeof(kcol))) + \
((sword) (((KDRMAXCO)+(UB1BITS-1))>>3)) + \
((sword)(((n)+(UB1BITS-1))>>3)) + \
((sword)(siz))))

#endif

kdr.c

#define __BUILDING_TDF_ORACLE_KDR_H
#ifndef __WRONG_ORACLE_KDR_H
#pragma implement interface

“/u2/oracle/pmax_ul4/include/kdr.h”

#undef KDRHSZ
#define KDRHSZ(flags) (\

3*sizeof(ub1) + \
(bit(flags,KDRHFC) ? sizeof(ub1) : 0) + \

 (bit(flags,KDRHFK) \
 ? (sizeof(b2)+sizeof(kd_brid))<<1 \
 :0) + \
((bit(flags,KDRHFF) ? 1:0) & (!bit(flags,KDRHFH) ? 1:0)\
? sizeof(kd_brid) \
 : 0) + \
(bit(flags,KDRHFL) ? 0 : sizeof(kd_brid)))

#endif

math.c

#define __BUILDING_TDF_ORACLE_MATH_H
#ifndef __WRONG_ORACLE_MATH_H
#pragma implement interface \

“/u2/rsandf/feb93/tdf/include/include/oracle/math.h“

Porting Oracle with ANDF

Token Definitions

11 of 15

#include “/usr/include/math.h”
#endif

orastd.c

#define __BUILDING_TDF_ORACLE_ORASTD_H
#ifndef __WRONG_ORACLE_ORASTD_H
#pragma implement interface \

“/u2/oracle/pmax_ul4/defs/orastd.h”

#define BITVEC(n) (((n)+(UB1BITS-1))>>3)
void vecclr(bitvec vtr[],uword size);
#define vecclr(vtr, size) \

(genclr((ptr_t)(vtr), (size_t)BITVEC(size)))
void vecset(bitvec vtr[],uword size);
#define vecset(vtr, size) \

(DISCARD memset((ptr_t)(vtr), ~((ub1)0), \
 (size_t)BITVEC(size)))

void veccpy(bitvec dest[], bitvec src[], uword size);
#define veccpy(dest, src, size) \

(DISCARD memcpy((ptr_t)(dest), (ptr_t)(src), \
 (size_t)BITVEC(size)))

bool vecbit(bitvec vtr[], uword bt);
#define vecbit(vtr, bt) \

((vtr)[(bt) >> 3] & ((ub1) (1 << ((bt) & (UB1BITS-1)))))
bool vecbis(bitvec vtr[], uword bt);
#define vecbis(vtr, bt) \

((vtr)[(bt) >> 3] |= ((ub1) (1 << ((bt) & (UB1BITS-1)))))
bool vecbic(bitvec vtr[], uword bt);
#define vecbic(vtr, bt) \

((vtr)[(bt) >> 3] &= ((ub1)~(1 << ((bt) & (UB1BITS-1)))))
#endif

sparams.c

#define __BUILDING_TDF_ORACLE_SPARAMS_H
#ifndef __WRONG_ORACLE_SPARAMS_H
#pragma implement interface \

“/u2/rsandf/feb93/tdf/include/include/oracle/sparams.h”
#define ULTRIX

/*use SYSV_386 for SCO_UNIX, ULTRIX for PMAX DECstation*/
#include “/u2/oracle/pmax_ul4/libs/sosd/sparams.h”
#endif

unistd.c

#define __BUILDING_TDF_ORACLE_UNISTD_H
#ifndef __WRONG_ORACLE_UNISTD_H
#pragma implement interface \

“/u2/rsandf/feb93/tdf/include/include/oracle/unistd.h”

Porting Oracle with ANDF

The Prefix.mk Modifications

12 of 15

extern char *sbrk();
#endif

usdunx.c

#define __BUILDING_TDF_ORACLE_USDUNX_H
#ifndef __WRONG_ORACLE_USDUNX_H
#pragma implement interface \

“/u2/oracle/pmax_ul4/sqlcalc/include/usdunx.h”

#define HLPFILE (unsigned char) \
“/u2/oracle/pmax_ul4/sqlcalc/admin/sqlcalc.hlp”

#define OVLFILE (unsigned char) \
“/u2/oracle/pmax_ul4/sqlcalc/admin/sqlcalc.ovl”

#define MSGFILE (unsigned char) \
“/u2/oracle/pmax_ul4/sqlcalc/admin/sqlcalc.msg”

#endif

8. The Prefix.mk Modifications

The following differences highlight the changes made to the prefix.mk file
in $SRCHOME. Subsequent invocation ofMake.file > Makefile in any
one subdirectory with a local .mk file created the desiredANDF modification
to the local Makefile.

< MAKE= make $(MKFLAGS)
> MAKE= make -k $(MKFLAGS)

< SPFLAGS=-DSYSTEM_FIVE -Y
> SPFLAGS=-DSYSTEM_FIVE

< CC=cc
> CC=tcc -Yoracle -not_ansi -nepc

< CCFLAGS=-Wf,-XNd9000
> CCFLAGS=

< OTHERLIBS= -ldnet -lcV
> OTHERLIBS= -lcV

< LIBDNT= $(NETHOME)/dnt/libdnt.a
> LIBDNT=

< NETLIBS= $(LIBUTT) $(LIBDNT) $(LIBASYNC) $(LIBTLI) \

Porting Oracle with ANDF

Makefile Changes for ANDF

13 of 15

< $(LIBLU62) $(LIBX25) $(LIBOSI) $(LIBSQLNET)
> NETLIBS= $(LIBUTT) $(LIBASYNC) $(LIBTLI) $(LIBLU62) \
> $(LIBX25) $(LIBOSI) $(LIBSQLNET)

< NETLIBS= $(LIBUTT) $(LIBTCP) $(LIBDNT) $(LIBASYNC) \
< $(LIBTLI) $(LIBLU62)
> NETLIBS= $(LIBUTT) $(LIBTCP) $(LIBASYNC) $(LIBTLI) \
> $(LIBLU62)

< SRCINCLUDE= $(DEFSINCLUDE) $(CCINCLUDE) $(SOSDINCLUDE) \
< $(STDINCLUDE)
> SRCINCLUDE= $(DEFSINCLUDE) $(CCINCLUDE) $(SOSDINCLUDE) \
> #$(STDINCLUDE)

The#$(STDINCLUDE) on the above line had the desired effect of avoiding
the Oracle application’s own version of platform dependent standard
definitions which were provided via theANDF header files. Note that
libdnt.a (LIBDNT.a) was stubbed out for this investigation meaning that
this version of Oracle was intended not to run over DECnet.

9. Makefile Changes forANDF

The following example changes were made to each component source
subdirectory Makefile. Either a shell script or amake -k andf command
which descended each component source directory subtree generated the
ANDF .j intermediate files.

< .SUFFIXES: .i .pc .ok .h .hok .d .scr .r .j .k

> .SUFFIXES: .o .j .c
> .c.j:
> $(CC) -Fj $(CFLAGS) $<
> .j.o:
> $(CC) -c $(CFLAGS) $<
> OBJSJ=${OBJS:.o=.j}
> andf: $(OBJSJ)

Porting Oracle with ANDF

Source Code Modifications

14 of 15

10. Source Code Modifications

As mentioned above, the majority of source code modifications comprised
the insertion of appropriate casts to mollify theANDF compiler’s
requirements.

The creation of theANDF define (see theANDF environment file), was
necessary indefs/orastd.h to separate the inserted token declarations from
the original source code. The original source code was then accessible only
via the nativecc compiler or native mode use of theANDF compiler with an
appropriate#ifndef ANDF. Some source files required thatdefined(ANDF)
be appended to the list of#if defined(…) || … items.

Whenever a declaration likeextern int errno; occurs in application
source code, it is necessary to stub it out or delete it when using theANDF

compiler.

Occasionally, it was necessary to modify a#include for a header file, such
as<fcntl.h> instead of<sys/file.h> , or <math.h> instead of
/usr/include/math.h .

Declaration assignments likebyte foo[bar] = “\0”; were modified to
{“\0”};.

The complete set of source code modifications are to numerous to repeat
here, however, the flavor given above is accurate, and indicates that the task
of porting Oracle was mostly a straight-forward porting task to ANSI C.

Porting Oracle with ANDF

Preliminary Conclusions

15 of 15

11. Preliminary Conclusions

It is clear that the coding and porting practice of Oracle Corporation is very
platform target dependent, but is indeed separable, and thus amenable to a
fairly straightforward use of theANDF compiler technology.

We have demonstrated that it is possible to build and execute 4 of the 5
Oracle components entirely with theANDF extended common API presented
herein. The observed performance of these components was the same as the
natively built version.

The fifth component, theRdbms, has also been built except for one source
file with the same extended API constructed with theANDF compiler
technology. The one source file includes header files which exhibit a form of
coding practice regarding pre-processor macro definitions for which there
exist outstanding error reports.

Token definition libraries shipped with thisANDF distribution provide the
same resolution as the target dependent code. In effect, theANDF technology
abstracts the shape of the source code to be functionally consistent on all such
platforms without any appreciable performance penalty.

A suggested way to improve the Oracle source code to accommodate a higher
degree of portability between a wider set of platforms and architectures is to
replace target dependent code withANDF tokens via use of theANDF

technology.

Oracle uses an internal performance test suite for its product verification of
the major components. This test suite should be used to subject all of the
ANDF built components to the same rigorous testing as Oracle products.

Copyright 1993 by Open Software Foundation, Inc.

All Rights Reserved

Permission to reproduce this document without fee is hereby granted, provided that the copyright notice and
this permission notice appear in all copies or derivative works. OSF MAKES NO WARRRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for any direct or indirect, incidental, special or consequential
damages in connection with the furnishing, performance, or use of this material.

